ON CRITICALLY k-EXTENDABLE GRAPHS

N. Anunchuen and L. Caccetta

School of Mathematics and Statistics Curtin University of Technology GPO Box U1987 Perth 6001 Western Australia

ABSTRACT:

Let G be a simple connected graph on 2n vertices with a perfect matching. G is k-extendable if for any set M of k independent edges, there exists a perfect matching in G containing all the edges of M. G is critically k-extendable if G is k-extendable but G + uv is not k-extendable for any non-adjacent pair of vertices u and v of G. The problem that arises is that of characterizing k-extendable and critically k-extendable graphs. This problem has been studied for k-extendable graphs and a number of results have been obtained. In particular, complete characterizations have been obtained for the case k = 1. Critically k-extendable graphs have not been studied. In this paper, we focus on the problem of characterizing critically k-extendable graphs. Complete characterizations are presented for k = 1, n - 2, n - 1 and n.

1. INTRODUCTION

All graphs considered in this paper are finite, connected,

Australasian Journal of Combinatorics 6(1992), pp.39-65

loopless and have no multiple edges. For the most part our notation and terminology follows that of Bondy and Murty [1]. Thus G is a graph with vertex set V(G), edge set E(G) and minimum degree $\delta(G)$. For V' \subseteq V(G), G[V'] denotes the subgraph induced by V'. Similarly G[E'] denotes the subgraph induced by the edge E' of G. N_G(u) denotes the neighbour set of u in G.

A matching M in G is a subset of E(G) in which no two edges have a vertex in common. M is a maximum matching if $|M| \ge |M'|$ for any other matching M' of G. A vertex v is saturated by M if some edge of M is incident to v; otherwise v is said to be unsaturated. A matching M is perfect if it saturates every vertex of the graph. For simplicity we let V(M) denote the vertex set of subgraph G[M] induced by M.

Let G be a simple connected graph on 2n vertices with a perfect matching. G is **k-extendable** if for any set M of k independent edges (two edges are independent if they do not have a common vertex), there exists a perfect matching in G containing all the edges of M. Clearly $1 \leq k \leq n$. We say that G is **critically k-extendable** or simply **k-critical** if it is k-extendable but G + uv is not k-extendable for any non-adjacent pair of vertices u and v of G.

Observe that the complete graph K_{2n} of order 2n and the complete bipartite graph $K_{n,n}$ with bipartitioning sets of order n are k-critical for $1 \le k \le n$. On the other hand, the cycle C_{2n} of order $2n \ge 6$ is 1-extendable but not 1-critical.

A number of authors have studied k-extendable graphs. An excellent survey is the paper of Plummer [6]. The problem of characterizing k-extendable graphs remains open for $k \ge 3$. k-critical graphs have not been previously investigated; the characterization

problem was recently posed by Saito [7]. In this paper, we shall focus on the problem of characterizing these graphs.

For k = 1, n - 2, n - 1 and n we establish that a graph G of order 2n is k-critical if and only if $G \cong K_{n,n}$ or K_{2n} . We also characterize 2-critical graphs; for this case there exist graphs which are not complete or bipartite. We present a number of properties of k-critical graphs, including an upper bound on the minimum degree.

Section 2 contains some preliminary results that we make use of in our work. In Section 3 we prove two new properties of k-extendable that we use in establishing our main results in Section 4.

2. PRELIMINARIES

In this section, we state a number of results on k-extendable graphs which we make use of in establishing our main results. We state only results which we use; for a more detailed account we refer to the paper of Plummer [6].

We begin with an important result of Berge (see [3] p. 90). Let M be a maximum matching in a graph G. The **deficiency** def(G) of G is defined as the number of M-unsaturated vertices of G. Denoting the number of odd components in a graph H by o(H) we can now state Berge's Formula :

Theorem 2.1: For any graph G

$$def(G) = \max\{o(G - X) - |X| : X \subseteq V(G)\}.$$

As noted in the introduction 1-extendable graphs have been characterized by Grant et al [2]. The result is

Theorem 2.2: A graph G of even order is 1-extendable if and only if

(i) $o(G - S) \leq |S|$ for all $S \subset V(G)$,

and

(ii) o(G - S) = |S| only if S is an independent set of vertices in G.

