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Abstract

We show structural properties of the system of ordered partitions of [n] :=
{1, . . . , n} all of whose left-to-right minima occur in odd locations, called
left-to-right arrangements. Our main objectives are (i) to show that the
set of all finite left-to-right arrangements is a projective system under
a natural choice of restriction operation, (ii) to establish a non-trivial
embedding of set partitions of [n] into the set of left-to-right arrangements
of [n], and (iii) to illustrate how this embedding can be used to easily
enumerate certain sets of pattern-avoiding set partitions.

1 Introduction

A set partition of [n] := {1, . . . , n} is a collection π of non-empty disjoint subsets
B1, . . . , Bk (called blocks) such that

⋃k
j=1Bj = [n]. The blocks are unordered, so we

adopt the convention of listing them in ascending order of their smallest element; we
write π := B1/ · · · /Bk, where

minB1 < · · · < minBk.

Alternatively, a partition π can be represented by its restricted growth function
ρ(π) := ρ1 · · · ρn, where ρi is the index of the block containing element i. For exam-
ple, the partition π = 156/28/349/7 corresponds to ρ(π) = 123311423. Throughout
the paper, we write Pn to denote the collection of set partitions of [n].

An ordered partition of [n] is an ordered collection (B1, . . . , Bk) of non-empty,
disjoint classes for which

⋃k
j=1Bj = [n]. As ordered partitions, (13, 24, 5), (24, 5, 13),

and (5, 24, 13) are different objects, though their classes determine the same set
partition 13/24/5.

We highlight some little known properties of ordered partitions whose left-to-
right minima occur at odd locations, shortened to left-to-right arrangements or left-
right arrangements, and illustrate how these properties relate to certain structural
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properties of set partitions and permutations. Formally, an ordered partition α :=
(α1, . . . , αk) is a left-to-right arrangement if, for each 1 ≤ j ≤ k, the minimum of
α1 ∪ · · · ∪ αj occurs in αi, where i is an odd index between 1 and j. For the ordered
partitions above, (13, 24, 5) and (24, 5, 13) are left-right arrangements and (5, 24, 13)
is not, because the minimum of the first two classes occurs in the second class. We
write An to denote the set of left-right arrangements of [n]. The sets {An}n≥1 are
enumerated by the exponential generating function

A(x) :=
∑
n≥0

#An xn/n! =

√
ex

2− ex
,

with the convention #A0 = 1; see [14]:A014307 and [6, 12].
Left-to-right arrangements possesses nice combinatorial structure, which has not

been widely studied. In particular, {An}n≥1 is a projective system under a restriction
operation that combines aspects of more familiar operations for set partitions and
permutations. Furthermore, there is a natural correspondence between partitions
of [n] and the subset of contiguous, inversion-free left-to-right arrangements of [n].
These two observations are the subject of Section 2. In Section 3, we use these
structural relationships to study occurrences of certain patterns in set partitions and
left-right arrangements. Using our correspondence between partitions and left-right
arrangements, we give an easy alternative proof for the number of partitions in the
Wilf equivalence class of the pattern 12312. We also use the combinatorial structure
of {Pn}n≥1 to derive a family of enumerative triangles {Tk(n,m)}n≥1 connected to
12 · · · k(k − 1)-avoiding partitions. In Section 4, we list parts of these triangles for
small values of k.

2 Projective structure of the space of left-to-right arrange-
ments

2.1 Projective structure of set partitions and permutations

The collection {Pn}n≥1 of finite set partitions enjoys a projective structure under
the deletion operation defined as follows. We project π ∈ Pn into Pn−1 by deleting
element n from its block and keeping the rest of π unchanged; if {n} appears in π
as a singleton, the resulting empty set is removed. Formally, we define the deletion
operation by Dm,n : Pn → Pm, for each m ≤ n, where

Dm,n π := {B1 ∩ [m], . . . , Bk ∩ [m]} \ {∅}, π ∈ Pn .

For example, with π = 145/23/678, we have D7,8π = 145/23/67 and D4,8π = 14/23.
When representing π ∈ Pn by its restricted growth function ρ(π) = ρ1 · · · ρn, re-
striction to Pm is obtained by removing the last n − m elements of ρ(π), i.e.,
ρ(Dm,n π) = ρ1 · · · ρm.

A permutation of [n] is a one-to-one and onto mapping σ : [n] → [n]. We write
Sn to denote the collection of permutations of [n]. We can represent σ ∈ Sn as
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either a list σ1 · · ·σn, where σi := σ−1(i) is the element of [n] assigned to location
i = 1, . . . , n, or as a product of cycles σ := c1 · · · ck, where

cj := (ijσ(ij)σ
2(ij) · · ·σkj−1(ij))

denotes the jth cycle of σ, which begins with the minimum element not appearing
in cycles c1, . . . , cj−1 and is obtained by iterating σ (kj − 1)-times, where kj is the
smallest integer for which σkj(ij) = ij. For example, the permutation 231564 is
written as (132)(465) in cycle notation.

