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ABSTRACT. Given a design V, other designs can be constructed by using unions of various 
sets of blocks as new blocks. This method of constructing designs is referred to as "the union 
method". In general, the constructed design has neither constant blocksize nor balance 
properties. Various situations in which balanced incomplete block designs (BIBD's) and 
group divisible designs (GDD's) can be constructed from BIBD's and GDD's using the 
union method are presented. Generally speaking, it is necessary to assume that the original 
BIBD or GDD has a "dual property". In the cases where a BIBD V", is constructed, the 
question as to whether Vu is simple is considered. Simple BIBD's with less than thirty 
points are constructed for the following six parameter sets for which no such design was 
previously known: 2-(27, 12, 132), 2-(25, 7,385), 2-(27, 7, 462), 2-(27, 5,60), 2-(21, 6, 15), 
2-(28, 8, 14). 

1. INTRODUCTION 

Morgan [llJ has shown that the unions of pairs of blocks of a symmetric BIBD 
form a BlED. Recently, Mahmoodian and Shirdarreh [7] have shown that the BIBD 
constructed in this way from a symmetric 2 (v, k, >.) design is simple, if v 2:: 2k. In this 
paper we exhibit some situations in which taking the unions of carefully selected sets of 
blocks of BIBD's or group divisible designs yields a BlED or a group divisible design. 
We refer to this method of constructing designs as "the union method". For the union 
method to yield designs with balance properties, it is generally necessary to assume that 
the design D we start with possesses a "dual property" (for example, that D possesses 
an affine resolution). 

In Section 3 we apply the union method to group divisible designs with certain dual 
properties to obtain group divisible designs. In Section 4 we show that taking unions of 
pairs of blocks in different classes of the affine resolution of an affine resolvable BIBD 
yields a BIBD. If the number t of blocks in such a class is greater than two, then the 
constructed BlED is simple. In the case where t 2, the constructed BlED is a 3-design. 
We give necessary and sufficient conditions that such a 3-design be simple. In Section 
5 we investigate two situations in which taking unions of carefully selected sets of two 
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or more blocks of a BlBD yields a BlBD. We give sufficient conditions for the BlBD's 
arising from the constructions of Section 5 to be simple. 

The methods of this paper yield many infinite classes of BlED's and group divisible 
designs. They also yield simple BlBD's with v ::; 30 for at least six parameter sets for 
which no such design was previously known. 

2. PRELIMINARIES 

We shall assume that the reader is acquainted with basic notions concerning designs. 
In particular, we shall assume familiarity with BIBD's and resolutions of designs. For 
information concerning these topics Street and Street [14] might be consulted. 

A tactical configuration ([5], p.4) with v points, b blocks, r blocks containing each 
point and k points contained in each block is called (v, b, r, k)- configuration. The repli­
cation number of a (v, b, T, k )-configuration is T. The connection number )"(P, Q) of a 
pair P, Q of distinct points of a (v, b, T, k )-configuration C is the number of blocks of C 
which contain both P and Q. A (v, b, T, k)-configuration 9 is said to be group divisible 
design (GDD) if there is a partition of its set of points into "groups" 'Pll ... , 'Pm'}., where 
m2 ~ 2, such that there are integers ml ~ 2 and Al and )..2 such that 

(a) I 'Pi I = ml for all i = 1, ... , m2, 
(b) any two points common to a group are contained in .\1 blocks of g, 
(c) any two points in different groups are contained in .\2 blocks of g, and 
(d) A1:f:A2' 

We say that such a GDD " has parameters v, b, r, kj mll m2j.\1, A2". We also say that 
'PI, ... , 'P ='1 form a group division of g. Clearly, for a G D D, the connection number of a 
pair of points depends only on whether the points are in the same group or not. 

The parameters of a GDD satisfy vr bk, v = mlm2 and 

(1) 

Also, group divisions can be exhaustively classified into the following mutually exclusive 
types: 

1. Singular for .which T = AI. 
2. Semiregular for which r > Al and rk = vA2. 
3. Regular for which r > Al and rk > vA2. 

Since a GDD has a unique group division, we can apply the terms "singular", "semireg­
ular" and "regular" to GDD's as well as to group divisions. Singular, semiregular and 
regular GDD's will be referred to as SGDD's, SRGDD's and RGDD's respectively. 