Before stating a necessary condition for 2-extendable graphs we need the following definitions. A graph G is **bicritical** if G - u - v has a perfect matching for every pair of vertices u and v. A graph G is **elementary** if the graph G' induced by the edges

 $E' = \{e : e \in E(G) \text{ and } e \text{ is in some perfect matching in } G\}$ is connected. Plummer [4] proved the following three results.

Theorem 2.3: Let G be a 2-extendable graph with $2n \ge 6$ vertices. Then G is either bicritical or elementary bipartite.

Theorem 2.4: Let G be a k-extendable graph on 2n vertices, $1 \le k \le n - 1$. Then

(a) G is (k - 1)-extendable;
(b) G is (k + 1)-connected;
(c) if d_C(u) = k + 1, then N_C(u) is independent. □

Theorem 2.5: Let G be a graph on 2n vertices and $1 \le k \le n - 1$. If $\delta(G) \ge n + k$, then G is k-extendable.

For bipartite graphs, Plummer [5] proved :

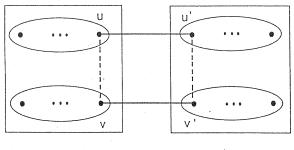
Theorem 2.6: Let G be a k-extendable bipartite graph on 2n vertices, $1 \le k \le n - 1$, such that G + e is bipartite for some $e \notin E(G)$. Then G + e is also k-extendable.

A consequence of Theorem 2.6 is the following Corollary : **Corollary:** Let G be a k-extendable bipartite graph on 2n vertices, $1 \le k \le n - 1$. Then G is k-critical if and only if G is K_{n n}.

3. EXTENDABLE GRAPHS

In addition to the results mentioned in Section 2 we need, in our study of critically extendable graphs, two further results. In this section we present these results. Our first result concerns bipartite graphs.

We have noted that $K_{n,n}$ is k-extendable for all $1 \le k \le n$. Since an r-regular (connected) bipartite graph has a 1-factorization it is 1-extendable for all r. However, it need not be k-extendable, $k \ge 2$. For example, for $n \ge 2r$ it is easy to construct an r-regular bipartite graph on 2n vertices having connectivity 2; an example is given in Figure 3.1, where H and H' are r-regular bipartite graphs on n



H - uv

H'- u'v'

Figure 3.1.

vertices containing the edges uv and u'v', respectively. For bipartite graphs having a prescribed minimum degree we have the following result.

Theorem 3.1: Let G be a bipartite graph on 2n vertices with $\delta(G) \ge n - 1$. Then G is k-extendable for $1 \le k \le n - 2$.

Proof: In view of Theorem 2.4 (a), it is sufficient to prove that G is (n - 2)-extendable. Let (U,W) be the bipartition of G and let M be matching of size (n - 2) in G. Consider G' = G - V(M). G' is a bipartite graph consisting of four vertices and $\delta(G') \ge 1$. If $\delta(G') = 2$, then $G' \cong K_{2,2}$ and hence has a perfect matching. If on the other hand, $\delta(G') = 1$, then G' is either 1-regular or a path of length 3. In either case it has a perfect matching. Consequently G is (n - 2)-extendable as required.

As a Corollary we have :

Corollary: An (n - 1)-regular bipartite graph on 2n vertices is k-extendable for $1 \le k \le n - 2$.