Restriction of a permutation σ ∈ Sn to Sn−1 can be defined in at least two
inequivalent ways. In this paper, we call attention to the delete-and-repair definition
of restriction, which is suitable to the cycle representation. For n ≥ 1, we define
Rn−1,n : Sn → Sn−1 by σ′ := Rn−1,n σ, where

σ′(i) :=

{
σ(n), σ(i) = n
σ(i), otherwise.

In cycle notation, the delete-and-repair operation amounts to deleting element n from
its cycle and leaving the rest of σ unchanged, e.g., the restriction of σ = (132)(465)
to S5 is obtained by removal of element 6, R5,6σ = (132)(45).

2.2 The system of left-to-right arrangements

For the collection {An}n≥1 of left-to-right arrangements, we define restriction by
combining the deletion and delete-and-repair operations for set partitions and per-
mutations, respectively. Each α ∈ An has attributes of both a set partition and
a permutation, and care is needed to ensure that the restriction of α satisfies the
left-to-right minimum condition. We divide An into the four cases (I)-(IV) below
and describe the restriction rule in each case separately.

In words, the cases are: (I) element n occurs in a class with at least one other
element; (II) the singleton {n} occurs to the right of the class containing 1 and is
between classes appearing in ascending order of their minima; (III) the singleton
{n} occurs to the left of the class containing 1 and is between classes appearing in
ascending order of their minima; (IV) the singleton {n} is between classes appearing
in descending order of their minima—in this case, we say n is part of an inversion.

Formally, let α := (α1, . . . , αk) ∈ An. We define the restriction of α to An−1,nα =
α′ := (α′1, . . . , α

′
k′) ∈ An−1 as follows. For j ∈ [n], let Ij denote the index of the

class of α containing j and, in particular, let I∗ := I1 denote the index of the class
of α containing 1. Furthermore, let mj := minαj, j = 1, . . . , k, denote the minimum
element of class j. Then either

(I) αIn is not a singleton,

(II) In > I∗, αIn is a singleton, and mIn−1 < mIn+1,

(III) In < I∗, αIn is a singleton, and mIn−1 < mIn+1, or

(IV) αIn is a singleton and mIn−1 > mIn+1.
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In each case, we obtain α′ := An−1,nα as follows.

(I) We put α′j := αj ∩ [n− 1] for j = 1, . . . , k.

(II) We put α′j := αj for j < In and α′j := αj+1 for j ≥ In.

(III) – (IV) We put α′j := αj for j < In − 1, α′In−1 := αIn−1 ∪ αIn+1, and α′j := αj+2

for j ≥ In.

Cases (I) and (II) correspond to the usual deletion operation for set partitions,
while cases (III) and (IV) correspond to a delete-and-repair-type operation. In cases
(III)-(IV), either element n is part of an inversion (see Definition 2.3) or appears as a
singleton to the left of element 1. In either situation, simple deletion can result in a
shift of left-to-right minima by 1 index to the left, which would result in a minimum
occurring in an even location. To avoid this, we repair such a removal by merging the
classes on either side of {n}. Note that in case (IV), when In > I∗, simple deletion
would not result in a violation of the left-to-right minima condition; however, this
step is fundamental to the structure of {An}n≥1 because it deals with occurrences of
inversions. The following example illustrates the restriction operation in each of the
above cases.

Example 2.1. Each of the following left-right arrangements of [7] restricts to (23, 4,
1, 56) under operations (I)-(IV).

(I) αI = (23, 47, 1, 56): {7} is not a singleton, so we apply the usual deletion rule
for set partitions;

(II) αII = (23, 4, 1, 7, 56): {7} occurs as a singleton to the right of element 1 and
min{1} < min{5, 6};

(III) αIII = (2, 7, 3, 4, 1, 56): {7} occurs as a singleton to the left of element 1;

(IV) αIV = (23, 4, 1, 6, 7, 5): {7} occurs as a singleton and min{6} > min{5}, i.e.,
7 is part of the inversion (6, 7, 5).

Table 1 gives the restriction for all left-to-right arrangements of {1, 2, 3, 4}. Note
that there is no instance of case (III) in A4. The first instances of case (III) are the
left-right arrangements (2, 3, 5, 4, 1), (2, 5, 3, 4, 1), and (2, 5, 4, 3, 1). The restrictions
of these to A4 are (2, 34, 1), (23, 4, 1), and (24, 3, 1), respectively.

Since cases (I)-(IV) exhaust all possibilities, it is clear that {An}n≥1 has projective
structure under the above restriction operation. For m ≤ n, we define Am,n : An →
Am by composition, Am,n := Am,m+1 ◦ · · · ◦An−1,n.

Theorem 2.2. The collection {An}n≥1 of left-to-right arrangements is a projective
system under the deletion scheme given in (I)-(IV).