A point P of a (v, b, r, k )-configuration C is said to be repeated if there is another 
point Q of C such that the set of blocks containing Q is equal to the set of blocks 
containing P. That an SGDD always possesses repeated points is shown in [2]. Also, if 
9 is an SRGDD or RGDD, then r > AI, and r = )..2 implies (using (1)) that k > v, which 
is impossible. So we have that a GDD is singular if and only if it possesses repeated 
points. 
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A GDD 9 is semiregular if and only if each block of 9 meets each group of 9 in the 
same numbers of points. For an SRGDD with parameters v, b, r, k; m1, m2; AI, A2 we 
have v = m1 m2 and 

and 

Al = m1A2(k m2) 
k(ml 1) 

If Al 0, then k = m2 and 9 has parameters 

mlm2, A2mf, A2 m l, m2;ml, m2; 0, A2. (2) 

An SRGDD with parameters (2) is called a transversal design. The groups of a transversal 
design 9 form an affine resolution of the dual gd of g. 

Using (1), an RGDD with Al = 0 satisfies 

(v - mdA2 = r(k 1). (3) 

A GDD 9 is said to be self-dual if gd is a GDD with the same parameters as g. 
Mitchell [10] has shown that, if 9 and gd are GDD's without repeated points, then 9 
and gd are both semiregular or 9 is self-dual and 9 and gd are both regular. He has 
also shown that the groups of 9 and gd form a tactical decomposition ([5], p.7) in these 
cases. 

The following result of Bose ([1], p.95) will be of use to us in Section 3. 

Result 1. Let 9 be a self-dual RGDD with parameters m1m2,mlm2,k,k;ml,m2;0,A2. 
An incidence matrix of the tactical decomposition ([5], p.17) formed by the group& of 9 
and gd is an incidence matrix of a (symmetric) 2 - (m2, k, mlA2) design. 

Remark. That a 2 - (m2, k, mlA2) design, as in Result 1, is symmetric can be inferred 
from (3). 

We illustrate Result 1 using the self-dual RGDD 9 with parameters 
8, 8, 3, 3; 2, 4; 0, 1 given next. This RGDD has points 1, ... , 8 and blocks Y, ... , 8. 

Y 2 "3 4 "5 {5 "7 8 
1 5 2 6 3 748 
263 748 5 1 
485 1 6 2 7 3 

The groups of 9 are gi = {i, i+4}, i = 1, 2, 3,4, and the groups of gd are 9i = {I, i + I}, 
i = 1, 3,5, 7. The entry in the ith row and ph column of the matrix 

[~ I I ~] 
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gives us the number of points of 9i in a block of 9j. It is thus an incidence matrix of the 
tactical decomposition of 9 formed by the 9i and 9j. It is also an incidence matrix of a 
2 (4, 3, 2) design. 

3. GDD's WITH A DUAL PROPERTY 

Consider a GDD 9 with parameters v, b, r, k; ml, m2; AI, A2 whose dual 9d is a 
GDD with parameters b, v, k, r; rrh, m2j 0, P2. In this situation we shall apply the union 
method in the following way: Take as new blocks the unions of all the pairs of blocks in 
different groups of 9d . We shall show (with one exception) that, if 9 and 9d are both 
semiregular or both regular, then these new blocks form a GDD with the same groups 
as 9. We shall denote by 911. the design whose points are those of 9 and whose blocks 
are those obtained by applying the union method as above. In showing that 911. is almost 
always a GDD we split the analysis into two cases. 

Case 1. 9 and 9d are both semiregular. 
It is sufficient to show that each block of 911. contains the same number of points and 

that the connection numbers A(P, Q) of 911. depend only on whether P and Q belong to 
the same group of 9 or not. 

Each block of 911. has 2k - P2 points in it. 

Consider a pair P and Q of distinct points of 9. 

Subcase 1.1. P and Q belong to the same group of 9. 
There are Al blocks of 9 containing both P and Q. The blocks of 9'1.1. obtained from 

these blocks are A1(b - md - >"1(>'21-
1

) in number. The other blocks of 9'1.1. containing 
P and Q arise from taking the unions of blocks of 9 containing P, but not Q, with the 
blocks of 9 containing Q, but not P. Since there is a block in the group of 9d of a block of 
9 containing P, but not Q, which contains Q, but not P, we have that (r - Al)( r - Al -1) 
blocks of 9'1.1. containing P and Q arise in this way. We thus have that there are precisely 

(4) 

blocks of 9'1.1. containing P and Q. 

Subcase 1.2. P and Q are in different groups of 9. 
A similar argument to that which dealt with Subcase 1.1 yields that there are pre­

cisely 

A2(b -) A2(A2 - 1) ( 
ml - 2 + r 

blocks of 9u containing P and Q in this case. 