We remark that an (n - 2)-regular bipartite graph on 2n vertices need not be (n - 3)-extendable as the following graph demonstrates. Start with an (n - 5)-regular bipartite graph on 2(n - 3) vertices with bipartitioning sets X and Y. Select non-adjacent vertices $x \in X$ and $y \in Y$ and join them. Add 6 new vertices, u_1, u_2, u_3, v_1, v_2 , and v_3 . Join u_1 and u_2 $(v_1$ and $v_2)$ to every vertex of X (Y). Join u_3 (v_3) to

 u_1, u_2 and to every vertex of Y - y $(v_1, v_2$ and to every vertex of X - x). Call the resultant graph G. For $n \ge 6$, G has a matching M of size n - 3 that saturates only the vertices of $X \cup Y$. Now G - V(M) consists of 2 odd components and consequently G is not (n - 3) -extendable.

In the proofs that follow we make frequent use of the following fact. If G is k-extendable, then for any vertex u, G - u cannot contain a matching of size at most k that saturates $N_{G}(u)$.

Our next result is a generalization of Theorem 2.4 (c).

Theorem 3.2: Let G be a k-extendable graph on 2n vertices with $\delta(G) = k + t$, $1 \le t \le k \le n - 1$. If $d_{G}(u) = \delta(G)$, then the subgraph $G[N_{G}(u)]$ has at most t - 1 independent edges.

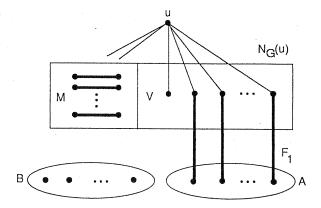
Proof: Suppose that $d_{G}(u) = \delta(G)$ and $G[N_{G}(u)]$ has a maximum matching M of size $s \ge t$. Since G is k-extendable we must have $s \le k - 1$. Let v be an M-unsaturated vertex of $N_{G}(u)$. Then $M_{1} = M \cup \{uv\}$ is a matching of size $s + 1 \le k$ in G. So M_{1} can be extended to a perfect matching F of G. Let

$$F_{1} = \{xy \in F : x \in N_{G}(u) - v, y \notin N_{G}(u)\},$$

$$A = V(F_{1}) \setminus N_{G}(u) , \text{ and } B = V(G) - u - N_{G}(u) - A.$$

Figure 3.2 depicts the situation with the edges of M \cup F $_1$ drawn in solid lines. Then

 $|A| = k + t - 2s - 1 \le k$, and hence $|B| = 2n - 2k - 2t + 2s \ge 2$.



If v is adjacent to a vertex b of B, then $M_2 = M \cup F_1 \cup \{vb\}$ is a matching in G of size $s + (k + t - 2s - 1) + 1 = k + t - s \le k$. But then u is an isolated vertex in $G - V(M_2)$ contradicting the fact that G is k-extendable. Hence $N_G(v) \cap B = \phi$. Now for $d_G(v) \ge k + t$ the only possibility is for v to be adjacent to every vertex of V(M) $\cup A$ in which case $d_C(v) = k + t$.

If no vertex of B is adjacent to any vertex of $N_{G}(u)$, then G - A is disconnected and hence G is at most |A|-connected. Since $|A| \le k$ this contradicts Theorem 2.4(b). Let $xy \in E(G)$ with $x \in B$ and $y \in N_{G}(u)$. Since $y \ne v$, $y \in V(M) \cup V(F_{1})$. Let $yz \in F$. Then z is in V(M) or A and so is adjacent to v. Consequently the path x, y, z, v is an F-augmenting path in G with xy and zv not in F. But then

$$M_2 = M \cup F_1 \cup \{xy, zv\} \setminus \{yz\}$$

is a matching of size $k + t - s \le k$ that saturates the vertices of $N_{G}(u)$, implying that G is not k-extendable. This contradiction completes the proof of the theorem.

Corollary: Let G be a k-extendable, (k + t)-regular graph on 2n vertices, $1 \le t \le k \le n - 1$. Then $G[N_G(u)]$ contains at most t - 1 independent edges for every u in G.

4. CRITICAL GRAPHS

Recall that a **k-critical** graph is one that is k-extendable, but G + uv is not k-extendable for any non-adjacent pair of vertices u and v of G. Our first result provides a sufficient condition for a regular graph of diameter 2 to be k-critical.