Proof. We need only show that for each m ≤ n there is a well-defined projection
Am,n : An → Am such that Al,m ◦ Am,n = Al,n whenever l ≤ m ≤ n. But this is
obvious since we have defined Am,n := Am,m+1 ◦ · · · ◦An−1,n. Since we have chosen
cases (I)-(IV) so that α′ remains a left-right arrangement, each α ∈ An corresponds
to a unique element α′ ∈ An−1 such that α′ = An−1,nα.
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α∗ ∈ A3 {α ∈ A4 : A3,4α = α∗}
123 1234 123,4 23,4,1 2,4,13 3,4,12
12,3 124,3 12,4,3 12,34 12,3,4 2,4,1,3
1,23 14,23 1,4,23 1,234 1,23,4 1,3,4,2
13,2 134,2 13,4,2 13,24 13,2,4 3,4,1,2
1,2,3 14,2,3 1,4,2,3 1,24,3 1,2,4,3 1,2,34 1,2,3,4
1,3,2 14,3,2 1,4,3,2 1,34,2 1,3,24 1,3,2,4
2,3,1 24,3,1 2,34,1 2,3,14 2,3,1,4

Table 1: Table showing the 7 left-right arrangements of {1, 2, 3} in the leftmost
column. Within each row is the set of left-right arrangements of {1, 2, 3, 4} that
restricts to the corresponding element in the leftmost column.

2.3 Representing set partitions by left-to-right arrangements

We have already described two equivalent ways to represent a set partition, as a
collection of disjoint blocks and by its restricted growth function. There are several
other ways to represent set partitions, e.g., by labeling points 1, . . . , n consecutively
on a circle and drawing a line between labels that appear consecutively within a block
and a line from the largest to the smallest element within each block. Likewise, we
can label n points in a horizontal line and draw an arc between consecutive elements
within the same block. Yet another representation is by a rook placement, which is
an arrangement of points on an (n − 1) × (n − 1) lower triangular grid so that no
two points appear in the same row or column.

We now describe another representation in terms of left-to-right arrangements
with certain properties. As we show, this representation is natural in that it re-
spects the projective structure of both {Pn}n≥1 and {An}n≥1. We later use this
representation to give an alternative enumeration of 12312-avoiding partitions.

Definition 2.3. For α = (α1, . . . , αk) ∈ An, let m(α) be the list of minima of α,
i.e., m(α) := m1 · · ·mk, where mj := minαj for each j = 1, . . . , k. An inversion
in α is a triple (αi−1, αi, αi+1), i = 2, . . . , k − 1, for which mi+1 < mi−1 < mi. Let
(α[1], . . . , α[n]) be the sequence of restrictions of α under operations (I)-(IV). We call
α inversion-free if none of its restrictions contains an inversion, that is, there is no
pair j = 1, . . . , n and i = 2, . . . , k − 1 for which (α

[j]
i−1, α

[j]
i , α

[j]
i+1) is an inversion.

A characteristic of inversion-free left-right arrangements is that element 1 appears
in the first class; however, this criterion does not determine the collection of inversion-
free left-right arrangements. For example, (1, 4, 3, 2) is inversion-free and (1, 3, 4, 2)
is not. Note also that α might contain no inversions but fail to be inversion-free. For
example, α = (2, 5, 4, 3, 1) has no inversions, but α[4] = (24, 3, 1) does; therefore, α
is not inversion-free.

Definition 2.4. For any finite subset A ⊂ N, let m := minA and M := maxA.
We call A contiguous if A−m + 1 := {a−m + 1 : a ∈ A} = {1, . . . ,M −m + 1}.
In other words, there is some m ∈ N such that A := {m,m + 1, . . . ,M} consists of
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consecutive integers from m to M . A left-right arrangement is called contiguous if
each of its classes is contiguous.

We establish a bijection between partitions of [n] and left-right arrangements of
[n] that are both contiguous and inversion-free. To initialize, we put the partition
1 into correspondence with the left-right arrangement (1). Now, for π′ ∈ Pn, let
π := Dm,n π

′ be its restriction to Pm, m < n, and let α ∈ Am be the left-right
arrangement associated to π. We obtain α∗ ∈ Am+1 corresponding to π∗ := Dm+1,nπ

′

as follows. We write π∗ := B1/ · · · /Bk and α := (α1, . . . , αr). We also let m1, . . . ,mr

denote the minima of α1, . . . , αr, respectively, αM ∈ α denote the class containing
element m, and i1 < · · · < ik−1 be the indices for which mij := minBj, for each
j = 1, . . . , k − 1. We insert m+ 1 into α to obtain α∗ as follows.

(a) If m and m+ 1 are in the same block of π∗, we insert m+ 1 into αM ;

(b) if m+ 1 is a singleton in π∗, we insert {m+ 1} as a new class at the end of α,
i.e., α 7→ α∗ := (α1, . . . , αr, {m+ 1});

(c) if m + 1 is in Bk (the last block of π∗), {m + 1} is not a singleton of π∗, and
m /∈ Bk, then we insert {m + 1} as a new class to the immediate left of αM
(the class containing m);

(d) otherwise, let m′ be the minimum element of the block containing m+ 1 in π∗;
we insert {m+ 1} as a singleton class immediately to the right of αI , where I
is the index of the class containing m′ in α.