(5) 

As an example, let 9 be a self-dual SRGDD with parameters q2, q2, q, qj q, qj 0, 1, 
where q is a prime power. (Such designs are known to exist for all such q.) If q > 2, then 
9'1.1. is an RGDD with parameters 

2 q3(q - 1) q(q - 1)(2q - 1) 
q, 2' 2 ,2q 1jq,qjq(q-1),2(q-1? 
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If q = 2, then 9u is a 2 (4, 3, 2) design. 

Remark. Many classes of examples of SRGDD's whose duals are transversal designs can 
be obtained by the methods of [12] and [13]. Thus there is much scope for applying the 
union method to such designs. 

As earlier pointed out a self-dual GDD with parameters 4,4,2,2; 2,2; 0, 1 yields a 
2 (4,3,2) design YU. In fact, for Y semiregular, no other Ott is a BIBD, as we now show. 

Suppose Ott is a BIBD. Equating the expressions (4) and (5) yields ..\1 = ..\2 (which 
is impossible since 0 is a GDD, not a BIBD) or ..\1 + ..\2 4r 2ml(r - 1) - 3, using 
b = mIr. Now, if ml :?: 3, then we have (in the latter case) 

..\1 +..\2 ::; 4r - 6(r - 1) - 3 = 3 - 2r < 0, 

which is absurd. Clearly m1 = 2 and so ..\1 + ..\2 = 1. Thus..\l = ° and ).2 = 1, since 
..\2 > ).1 for SRGDDs. (For an SRGDD, (1) yields m1().2 - ..\1) = r - ..\1 > 0.) We thus 
have that 0 and Od are each a transversal design. So 0 is self-dual (see, for example, 
[12] p.164) whence m1 = m1 = 2. Therefore 0 is a symmetric transversal design with 
m1 = 2 and ).2 = 1. So 9 has parameters 4,4,2,2; 2,2; 0, 1 (see (2) in Section 2). 

Before turning to the case where 0 is regular we shall show that Ott is never singular 
when 0 is semiregular. 

If Ott is singular, then points in the same group of 0 (equivalently, of Ott) occur in 
the same blocks of Ytt. Consider distinct points P and Q in the same group of y. Since 
r > "\1, there is a block B of 0 containing P, but not Q. If ..\1 > 0, then there is a block 
D of 0 containing P and Q. In the group of D there is a block F containing neither P 
nor Q. B U F is a block of Ott containing P, but not Q. If ..\1 = 0, then there are blocks 
Band D in different groups containing P, but not Q. BUD is a block of Ott containing 
P, but not Q. In either case it follows that Ott is not singular. 

Remark.s. (a) Ott is semiregular if and only if each block of Ott meets each group of 0 in the 
same number of points. Since each block of 0 meets each group of Y in the same number 
of points, we have that Ott is semiregular if and only if the intersection of two blocks in 
different groups of Od meets each group of 0 in ~22 points. Clearly Ott is semiregular only 
if m2 is a divisor of P2. 

(b) From (2) the parameters of a symmetric transversal design have the form ..\2mi, 
).2mf, ..\2m1, ..\2m1; m1,..\2m1; 0, ..\2. From Part (a) ofthese remarks, Ott is not semiregular 
when Y is symmetric. 

Case 2. 0 is regular. 

As in Case 1 each block of Ott contains 2k P2 points. Also, by Mitchell [10], 0 
must be self-dual, with parameters v,v,k,k;m1,m2;0,..\2 say. 

Consider a pair of distinct points P, Q of O. 

Subcase 2.1. P and Q belong to the same group of O. 
Since).l 0, there are no blocks containing both P and Q. SO all the blocks of Ott 

containing P and Q come from the union of a block of 0 containing P, but not Q, with 
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a block of 9 containing Q, but not P. For each of the k blocks B containing there are 
k 1 blocks containing Q and which are not in the group of B. (There must be precisely 
one block in the group of B containing Q since the groups form a tactical decomposition 
of 9 and the blocks of Q in a group of 9d are disjoint.) It follows that 91J, has k(k - 1) 
blocks containing P and Q. 