Theorem 4.1: Let G be a k-extendable, (k + t)-regular graph, $1 \le t \le k \le n - 1$, on 2n vertices having diameter 2. Let w be any vertex of G and u and v any pair of non-adjacent vertices of $N_{G}(w)$. If $G[N_{G}(w) - u - v]$ has exactly t - 1 independent edges, then G is k-critical.

Proof: Let M be a matching of size t - 1 in $G[N_G(w) - u - v]$. Then $M_1 = M \cup \{uw\}$ is a matching of size $t \le k$ in G and so can be extended to a perfect matching F of G. Let

$$F_1 = \{xy \in F : x \in N_G(w) - u - v , y \notin N_G(w)\}.$$

Since, by Theorem 3.2, $G[N_G(w)]$ has at most t - 1 independent edges, $|F_1| = k - t$. But then $M_2 = M \cup F_1 \cup \{uv\}$ is a matching in G + uv of size k and G + uv - $V(M_2)$ has w as an isolated vertex. Hence G is k-critical, proving the theorem.

We remark that the graph G(2k,2k) obtained by joining two disjoint K_{2k} 's by a perfect matching satisfies the conditions in Theorem 4.1. Hence as G(2k,2k) is k-extendable it is also k-critical.

Our next result provides a sufficient condition for any k-extendable graph to be k-critical. We make use of the following terminology. We call a subset S of V(G) **dependent** if G[S] has at least one edge.

Theorem 4.2: Let $G \neq K_{2n}$ be a k-extendable graph on 2n vertices, $2 \leq k \leq n-1$. If for any pair of non-adjacent vertices u and v of G there exists a dependent set S of G - u - v such that $o(G - (S \cup \{u,v\})) = |S|$, then G is k-critical. Moreover, the converse is true for a non-bipartite G and k = 2.

Proof: Let u and v be any two non-adjacent vertices of G satisfying the hypothesis of the theorem. Then G' = G - u - v contains a dependent set S such that

$$|S| = o(G - (S \cup \{u, v\}))$$

= $o(G' - S)$.

Hence, by Theorem 2.2, G' is not 1-extendable. Consequently, G' is not (k - 1)-extendable and thus G is k-critical.

Suppose that G is a 2-critical non-bipartite graph. Consider the graph G' = G - x - y, where x and y are any two non-adjacent vertices of G. G' has a perfect matching by Theorem 2.3 but is not 1-extendable. Hence, by Theorem 2.2, there exists a dependent set S such that o(G' - S) = |S|. Therefore $o(G - (S \cup \{x,y\})) = |S|$, as required. This completes the proof of the theorem.

In view of Theorem 2.6 we have the following corollary.

Corollary: Let G be a 2-extendable graph on $2n \ge 6$ vertices. G is 2-critical if and only if G is K_{2n} or $K_{n,n}$ or for any pair of non-adjacent vertices u and v of G there exists a dependent set S of G - u - v such that $o(G - (S \cup \{u,v\})) = |S|$.

Remark 1: There exists 2-critical non-bipartite graphs which are not complete. For example, the graphs drawn in Figure 4.1.

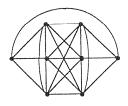


Figure 4.1.

Remark 2: None of the graphs in Figure 4.1 are 1-critical since, in each case, the deletion of any pair of non-adjacent vertices results in a graph having a perfect matching. Thus a k-critical graph need not be (k - 1)-critical.

Theorem 2.4(b) implies that a k-extendable graph G has minimum degree at least k + 1. Our next task is to establish an upper bound on the minimum degree of a k-critical graph. We start with the following lemma.

Lemma 4.1: Let $G \neq K_{2n}$ be a k-critical graph on 2n vertices, $1 \leq k \leq n - 1$, and u and v any pair of non-adjacent vertices of G. Let M be a matching of size k - 1 in G - u - v. Then the graph G' = G - u - v - V(M) has a matching of size at least n - k - 1.