The following example illustrates the above procedure for a partition of nine
elements.

Example 2.5. Consider the partition π := 1345/268/7, which corresponds to α =
1, 6, 345, 2, 8, 7 by (a)-(d). According to the above procedure, we can obtain a left-right
arrangement of [9] by inserting the element 9 in one of four places.

• For π′ := 13459/268/7, we are in case (d) above and we place {9} to the
immediate right of the class containing min{1, 3, 4, 5, 9} = 1 to obtain α∗ :=
(1, 9, 6, 345, 2, 8, 7).

• For π′ := 1345/2689/7, we are in case (a) and we insert 9 in the same class
as 8 to obtain α∗ := (1, 6, 345, 2, 89, 7).

• For π′ := 1345/268/79, we are in case (c) and we place {9} to the left of the
class containing 8, i.e., α∗ := (1, 6, 345, 2, 9, 8, 7).

• For π′ := 1345/268/7/9, we are in case (b) and we obtain α∗ := (1, 6, 345, 2, 8,
7, 9).

Table 2 shows this correspondence for partitions of {1, 2, 3, 4}.
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partition left-right arrangement
1234 1234
123/4 123,4
124/3 12,4,3
134/2 1,34,2
1/234 1,234
12/34 12,34
13/24 1,4,3,2
14/23 1,4,23
1/2/34 1,2,34
1/23/4 1,23,4
1/24/3 1,2,4,3
12/3/4 12,3,4
13/2/4 1,3,2,4
14/2/3 1,4,2,3
1/2/3/4 1,2,3,4

Table 2: Correspondence between partitions and left-right arrangements of
{1, 2, 3, 4}. Note that partition 13/24 is an occurrence of case (c) above, for which
we obtain the left-right arrangement 1,4,3,2.

In the following proposition, let A∗n be the subset of contiguous, inversion-free left-
right arrangements.

Proposition 2.6. Items (a)-(d) above establish a natural correspondence between
{Pn}n≥1 and {A∗n}n≥1. That is, for π ∈ Pn, let α = α(π) be its corresponding left-
right arrangement according to (a)-(d). Then α is uniquely determined by π and, for
each m ≤ n, Am,nα(π) = α(Dm,nπ).

Proof. Fix π ∈ Pn and let α = α(π) be the left-right arrangement obtained by apply-
ing (a)-(d) above. Then α is clearly an element of An, because its first class contains
1 and there is no concern about left-to-right minima. Furthermore, new classes al-
ways start to the immediate right of a class containing a right-to-left minimum and
so α is inversion-free since an inversion requires a consecutive 2-3-1 pattern in class
minima. That α is contiguous is plain since, for every m ≥ 1, m and m+1 are either
in the same class of α, as in case (a), or {m+ 1} is inserted as a singleton class in α.

Conversely, let α := (α1, . . . , αr) be a contiguous, inversion-free left-right arrange-
ment. Then we associate it to a partition by inverting (a)-(d) above. In particular, let
α(1), . . . , α(r) be the ordered classes of α so that minα(1) < minα(2) < · · · < minα(r).

We recursively associate α to π ∈ Pn as follows. For j < r, let π(j) := B
(j)
1 / · · · /B(j)

kj
be a partition of α(1)∪· · ·∪α(j). In α, the next class α(j+1) must occur either between
two classes α(i) and α(i′), for 1 ≤ i 6= i′ ≤ r, or α(j+1) must be to the right of each
α(i), i = 1, . . . , j.

(a’) If α(j+1) is to the right of every α(1), . . . , α(j), then we append the set α(j+1) to

π(j) as its own block, π(j) 7→ π(j+1) := B
(j)
1 / · · · /B(j)

kj
/α(j+1).
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(b’) If α(j+1) is to the immediate left of the class b containing minα(j+1) − 1 and b
is not part of the last block of π(j), then α(j+1) is combined with the last block

of π(j), π(j) 7→ π(j+1) := B
(j)
1 / · · · /B(j)

kj
∪ α(j+1).

(c’) Otherwise, we combine α(j+1) with the block of π(j) containing the rightmost
class to the left of α(j+1) in α.

Under this bijection, the minimal elements of the blocks of π correspond to the
right-to-left minima of the left-right arrangement. Furthermore, in case (c’), the
class immediately to the left of α(j+1) must contain a right-to-left minimum. It is
clear that the maps (a)-(d) and (a’)-(c’) are inverse to one another, establishing the
desired bijection.

That the restriction operation on {An}n≥1 commutes with deletion on {Pn}n≥1
should be clear by our construction: since each π ∈ Pn corresponds to a left-right
arrangement that is inversion-free, we are always in cases (I)-(II) of the restriction
scheme, which are compatible with deletion for set partitions.