Subcase 2.2. P and Q belong to different groups of Q. 
There are '\2 blocks of 9 containing both P and Q. Taking the union of such blocks 

with the blocks outside their groups yields '\2(V ml) - A2(A;-1) blocks of 91J, containing 
P and Q. The remaining blocks of 91J, containing P and Q arise from taking the union 
of a block containing P, but not Q, with a block containing Q, but not P. By Result 
1, there are (ml - 1 )'\2 groups of 9d containing a block with P but not Q in it and a 
block with Q but not P in it. Also, there are k - ml'\2 groups of 9 d containing a block 
containing P (resp. Q) and no block containing Q (P). It follows that 91J, has 

blocks containing P and Q. 
If 9 is regular, then 91J, is never a BlBD. To see this, note that from (3) we have 

(6) 

So, if 91J, is a BlBD, we must have 

Now, since ml 2: 2, we have 

Then, since '\2 2: 1, we can obtain 

(8) 

So the left side of (7) is a sum of three non-negative terms. Each of these terms must 
be zero. But equality occurs in (8) if and only if ml = 2 and '\2 1. So we have 
ml 2,'\2 = 1 and k = ml'\2 = 2. But then (6) yields v = 4. Hence, 9 has parameters 
4,4,2,2; 2,2; 0,1 and so is semiregular, a contradiction. 

If 9 is regular, then 91J, is regular. To establish this we show that 91J, is not singular 
and then that 91J, is not semiregular. 

There are k 2: 2 block groups with a block containing a chosen point P of point 
group gi and no other point of gi. The union oftwo such blocks contains P, but no other 
point of gi. Hence, Q1J, is not singular. 
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If the blocks in two groups gh and gj of yd do not meet a group 9i of y, then the 
union of a block from gh and a block from gj contains no point of 9i and so yu, is not 
semiregular in this case. Since y is not semiregular, the only other possibility is that 
there is precisely one group gj whose blocks do not contain a point of 9i. In this case 
k 7n2 - 1. Since k 2': 2, we have 7n2 2': 3. But then some blocks of yu, contain one point 
of 9i and some contain two points of 9i. So yu, is again not semiregular. 

Finite geometries provide examples of self-dual RGDD's with Al = O. For example, 
the external structure ([5], p.3) at a chosen point of the BlBD formed by the points and 
hyperlanes of a h-dimensional affine geometry (h 2': 2) over GF(q) is a self-dual RGDD 
with parameters 

1 h-I h-l , q , q ; q 1, - 1 0 h-2 

1 
; ,q 

q-

(see Mitchell Other examples arise from the existence of "Baer subplanes" of finite 
projective planes, that is, from the existence of projective sub planes of order m of pro­
jective planes of order m 2 . The substructure of such a plane formed by the points and 
lines outside a Baer subplane is a self-dual RGDD with parameters 

We summarize the results of this section in the following theorem. 

Theorem 1. Let y be a GDD with parameters v, b, T, kj mI, 7n2j All A2 whose dual yd 
is a GDD with parameters b, v, k, T; ml, 7n2j 0, P2 and yu, be the design wbose points are 
those of y and whose blocks are tbe unions of all tbe pairs of blocks in different groups 
ofyd. 

(a) Yu is a GDD unless y has parameters 4,4,2,2; 2,2; 0,1 in whicb case Yu is a 
2 - (4,3,2) design. 

(b) Yu is never an SGDD. 

(c) Ify is an SRGDD, tben yu, is an SRGDD if and only if each intersection of two 
blocks in different groups of yd contain ..f!:L points of each group of y. In consequence, 
yu, is an SRGDD only if 7n2 is a divisorm~f P2. Furthermore yu, is an RGDD if Y is a 
self-dual transversal 

(d) If y is an RGDD, tben Yu is an RGDD. 

4. AFFINE BlBD's 

Let A be a BlBD which possesses an affine resolution with t blocks in each affine 
resolution class and each pair of non-parallel blocks meeting in (> 0) points. We call 

such a BlBD an ARD(p, t). A has parameters v pt2
, b = T = k = pt 

and A = ([5], pp.72-3). If t = 2, then A is a 3 - (4P., 2p., P 1) design. We also 
note that t - 1 is a divisor of p - 1. 

We can construct a BlBD 'Du, from A by employing the union method as follows: 
Take as new blocks the union of all the pairs of blocks in different affine resolution classes 
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of A. Clearly, each block of'Du has f-L(2i - 1) points in it. The connection number for a 
pair of distinct points of 'Du is 

>..t(r 1) 
>..( >.. - 1) ( 

2 + r >..)(r - >.. - 1) 

which can be shown to be equal to 

t (f-Lt-I) ( (f-Lt 1) f-L-I) - -- 2 --.- - -- (2t-I) 
2 t-I t 1 t-l 

after some algebra. We thus have 

Theorem 2. Du is a 2 - (J-Lt2, f-L(2t --1), ~. (~~-f) (2 (~~ll) - ~=i) (2t 1)) design. 