Proof: Suppose G' has a maximum matching M' of size at most n - k - 2. Then

$$def(G') = |V(G')| - 2|M'|$$
$$= 2(n - k) - 2|M'|$$
$$\ge 4$$

By Theorem 2.1, there exists a subset S' of V(G') such that

$$o(G' - S') - |S'| = def G' \ge 4$$

Put $S = S' \cup \{u, v\}$ and $G_1 = G - V(M)$. Then

$$o(G_1 - S) - |S| = o(G' - S') - |S'| - 2 \ge 2$$
.

Then $def(G_1) \ge 2$, implying that G is not k-extendable. This contradiction completes the proof of the Lemma.

Lemma 4.2: Let G be a connected graph on 2n vertices with $\delta(G) \ge n - 1$ having a maximum matching M of size n - 1. Then for M-unsaturated vertices u and v of G $N_G(u) = N_G(v)$. Furthermore, no two vertices of $N_G(u)$ are joined by an edge of M, and the vertices of $V(G) - N_G(u)$ form an independent set.

Proof: Let $M = \{x_i y_i : 1 \le i \le n - 1\}$. Observe that if $x_i u \in E(G)$ then $y_i v \notin E(G)$. Let

$$\begin{split} & \mathsf{M}_{1} = \{\mathsf{x}_{1}\mathsf{y}_{1} \in \mathsf{M} : \mathsf{ux}_{1}, \mathsf{uy}_{1} \in \mathsf{E}(\mathsf{G})\} , \\ & \mathsf{M}_{2} = \{\mathsf{x}_{1}\mathsf{y}_{1} \in \mathsf{M} : \mathsf{vx}_{1}, \mathsf{vy}_{1} \in \mathsf{E}(\mathsf{G})\} , \text{ and} \\ & \mathsf{M}_{3} = \mathsf{M} \backslash (\mathsf{M}_{1} \cup \mathsf{M}_{2}) . \end{split}$$

From our earlier observation it follows that $M_1 \cap M_2 = \phi$. By definition, if $x_i y_i \in M_3$ then u and v can each be joined to at most one of x_i and y_i . Consequently

$$2(n - 1) \le d_{G}(u) + d_{G}(v) \le 2(|M_{1} \cup M_{2} \cup M_{3}|)$$

= $2|M|$
= $2(n - 1)$,

and hence each of u and v must be joined to exactly one end of each edge in M₃. In fact, $N_{G}(u) \cap V(M_{3}) = N_{G}(v) \cap V(M_{3})$.

If $M_3 = \phi$ then, since G is connected, we have an M-augmenting path between u and v, contradicting the maximality of M. Hence $M_3 \neq \phi$. We next establish that $M_1 = \phi$.

Suppose $M_1 \neq \phi$. Let X and Y respectively denote the vertices of $V(M_3)$ adjacent and non-adjacent to u. If $ab \in E(G)$ with $a \in Y$ and

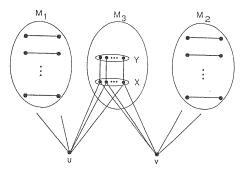


Figure 4.2.

b ∉ X, then G contains an M-augmenting u,v path, contradicting the maximality of M. Hence Y is an independent set of vertices in G and no vertex of Y is joined to any vertex of $V(M_1) \cup V(M_2)$. Consequently for w ∈ Y we have $d_G(w) \le |X| \le n - 2$, a contradiction. Therefore $M_1 = \phi$ and similarly $M_2 = \phi$. This proves the lemma. □

Theorem 4.3: If G \neq K_{2n} is k-critical on 2n vertices, $1 \leq k \leq n - 1$, then

$$\delta(G) \leq \begin{cases} n , n < 2k \\ \\ n + 2\lfloor \frac{k-1}{2} \rfloor, n \geq 2k \end{cases}$$

$$(4.1)$$

Proof: Let u and v be any pair of non-adjacent vertices of G and M a matching of size k - 1 in G - u - v. Consider the graph G' = G - u - v - V(M). Since G is k-critical G' has no perfect matching. Further, the subgraph $G[V(M) \cup \{u,v\}]$ has a maximum matching of size at most k-1, for otherwise G is not k-extendable. We distinguish two cases according to the value of k.