Example 2.7. As an illustration of (a)-(d) and the inverse map (a’)-(c’), consider
α = (1, 5, 4, 3, 2). To construct the corresponding partition π = π(α), we take the
following steps. Since all classes are singletons, we have α(i) = {i} for i = 1, 2, 3, 4, 5
and proceed as follows.

(1) We begin with π(1) = 1.

(2) Apply (a’) to get π(2) = 1/2.

(3) Apply (c’) to get π(3) = 13/2.

(4) Since 3 is not in the last block of π(3), we then apply (b’) to get π(4) = 13/24.

(5) Since 4 is in the last block of π(4), we apply (c’) to get π = π(5) = 135/24.

In reverse, we start with π = 135/24 and construct α = α(π) recursively.

(1) We begin with α(1) = (1).

(2) Since 2 is a singleton in π(2) = 1/2, we apply (b) to get α(2) = (1, 2).

(3) The minimum element of the block containing 3 is 1, so we apply (d) to get
α(3) = (1, 3, 2).

(4) Since 4 appears in the last block of π(4) = 13/24, is not a singleton, and 3 is
not in the last block of π(4), we apply (c) to get α(4) = (1, 4, 3, 2).

(5) We apply (d) again to get α = α(5) = (1, 5, 4, 3, 2).

3 Partition patterns

We conclude the paper with a discussion of patterns for set partitions and left-right
arrangements. We preface this section with a discussion of stack-sorting for partitions
and left-to-right arrangements.
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3.1 Sorting left-to-right arrangements

Given a list l = l1 · · · ln of (not necessarily distinct) positive integers, we define the
reduction of l as the sequence Reduce(l1 · · · ln) = i1 · · · in, where ij ∈ [k], k :=
#{l1, . . . , ln}, and, for each pair j, j′,

ij


<
=
>

 ij′ ⇐⇒ lj


<
=
>

 lj′ .

For example, the sequence l = 4824385 contains 5 distinct integers 2 < 3 < 4 < 5 < 8
and Reduce(4824385) = 3513254.

Let τ := τ1 · · · τk be a permutation of [k], called a permutation pattern, and let
σ ∈ Sn. We say σ contains τ , denoted σ ∼ τ , if there exist indices i1 < i2 < · · · < ik
such that Reduce(σi1 · · ·σik) = τ . For example, the permutation 425136 contains
the pattern 1324 since Reduce(2536) = 1324. If σ does not contain τ , we say that
σ avoids τ . The above permutation avoids the pattern 1432.

In a similar way, we define pattern avoidance for left-right arrangements through
its list of class minima. That is, for α := (α1, . . . , αk) ∈ An, let mα := m(α) =
(m1, . . . ,mk) be its ordered list of minima, where mi := minαi. Given a permutation
τ , we say α avoids τ if Reduce(mα) avoids τ as a permutation.

A classical result in permutation patterns involves sorting permutations using a
single stack, see Chapter 8.2 of Bóna [1]. Specifically, a permutation σ = σ1 · · ·σn is
stack-sortable if it can be rearranged into the sequence 12 · · ·n by only a single pass
through the following algorithm.

• Beginning with σ0 = σ1 · · ·σn, an empty ordered list Stack0 := (), and an
empty ordered list σ′0 := (), we move the leftmost element of σ0, in this
case σ1, to the front of the stack, Stack0 7→ Stack1 := (σ1), and update
σ′0 7→ σ′1 := (), and σ0 7→ σ1 := σ2 · · · σn.

• At step j, given σj = σj′ · · ·σn, Stackj = (s1, s2, . . . , sj′′), and σ′j = σ′1 · · ·σ′j∗ ,
we choose either

– to move σj′ to the front of Stackj, Stackj 7→ (σj′ , s1, . . . , sj′′), or

– to move s1 to the end of σ′j, σ′j 7→ σ′1 · · · σ′j∗s1.

If one of σj and Stackj is empty, we are forced to perform the other operation.
If both are empty, we conclude the algorithm and output σ′ = σ′j. We say σ
has been sorted if σ′ = 12 · · ·n.

It is well-known that a permutation is stack-sortable if and only if it avoids the
pattern 231. We can easily extend the notion of stack-sortability to set partitions
and left-right arrangements by treating the blocks of π ∈ Pn, alternatively the classes
of α ∈ An, as indivisible atoms in the above stack-sorting algorithm. In this case,
the output of the algorithm will be a partition π′ of [n]. For π = B1/ · · · /Bk ∈ Pn,
we define the flattening of π, denoted Flatten(π), as the permutation obtained
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by removing the block dividers and listing elements in increasing order within each
block. For example, Flatten(135/24/6/7) = 1352467. If there is a way to pass
through the above algorithm such that Flatten(π′) = 12 · · ·n, then we say π,
respectively α, is stack-sortable.