Remark. The number of blocks of Du is ---'-'-;::-r-:--':-~---'- and the replication number of Du 

In the situation where t 2 we can say more. 

Theorem 3. If t = 2, then Du is a 3 (4f-L' 3/k, 3(3J.£-1~(311--2») design. 

Proof. Consider distinct points P, Q, R of A. There are f-L - 1 blocks of A containing all 
three of these points. Unions with such blocks involved yield (J-L 1)(8/k - 4) - (J.£-1)2(J.£-2) 
blocks of Du containing P, Q and R. 

Also, there are f-L blocks of A 

(i) containing P and Q, but not R, and 
(ii) containing Q and R, but not P. 

Unions, where one block is of Type (i) and one is of Type (ii), yield J-L2 blocks of Du 
containing P, Q and R. Cyclicly rotating the roles of P, Q and R yields 2f-L2 further 
blocks of'Du containing Q and R. 

There are f-L blocks of A 
(iii) containing R, but not P nor Q. 

Unions, where one block is of Type (i) and one is of Type (iii), yield f-L(f-L 1) blocks of 
1Ju containing P, Q and R. (For a given block of Type (i), one of the blocks of Type 
(iii) is in its affine resolution class.) Rotating the roles of P, Q and R yields 2f-L(f-L - 1) 
further blocks of Du containing P, Q and R. 

The number of blocks of Du containing P, Q and R is 

The question as to when we obtain simple BlBD's by applying the union method, as 
in this section, is answered in the next theorem. Before proceeding to it some preliminary 
discussion is needed. 
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Result 2. (Kimberley, [6]) Let A and B be two blocks of an ARD(Jl, t) A which meet in 
Jl points. 

(a) The number of blocks of A which contain An B is less than or equal to t + l. 
(b) If the number of blocks of A which contain An B is t + 1, then the blocks of A 

which contain An B partition (A n B)C the complement of A n B). 

We say that An B is a good intersection if the number of blocks of A containing 
An B is t + 1. A block, each of whose non-empty intersections is good, is called a good 
block. 

Result 3. A is an ARD (Jl, t), all of whose blocks are good, if and only 
if A is isomorphic to the BIBD formed by the points and hyperplanes of a finite affine 
space. 

Consider an ARD(Jl, 2) A. Suppose AnB is a intersection of A. Let CA and CB 

be the affine resolution classes of A containing A and let C be the 
third block of A A n B and Co be the affine resolution class of A containing 
C. It is not difficult to show that X n Y is a good intersection of A for any two blocks of 
A chosen from different classes among CA, CB and Ce. Such a triple of affine resolution 
classes is said to be do:; ed. 

Lemma 1. Let A and B be blocks in different affine resolution classes CA and CB, 

respectively, of an ARD (Jl, 2) A. Tben A C n B C is a good intersection if and only if tbere 
is a block D of sucb tbat D t/:. CA U and An B n D 0. 

Proof. ;jU'pp()se AC nBC is a good intersection. Then there is a block DC ~ CA U CB such 
that A C n Be A C n DC = BC n DC. Result A C U BC U DC = n B n is the 
point set of whence An B n D = 0. Since D is in the affine resolution class of DC we 
have D ~ CA U CB. 

Suppose there is D ~ CA U CB such that An B n D 0. Then U B U DI = 
6Jl 3Jl + 0 = 3Jl. So lAC n BC n DCI = Jl = n Clearly AC nBC n DC AC nBc. 
Similarly, BC n DC = A C n BC n DC = A C n DC. So A C n BC is a good intersection. II 

A line of BIBD 1) is the intersection of all the blocks of 1) containing two points 
of D. For all lines L of a (v, h, T, k, A)-design, we have ILl.::; p.65). For a 
2 (4Jl 1, 2Jl- 1, Jl 1) design H, we have 2 or 3 for all lines L of H. 

