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Abstract

We show that certain types of zero-forcing sets for a graph give rise to
chordal supergraphs and hence to proper colorings.

Zero-forcing was originally defined to provide a bound for matrix minimum rank
problems [1], but is interesting as a graph-theoretic notion in its own right [5], and
has applications to mathematical physics, such as quantum systems [3]. There are
different flavors of zero-forcing, many corresponding to a minimum rank graph pa-
rameter, and each is typically defined via assignments of the colors black and white
to vertices and a color-change rule that allows changing white vertices to black [2];
the associated zero-forcing number is then the smallest cardinality among sets of
vertices that when colored black originally allow the entire graph to become colored
black via (repeated) application of the color-change rule (zero-forcing sets).

Barioli et al. [2] showed that even treewidth can be defined as a zero-forcing
parameter. Their proof uses a characterization of treewidth involving the game of
cops and robbers. In this paper, we will show that a treewidth zero-forcing set Z
for a graph G can be used to directly construct a |Z|-tree on the vertices of G that
contains G as a subgraph. As an application, we will see that many different types of
zero-forcing sets give easy constructions of proper colorings and proper list-colorings.

For a given coloring of the vertices of a graph using black and white, the treewidth
color-change rule was defined as follows (standard definitions are taken from Diestel’s
Graph Theory [4]):

Definition. Let B be the set consisting of all the black vertices. Let W1, . . . ,Wk be
the sets of vertices of the k components of G−B. For each component i, 1 ≤ i ≤ k,
let Ci ⊆ B be the subset of black vertices that are considered to be active with regard
to that component, where initially each Ci = B. If w ∈ Wi and for each component
X of G[Wi] − w there is a vertex uX ∈ Ci with no white neighbor in G[VX ∪ B],
then change the color of w to black and associate to each connected component X
of G[Wi]− w a new active set equal to (Ci − uX) ∪ {w}.
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When this color-change rule is applied, we will say that the uX vertices force w
and the uX vertices and w together comprise a forcing.

In studying treewidth zero-forcing sets, we will find it advantageous to keep track
of active sets for each vertex as well as the progress of the color-changes. If Z is
a treewidth zero-forcing set of a graph G and m = |G − Z|, let w1, . . . , wm be the
vertices of G − Z in the order in which they are turned black (there may be more
than one such order – we’ll pick one). Our notational scheme will be subscripts
that refer to the progress of the forcing: a subscript i, 1 ≤ i ≤ m, will reference
the state of things after i forces, that is, when wi has become black and (if i < m)
wi+1 is still white. For example, let B0 = Z and recursively define, for 1 ≤ i ≤ m,
Bi = Bi−1 ∪ {wi}. Then Bi is the set of black vertices after i forces. Continuing in
this spirit, if u is a vertex of G − Bj for some j with 0 ≤ j ≤ m − 1, let Cu

j be the
connected component of G−Bj containing u and let Au

j be the set of active vertices
of Cu

j .

Proposition. Let Z be a treewidth zero-forcing set of a graphG and use the notation
above. Let G0 be the graph obtained from G by adding edges between any two
vertices of B0 that are not adjacent in G. Let Gi be the graph obtained from Gi−1

by adding edges between wi and any vertices of Awi
i−1 that are not neighbors of wi in

Gi. Then Gm is a |Z|-tree on the same vertices as G containing G as a subgraph.
Moreover, Z is a treewidth zero-forcing set for Gm with the same forcings in the
same order.

Proof. Since no vertices are added and no edges are removed, G is a subgraph of Gm

and they share the same vertex set. To prove that Gm is a |Z|-tree, we will use the
recursive definition of k-tree. Specifically, we claim that for each i with 1 ≤ i ≤ m,
each Gi[Bi] is a |Z|-tree and that Gi[Bi] is obtained from Gi−1[Bi−1] by adding the
vertex wi, which is adjacent in Gi[Bi] to the vertices of a |Z|-clique in Gi−1[Bi−1].

We begin by collecting some useful facts. First, active sets (for both vertices
and components) start with |Z| vertices and only change via a one-for-one swap of
vertices, so |Awi

i−1| = |Z| for each i.