By this description, it is clear that a partition, respectively left-right arrange-
ment, is sortable only if its blocks are contiguous. For example, the left-right ar-
rangement (145, 2, 3, 678) is not sortable, because the block 145 has gaps in it. On
the other hand, though it is contiguous, the left-right arrangement (1, 45, 3, 678, 2)
is not sortable because in order to get the sequence 12 in σ′, we must put the block
678 in front of 3 in the stack. However, (1, 45, 3, 2, 678) is sortable since we obtain
the partition π′ = 1/2/3/45/678 after a single run through the above algorithm and
Flatten(π′) = 12345678.

Proposition 3.1. α ∈ An is sortable if and only if α is contiguous and avoids the
pattern 231.

Proof. Necessity is clear. First, if any class of α is not contiguous, then α cannot be
sorted by any means. Second, if α contains 231, then the “3”-class must end up in
front of the “2”-class on the stack, which precludes sorting.

For sufficiency, let α := (α1, . . . , αk) ∈ An avoid 231 and be contiguous. Then
α can be encoded as a permutation of [k] in the obvious way. Let m1, . . . ,mk be
the minima of the classes of α and define σ := Reduce(m1 · · ·mk). Then σ is a
231-avoiding permutation of [k], which is known to be sortable. Once σ is sorted, we
obtain an ordering of [n] by substituting the classes α1, . . . , αk for their corresponding
element of [k]. By contiguity of α, we recover 1 · · ·n. This completes the proof.

Let Sort(An) denote the set of sortable left-right arrangements of [n]. The sets
{Sort(An)}n≥1 can be easily enumerated, as we show in the next section. The list
of all left-right arrangements of {1, 2, 3, 4}, along with their contained 231 patterns,
is given in Table 3.

3.2 Pattern avoidance for set partitions

The current state of research on pattern avoidance for set partitions is summarized
in Chapter 6 of [8], which contains contributions of Mansour and his coauthors as
well as others, see e.g., [2, 3, 4, 5, 9, 10, 13]. Pattern avoidance for set partitions is
a natural outgrowth of the large industry of pattern avoidance for permutations; see
Bóna’s book [1] for a survey of this literature. We now briefly discuss pattern avoid-
ance for set partitions within the context of left-right arrangements and projective
structure of {Pn}n≥1. Except for Tk(n,m) in Theorem 3.4, none of the enumera-
tive results here are new; however, our arguments involving a simple recurrence in
terms of ordered partition patterns (rather than restricted growth patterns) have not
appeared previously. The triangular arrays {Tk(n,m)}1≤m≤n refine the expression
for #Pn(12 · · · k(k − 1)) to #Pn(12 · · · k(k − 1);m), the number of 12 · · · k(k − 1)-
avoiding partitions of [n] with exactly m blocks. By the Wilf-equivalence of patterns
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1234 avoids 124,3 avoids 24,3,1 231
134,2 avoids 14,23 avoids 14,2,3 avoids
14,3,2 avoids 123,4 avoids 12,4,3 avoids
2,34,1 231, 241 13,4,2 342 1,4,23 avoids
1,24,3 avoids 1,34,2 avoids 2,4,13 241
12,34 avoids 2,3,14 231 13,24 avoids
1,234 avoids 1,2,34 avoids 1,3,24 avoids
3,4,12 341 12,3,4 avoids 2,3,1,4 231
13,2,4 avoids 1,23,4 avoids 1,2,3,4 avoids
1,4,3,2 avoids 23,4,1 241, 341 2,4,1,3 241
3,4,1,2 341, 342 1,3,4,2 342 1,2,4,3 avoids
1,3,2,4 avoids 1,4,2,3 avoids

Table 3: Table of 231-avoiding left-right arrangements of {1, 2, 3, 4}. There are 24
left-right arrangements of {1, 2, 3, 4} that avoid 231.

12 · · · k(k−1) and 12 · · · k1, the generating function for #Pn(12 · · · k(k−1)) is given
in [9]; however, the triangles {Tk(n,m)}1≤m≤n appear to be novel. We also give
recurrence arguments for other specific partition patterns.

Let τ = τ1 · · · τk be the restricted growth function of some partition of [k], called
a restricted growth pattern. We say π ∈ Pn aviods τ if ρ(π) avoids τ in the sense
described above. For example, the set partition π = 15/2/34/6 has ρ(π) = 123314
and contains the patterm τ = 1223 because the subsequence with (i1, i2, i3, i4) = 1346
yields Reduce(1334) = 1223. This is the only occurrence of 1223 in π. We write

Pn(τ) := {π ∈ Pn : π � τ}

to denote partitions of [n] that avoid τ .
For partitions, we define a pattern differently than previous authors, although

each of our patterns can be rewritten as a restricted growth pattern. For us, a
pattern τ ∗ is an ordered partition of [k], denoted B1 -B2 - · · · -Bm. In this setting,
we say π := B1/ · · · /Bk contains τ ∗ if there exist indices i1 < · · · < im and subsets
bj ⊂ Bij , for each j = 1, . . . ,m, so that the reduction of b1 - b2 - · · · - bm is τ ∗. Here,
we abuse terminology and speak of the reduction of an ordered partition rather
than a sequence of integers. In this case, the reduction of b1 - · · · - bm is obtained by
assigning each element to its rank among the elements of b1 ∪ · · · ∪ bm. For example,
take τ ∗ = 2 - 3 - 1. Then the partition π = 14/25/3 has a single copy of τ ∗ by reducing
4 - 5 - 3. For an ordered partition pattern τ ∗, we adopt the same notation and write
Pn(τ ∗) to denote the subset of partitions of [n] that avoid τ ∗. Since the underlying
mechanism of both reduction operations is essentially identical, we do not anticipate
any confusion.