Let A be an ARD(Jl, 2), P a point of A and Cl, Cz and C3 be a closed triple of 
affine resolution classes of A. Consider the interior structure H of A at P. H is a 
2 - (4Jl - 1, 2Jl 1, Jl 1) design. For i = 1, 2, 3, let Bi be the block of Ci containing 
P. The intersection of the blocks of H corresponding to B l , B z, B3 contain Jl- 1 points 
of H. In the dual Hd of H these points (in their role as blocks of H d ) have B 1 , B2 
and B3 in their intersection. The line L of Hd defined by Bl and B2 thus satisfies 
{Bll B z ) B 3 } s;;,; L. But .::; 3 and so we have ILl 3. Conversely, it is not difficult to 
show that a line of order three in a 2 - (4f.L - 1, 2f.L - 1, Jl - 1) design H corresponds to 
a closed triple of affine resolution classes in the I-point extension of Hd. 

Let Du be the BlBD of Theorem 2. 

Theorem 4. (a) If t > 2, tben Du is simple. 
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(b) If t 2, then Du is a simple 3-design if and only if A possesses no good inter-
sections. 

Proof. Suppose two blocks of'Du are equal, say AU B = e U D, where A =1= B, e =1= D. 
Without loss of generality, we can assume B =1= e, D. Now Au B = AU e U D and so 

+ IBI - IA n BI = IAI + lei + IDI IA n el- IA n DI Ie n DI + IA n e n DI 

which yields 
IA n e n DI = IA n el + IA n DI - ,d. (9) 

We split our analysis into two cases. 

Case 1. A, C and D are in different affine resolution classes. 

In this case (9) gives us IA n en 2f.L f.Lt 0, whence t = 2. Note here that 
we have A n enD = 0. 

Case 2. A and e or A and D are in the same affine resolution class. 

Without loss of assume A and e are in the same class. If A =1= then (9) 
yields n C n DI = f.L - f.Lt == ° and so t 1, which is absurd. If = e, then AU B 
AUD and so B (DnB)) = 0. Thus n + n B n DI 0, 

n B n DI 2f.L - f.Lt 2: 0. 2. Here we then 

Clearly, if t > 2, then we have a contradiction and so Part (a) is established. 

We now to establish Part (b). From now on let t = 2 . 

• )UIJIJ'c/"C; A possesses a good say An B. Let D be the third block of A 
containing An B. Then AC, BC and DC are blocks in different affine resolution classes of 
A and AC U BC (A n Bt = (A n D)C AC U DC. Therefore Vu not 

Suppose D1k is not simple. Let AU B = e U D, where A f. Band C =1= D. If 
B, e and D are in different affine resolution classes, then our previous analysis yields 
A n enD A n B nCB n enD A n B n D 0. U B U C U 

8f.L - 6f.L + ° -° 2f.L. But A U B e U D and so U B U e u U = 3f.L. We 
infer that e and D cannot be in different affine resolution classes. 

As in our earlier analysis we can assume without loss of generality that B f. D. 
That analysis shows that, either A, C and D are in different affine resolution classes and, 
in consequence, An enD = 0 or (without loss of A and, in consequence, 
An B n D 0. In the former case we can assume, without loss of generality, that B is 
in the affine resolution class of e, whence B n C = 0. Then Band D are in different 
affine resolution classes and so AnBnD 0. As in the previous paragraph, the Principle 
of Inclusion exclusion leads to a contradiction. In the latter case Band D must be in 
different affine resolution classes, since AU B = e U D. So A C nBc is a good intersection, 
by Lemma 1. II 

Corollary 1. Let t = 2. The multiplicity of a block of'Du is 1 or 3. 

Proof. Suppose the multiplicity of A U B is greater than one, say Au B 
B =1= e, D. From the proof of Theorem 4, (without loss of generality) A 

16 

CUD, where 
e, A, Band 



D are in different affine resolution classes and An B n D = 0. From the proof of Lemma 
1, we have A C n BC BC n DC = DC n A C and so A U B = BuD = D U A. Therefore the 
multiplicity of A U B is at least three. 

Suppose AU B = CUD = E U F, where {A, B} =f {G, D}, {E, F}. Without loss 
of generality A G or B = C and A, Band D are distinct. Also, we have 

(i) B = E and A, Band F are distinct, or 
(ii) B = F and A, Band E are distinct, or 

(iii) A E and A, Band F are distinct, or 
(iv) A F and A, Band E are distinct. 

In Case (i), AcnGc is contained in AC, BC, DC and FC. Result 2(a), we have FC = AC 
or BC or DC. Clearly FC = DC and so F = D. Case (ii) leads similarly to E = D, 
Case (iii) to F D and Case (iv) to E D. We thus have {G, D} = {E, F}, or 
{C, D} {A, D} and {E, F} = {B, D}, or {C, D} {B, D} and {E, F} = {A, D}. 
It follows that the multiplicity of A U B is at most three and so is exactly three. III 

Corollary 2. Let t = 2 and A, B be blocks of A in different affine resolution classes. 
The multiplicity of the block A U B of 'Du is three if and only if A C n BC is a good 
intersection. 