Let N(w) denote the set of neighbors of vertex w in G. We next claim that
N(wi) ∩ Bi−1 ⊆ Awi

i−1 for each i with 1 ≤ i ≤ m. To see this, suppose that v ∈
N(wi) ∩ Bi−1. There are two possibilities: either v ∈ B0, in which case v ∈ Awi

0 , or
v /∈ B0, meaning v = wj for some j < i. In the latter case, since wi and v = wj are
adjacent in G, Cwi

j−1 = C
wj

j−1, and so v = wj ∈ Awi
j due to the jth force. Either way,

v is at some point an active vertex for wi. Suppose v /∈ Awi
i−1. Then for some k < i

(and k > j if v = wj), v was uX for X = Cwi
k , but this contradicts that v ∈ N(wi)

since wi would be a white neighbor of v in G[VX ∪Bk−1]. Thus v ∈ Awi
i−1.

Finally, we claim that for i and j such that 0 ≤ i < j ≤ m, each A
wj

i forms a
clique in each Gk such that 0 ≤ k < j. First, note that Av

0 consists of the vertices
of Z, which form a clique in G0 by definition. Assume then that 0 < i < j ≤ m and
the vertices of the set A

wj

i−1 form a clique in Gi−1. If A
wj

i−1 = A
wj

i , the vertices of A
wj

i

will still be a clique in Gi. If A
wj

i−1 �= A
wj

i , then wi ∈ C
wj

i−1. Thus C
wi
i−1 = C

wj

i−1, which
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by the definition of the active sets for vertices implies Awi
i−1 = A

wj

i−1. By assumption,
Awi

i−1 is a clique in Gi−1. By construction, Awi
i−1 ∪ {wi} is a clique in Gi, and, by

definition, A
wj

i ⊂ Awi
i−1 ∪ {wi}, so that A

wj

i is also a clique in Gi. The claim follows
by induction.

To start the induction for the main part of the proof, notice that G0 is a |Z|-clique
in G0[B0] = G0 by construction, that Aw1

0 = B0 by definition, and thus w1 ∈ B1 is
adjacent in G1[B1] to the vertices of G0 by construction. Thus G1[B1] is a |Z|-tree.

Suppose now that Gj[Bj ] is a |Z|-tree for some j with 1 ≤ j < m. By con-
struction, the vertices of Gj+1[Bj+1] are those of Gj [Bj] and the vertex wj+1, which
by construction and the second fact above is adjacent to exactly the vertices of
A

wj+1

j in Gj+1[Bj+1]. By the first fact above, |Awj+1

j | = |Z|, and by the third and

final fact above, Gj[A
wj+1

j ] is a clique. Thus Gj+1[Bj+1] is a |Z|-tree. By induction,
Gm = Gm[Bm] is a |Z|-tree.

We also claim that Z is a zero-forcing set of Gm using the same forces. The
only way this can fail to be true is if an edge is added to G that will cause the
color-change rule to no longer be applicable at some point. We will show this cannot
happen. Consider a vertex z that is the uX vertex for a connected component X of
G− Bi for some i such that 0 ≤ i < m. If an edge is added between z and a vertex
that is in Bi, that edge does not affect the ability of z to be uX . Thus we only need
consider an edge added between z and some wj where j > i. If C

wj

i �= X , then the
edge to wj does not affect the ability of z to be uX . If C

wj

i = X, then z is replaced by
wi in A

wj

i . A vertex that has become inactive for another vertex can never become
active again, so z /∈ A

wj

i contradicts that z = uX , since z = uX implies z ∈ Awi
i−1.

In the hierarchy of color-change rules, the treewidth color-change rule is among
the least restrictive. In particular, it is clear from the article by Barioli et al. [2]
that, among others, standard zero-forcing sets and positive semidefinite zero-forcing
sets are also treewidth zero-forcing sets. As an application of our proposition, many
types of zero-forcing sets thus give proper colorings as in the following corollary:

Corollary. If G is a graph with a treewidth zero-forcing set Z, where the vertices
of G − Z are w1, . . . , wm in the order they are forced, given an assignment of a list
of |Z|+ 1 colors to each vertex, a proper list-coloring of G may be selected by first
choosing a proper list-coloring of G[Z] then selecting an available color from the list
of each wi in order.

Proof. A proper list-coloring of G[Z] exists since |G[Z]| < |Z|+1, and from the proof
of the proposition, each wi will be adjacent to at most |Z| vertices whose colors have
already been selected when its turn arrives.

Remark. The treewidth color-change rule is significantly different from the original
zero-forcing color-change rule in that its application requires knowledge of more than
the graph and which vertices are black. We would be very interested to know if it
possible to define a color-change rule that depends only on the graph and which
vertices are black that will also give treewidth as its zero-forcing number.
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