To begin, we use their correspondence with sortable left-right arrangements to
enumerate partitions avoiding 2 - 3 - 1.
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Theorem 3.2. Sort(An) is in bijection with Pn(2-3-1) and

#Sort(An) =
n−1∑
k=0

(
n− 1

k

)
Catk,

where {Catk}k≥1 are the Catalan numbers [14]:A000108.

Proof. Let Sn(231) denote the set of 231-avoiding permutations. It is known, e.g.,
[1], that #Sn(231) = Catn for each n ≥ 1. Given 0 ≤ k ≤ n−1, we can easily obtain
a sortable 231-avoiding left-right arrangement with k+ 1 classes as follows. There is
only one arrangement with a single class and so the k = 0 case is trivial. Assuming
k ≥ 1, we begin by choosing a subset of size k from {2, . . . , n} and arranging its
elements in the order of a 231-avoiding permutation. Let c1 · · · ck be this permutation
and let c(1) < · · · < c(k) be these elements listed in increasing order. For each
i = 1, . . . , k−1, define C(i) := [c(i), c(i+1)), C(k) := [c(k), n] and C0 := [1, c(1)), where we
write [m,M) := {m,m+ 1, . . . ,M −1}, m < M . We then put α := (C0, C1, . . . , Ck),
with C1, . . . , Ck listed in the order corresponding to c1 · · · ck. Clearly, α avoids 231
since c1 · · · ck does, and α is contiguous by construction; therefore, α is sortable. By
inverting the above procedure, each α ∈ Sort(An) gives rise to a unique 231-avoiding
permutation of some subset of {2, . . . , n}.

By the correspondence between Pn and contiguous, inversion-free arrangements,
it is clear that π ∈ Pn avoids 2 - 3 - 1 if and only if its corresponding arrangement
avoids 231, because an occurrence of 231 in a contiguous, inversion-free arrangement
cannot be the result of an inversion.

By Callan [2], we also have a bijection between sortable left-right arrangements
and 321-avoiding flattened partitions. Using a different argument, Pn(2 - 3 - 1) has
been enumerated previously under the guise of Pn(12312), since a partition avoids
12312 if and only if it avoids 2 - 3 - 1; see [9].

We now discuss the family of τk := 12 · · · k(k−1) avoiding partitions. It is known
(Theorem 6.67 of [8]) that #Pn(τk) = #Pn(12 · · · (k + 1)). Therefore, #Pn(τk) :=∑k

j=1 S(n, j) is the number of partitions of [n] with k or fewer blocks, where S(n, j)
is the (n, j)-Stirling number of the second kind. In the next theorem, we rederive
the number of partitions avoiding τk, for k ≥ 2. We do so by setting up a recurrence
relation for Tk(n,m), the number of partitions of [n] that both avoid τk and have
exactly m blocks. We obtain this by studying avoidance of the ordered partition
pattern τ ∗k := 1 - 2 - · · · -(k − 2) - k -(k − 1), which is equivalent to avoidance of τk.

Lemma 3.3. Let τk := 12 · · · k(k − 1) and τ ∗k := 1 - 2 - · · · -(k − 2) - k -(k − 1), then
Pn(τk) = Pn(τ ∗k ) for all k ≥ 3.

Proof. Suppose π ∈ Pn contains τk. Then there is a subset A ⊆ [n] with k + 1
elements such that the restriction of π to A reduces to 1/2/ · · · /(k − 1)(k + 1)/k,
which corresponds to the ordered partition pattern τ ∗k . Conversely, if π ∈ Pn contains
τ ∗k , then there is a subpartition with reduction 1/2/ · · · /(k − 1)(k + 1)/k, which
corresponds exactly to τk.
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Theorem 3.4. For k ≥ 1, let τk and τ ∗k be as in the preceding lemma. For each
n ≥ 1 and 1 ≤ m ≤ n, let

Tk(n,m) := #{π ∈ Pn : π � τ ∗k and #π = m}

be the number of partitions of [n] that avoid τ ∗k and have exactly m blocks. Then
#Pn(τ ∗k ) :=

∑n
m=1 Tk(n,m), where

Tk(n,m) := ((k − 1) ∧m)Tk(n− 1,m) + Tk(n− 1,m− 1), (1)

and we put Tk(1, 1) = 1 and Tk(n,m) = 0 for m outside the range 1 ≤ m ≤ n. We
write (k − 1) ∧m to denote the minimum of k − 1 and m.