Proof. Suppose Au B has multiplicity three. Then, from the proof of Corollary 1, there 
is D =f A, B such that Au B = AU D = BUD. But then AC n BC = AC n DC = BC n DC 
and so A C n B C is good. 

The converse is easily shown. III 

Corollary 3. Let t = 2. 1)u is a 3-multiple of a 3 (4f-L' 3f-L, (3 tt-l;(3 tt -Z)) design 1)* if 

and only if f-L is a power of two and .A is isomorphic to the BIBD formed by the points 
and hyperplanes of a finite affine space over GF(2). 

Proof. Suppose 1)u is a 3-multiple. Consider A and B in different affine resolution classes 
of A. Then AC U BC has multiplicity equal to three. So A n B is a good intersection, 
by Corollary 2. By Result 3, A is isomorphic to the BIBD formed by the points and 
hyperplanes of a finite affine space over GF(2). 

Suppose f-L is a power of two and A is isomorphic to the BIBD formed by the points 
and hyperplanes of a finite affine space over GF(2). By Result 3, every intersection of A 
is good. Consider A and B in different affine resolution classes. Then A C n BC is a good 
intersection. By Corollary 2, Au B has multiplicity three. II 

Corollary 4. If there is a 2 - (4f-L - 1, 2f-L - 1, f-L - 1) design an of whose lines are of 

cardinality two, then there is a simple 3 - (4f-L, 3f-L, design. 

Proof. Suppose there is a 2 - (4f-L - 1, 2f-L - 1, f-L - 1) design 1-{ all of whose lines are of 
order two. Then the I-point extension A of 1-{d has no good intersections. So the BIBD 
1)u constructible from A using the union method is simple, by Corollaries 1 and 2. III 
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ARD{qh-2, q)'s are known to exist for each prime power q and integer 
h 2:: 2. Theorems 2 and 4 that there exist simple 2 - (qh, qh-2 (2q -

1), designs Du for each prime power q 2:: 3 and integer 

h 2:: complement of Du is a simple 2 (27, 12, 132) design. Such 
a design is listed as unknown in 

The of the BlBD D* in the statement of Corollary 3 to Theorem 4 is a 
simple 3 ) design, provided tt > 2. This corollary shows the existence 

of a class of 3 (2 d+ 2 ,2d
, designs for all d 2:: 2. It is, however, 

not difficult to verify that these simple are isomorphic to those formed by the 
points and d-dimensional subspaces of AG( d + 2, 2). 

5. FURTHER APPLICATIONS OF THE UNION METHOD 

In certain situations unions of more than two blocks can be used to construct BIBD's. 
In this section we give two illustrations of this. 

Let 1) be a 2 - (v, k, 1) design with number 1', n be an integer such that 
2 :::; n :::; l' 1 and P be any point of 1). Take the union of any n blocks containing P. 
The unions so obtained as P ranges over the set of points of D are the blocks of a BIBD 
Du(n) with the same set of points as 1). In fact, we have 

Theorem 5. 1)u(n) is a 2 - (v, nk - n + 1, (:=~)(nk n + 1)) design. 

This result has been established by Morgan [11] in the cases where D is a finite 
pro jective plane or a finite affine plane. The proof of Theorem 5 is analogous to the 
argument 111 for D a finite projective plane and so is omitted. 

The question as to whether the BIBD's Du(n) are simple is, in general, difficult to 
answer. in certain cases they can be shown to be simple quite easily. 

Let Band C be blocks of Du (n) obtained by taking the union of n blocks containing 
P and Q, respectively. If P = Q, then different choices of the n blocks yield different 
unions. The same is obviously true if P =I- Q and the block of 1) containing P and Q is in 
at most one of the two unions. Thus, for B = C to arise from different unions, we must 
have P =I- Q and the block (A say) of D containing P and Q is used in the union that 
produces B and in the union that produces C. Now, suppose B C in this situation. 
There are l' - n blocks of 1) containing P which do not meet a block of 1) (=I- A) in the 
union that C. But the number of blocks containing P and not meeting a block 
containing Q is r - k. Clearly we have r - n :::; r - k and so n ::::: k. Also there are n - 1 
blocks containing Q which do not meet a block on P not used in the union that produces 
B. So we have l' k 2:: n - 1. From this analysis we have the following proposition: 

Proposition 1. If n < k or r - k + 1 < n, then Du(n) is simple. In consequence, if 
r + 2:::; 2k, then Du(n) is simple for all n such that 2:::; n:::; l' 1. 

Theorem 5, Proposition 1 and known results concerning the existence of finite pro­
jective and affine planes and Steiner triple systems allow us to establish the following 
results: 
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1. If V is 
(i) a finite projective plane, or 
(ii) a finite affine plane of order greater than two, 

then Vu(n) is simple for all n such that 2 :::; n :::; r-1. In particular, for every prime power 
q and integer n such that 2:::; n:::; q, there is a simple 2 (q2+q+l, nq+l, (n:l)(nq+I)) 
design and, for every prime power q > 2 and n such that 2 :::; n :::; q, there is a 
simple 2 (q2, nq - n + 1, (n:J(nq - n + 1)) designs were constructed 
1ll There (see p.348) it was noted that they are simple.) 

2. For each v 1 or 3 mod 6, there exist simple 2 (v, 5, designs. 

In order to appreciate the difficulties that arise when one further investigates the 
question as to whether V'tJ,(n) is simple, let V be a Steiner system and n = 3. It 
is easy to show that V'tJ,(3) is if and only if Pasch's (Figure 1) does 
not occur in D, that is, if and only if V is a "quadrilateral free" Steiner triple system. 

FIGURE 1 

It is known that quadrilateral-free Steiner triple systems exist for infinitely many 
values of v ([4]). Brouwer has conjectured that there is a Steiner triple 
system for each possible v other than 7 and 13. This however, is far from 
settled. In any event, quadrilateral-free Steiner triple systems exist for v = 25 and 27 and 
so there exists a 2 - 7, 385) design and a simple 2 (27, 7, 462) design. 
D'tJ,(2), where V is any Steiner triple system with 27 is a simple 2 - (27, 5, 60) 
design. According to such designs were previously unknown. 

For further details about what is known about quadrilateral-free Steiner triple sys­
tems [4] should be consulted. 

Let V be a 2 - (v, k, ,\) design with replication number r and a I-resolution. Each 
I-resolution class of D contains t = blocks of V. Let c be any I-resolution class of D 
and n be an integer such that 2 :::; n t 1. Take the union of any n blocks of c. The 
unions so obtained as c ranges over all the I-resolution classes of V are the blocks of a 
BIBD Vp(n) with the same set of points as V. In fact, we have 

Theorem 6. Dp(n) is a 2 - (v, nk, ,\(!-=.;) + (r - '\)(!-=.~)) design. 

Proof. Clearly each block of Vp(n) contains nk points of Dp(n). Consider a pair Q 
of distinct points of Vp(n). There are ,\ I-resolution classes containing a block joining P 
and Q. The union of such a block with any n -1 of the other t 1 blocks in its I-resolution 
class is a block of Vp(n) containing P and Q. Also, there are r - ,\ I-resolution classes 
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which contain a block containing P, but not Q, and a block containing Q, but not P. 
The union of such a pair of blocks with any n - 2 other blocks from their I-resolution 
class is a block of V p ( n) joining P and Q. Since V p ( n) has no further blocks joining P 
and Q, the connection number of P and Q in 'Dp(n) is A(~-=-~) + (r - A)(~-=-~). II 

Remark. Vp(i -1) is the complement of V. Also, Vp(t - n) is the complement of 'Dp(n) 
for each n such that 2 ~ n ~ t - 2. 

Suppose A 1. Then, if n < k, then 'Dp(n) is simple. Also, if n > t - k, then 
'Dp( t n) is simple and so the complement 'Dp( n) of Vp (t - n) is simple. This leads to 

Proposition 2. If A 1 and n < k or n > t - k, then Vp(n) is simple. In consequence, 
if A = 1 and 2k 2: t + 1, then Vp(n) is simple for all n such that 2 ~ n ~ t - 1. 

Proposition 2 immediately yields that, if V is a finite affine plane, then Vp (n) is 
simple for all n such that 2 ~ n ~ t - 1. 

There exist I-resolvable 2 - (21, 3, 1) designs and also I-resolvable 2 - (28, 4, 1) 
designs ([8], p.278). From this we can infer the existence of simple 2 - (21, 6, 15) designs 
and 2 - (28, 8, 14) designs. Such simple designs were not previously known to exist. 
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