For fixed m ≥ 1, let Gk(x;m) :=
∑∞

n=1 Tk(n,m)xn be the generating function for
the mth column of {Tk(n,m)}1≤m≤n. Then

Gk(x;m) =
xm

(1− kx)m−((k−1)∧m)
∏(k−1)∧m

j=1 (1− jx)
. (2)

Proof. As in the statement of the theorem, let

Tk(n,m) := #{π ∈ Pn : π � τ ∗k and #π = m}.

We use the projective structure of Pn to set up a recurrence for Tk(n,m) as follows.
Suppose π ∈ Pn avoids τ ∗k and has exactly m blocks. Then, if m ≥ k, we can add
the element n + 1 to either of the first k − 2 blocks of π or to the last block of π
to obtain a partition of [n + 1] that both avoids τ ∗k and has m blocks. We can also
obtain a partition of [n+ 1] avoiding τ ∗k and having m blocks by appending {n+ 1}
as a singleton block to any τ ∗k -avoiding partition of [n] with m − 1 blocks. Since a
partition of [n] containing any pattern will always give rise to a partition of [n + 1]
containing that pattern, we have the recurrence in the case m ≥ k. When m < k, we
can add n + 1 to any block of π and obtain a τ ∗k -avoiding partition with m blocks.
The recursion is initialized by putting T (1, 1) = 1 and T (n, 0) = 0 for all n ≥ 1.

The generating function (2) of Tk(n,m) for fixed k and m is obtained from the
recursion (1).

In the appendix, we provide the triangle for Tk(n,m) for k = 3, 4, 5. The sums of
the rows of these triangles have also appeared in previous work by Moreria and Reis
[11].

Enumeration of the sets avoiding ordered partitions of length 3 (1-2-3, 2-3-1, 3-
2-1, 1-3-2, 3-1-2, 2-1-3) now follows as a corollary to the preceding theorem and the
connection between left-right arrangements and set partitions.

Corollary 3.5. The Wilf equivalence classes for length three patterns are as follows:

• #Pn(1-2-3) = 2n−1.

• #Pn(2-3-1) = #Pn(3-2-1) =
∑(

n−1
k

)
Catk ([14]:A007317), where Catk is the

kth Catalan number.
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• #Pn(1-3-2) = #Pn(3-1-2) = #Pn(2-1-3) = (3n + 1)/2.

Proof. We need only show the cases 1-2-3, 2-3-1, and 1-3-2.

• 1-2-3: Since we order blocks in increasing order, a partition can avoid 1-2-3
only if it has fewer than three blocks; hence, Pn(1-2-3) = #{π ∈ Pn : #π ≤
2} = 2n−1.

• 2-3-1: The case 2-3-1 follows from the bijection between sortable arrange-
ments and partitions. We then use the well-known result about 231-avoiding
permutations. This is a corollary to Theorem 3.2. We point out that this also
follows as a corollary to Callan’s enumeration of 321-avoiding flattened parti-
tions, since a flattened partition avoids 321 if and only if the partition avoids
2-3-1.

• 1-3-2: This is a special case of Theorem 3.4 for k = 3.

4 Tables of Tk(n,m) for k = 3, 4, 5

The triangle for k = 2 relates to combinatorial properties of semigroups [7]. For
k ≥ 3, these triangles have not appeared previously, but some of their attributes
correspond to other well-known integer sequences.

T3(n,m) m = 1 2 3 4 5 6 7 8 9
n = 1 1

2 1 1
3 1 3 1
4 1 7 5 1
5 1 15 17 7 1
6 1 31 49 31 9 1
7 1 63 129 111 49 11 1
8 1 127 321 351 209 71 13 1
9 1 255 769 1023 769 351 97 15 1

Table 4: Number of partitions avoiding 1232 with a specific number of blocks.
This table appears to coincide with [14]:A112857, which is cited in connection with
[7]. The third column is [14]:A000337, fourth column is the Bjorn-Welker sequence
[14]:A055580, fifth column is [14]:A027608, sixth column is [14]:A211386, seventh
column is [14]:A211388. In general, the (m + 1)st column has generating function
xm(1− 2x)−m/(1− x), as we saw in Theorem 3.4.
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T4(n,m) m = 1 2 3 4 5 6 7 8 9
n = 1 1

2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 9 1
6 1 31 90 52 12 1
7 1 63 301 246 88 15 1
8 1 127 966 1039 510 133 18 1
9 1 255 3025 4083 2569 909 187 21 1

Table 5: Number of partitions avoiding 12343 with a specific number of blocks. The
third column is the (n, 3) Stirling numbers of the second kind [14]:A000392; fourth
column appears to coincide with [14]:A163941.

T5(n,m) m = 1 2 3 4 5 6 7 8 9
n = 1 1

2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 14 1
7 1 63 301 350 121 18 1
8 1 127 966 1701 834 193 22 1
9 1 255 3025 7770 5037 1606 281 26 1

Table 6: Number of partitions avoiding 123454 with a specific number of blocks. The
fifth column is [14]:A163942.
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