Case 1: n < 2k.

Suppose that $\delta(G) \ge n + 1$. Let M' be a maximum matching in the graph G' defined above. By Lemma 4.1, |M'| = n - k - 1 (note that $\nu(G') = 2n - 2k$). Let x and y be M'-unsaturated vertices of G'. Clearly x and y are not adjacent. Since $\delta(G) \ge n + 1$ and M' is a maximum matching in G', there must be an edge e of M such that x and y are adjacent to different end vertices of e, say a and b, respectively. Then M' \cup {xa,yb} is a matching of size $n - k + 1 \le k$.

But

$$G - (V(M') \cup \{x, a, y, b\}) = G[(V(M) - \{a, b\}) \cup \{u, v\}]$$

has a matching of size at most k - 2. This contradiction proves that $\delta(G) \leq n$ for n < 2k.

Case 2: $n \ge 2k$.

Suppose that $\delta(G) \geq n+k.$ Let $G_0=G-u-v.$ Then $\big| V(G_0) \big| \ = \ 2(n-1)$

and

$$\delta(G_0) \ge \delta(G) - 2 \ge (n - 1) + (k - 1).$$

By Theorem 2.5, G_0 is (k - 1)-extendable contradicting the fact that G is k-critical. Hence $\delta(G) \le n + k - 1$. Thus we need only consider the case k even. For this case we will prove that $\delta(G) \le n + k - 2$.

Suppose that $\delta(G) = n + k - 1$. Now by the choice of G',

 $\delta(G') \ge \delta(G) - 2k = n - k - 1.$

We now prove that G' is connected. Suppose that G' is disconnected. Then G' contains exactly two components as

 $\nu(G') = 2(n - k) \ge 2(\delta(G') + 1).$

In fact, G' consists of two disjoint K_{n-k} 's. Since G' has no perfect matching, n - k and hence n must be odd.

Since $\delta(G) = n + k - 1$, every vertex of G' must be adjacent, in G, to every vertex of V(M) \cup {u,v}. Let x and y be any two non-adjacent vertices of G'. Now consider the graph $\hat{G} = G + xy$. We will establish that G' is connected by showing that \hat{G} is k-extendable.

Suppose \hat{G} is not k-extendable. Then since G is k-extendable, there exists a set \hat{M} of k independent edges, with $xy \in \hat{M}$, that does not extend to a perfect matching in \hat{G} . If $ab \in \hat{M}$ and $a, b \notin V(G')$, then $\hat{M}' = (\hat{M} \setminus \{xy,ab\}) \cup \{xa,yb\}$ is a matching in G of size k with $V(\hat{M}) = V(\hat{M}')$. But then G cannot be k-extendable, a contradiction. We get a similar contradiction when $ab \in \hat{M}$ with $a \in V(G')$ and $b \notin V(G')$. We conclude therefore that $V(M') \subseteq V(G')$. If $V(M) \neq V(G')$ then the graph $G'' = G - V(M) - V(\hat{M})$ consists of $\overline{K}_2 \vee (K_{2p} \cup K_{2q})$ for some p and q. Note that $V(\overline{K}_2) = \{u,v\}$. But G'' has a perfect matching implying that \hat{M} is k-extendable. Hence $V(\hat{M}) = V(G')$ and so n - k = k implying that n is even, a contradiction. Therefore \hat{G} is k-extendable, contradicting the criticality of G. Hence G' is connected.

Now Lemma 4.1 together with the fact that G' has no perfect matching implies that G' has a maximum matching M' of size n - k - 1. Let u' and v' be the two M'-unsaturated vertices of G'. By Lemma 4.2 $N_{G'}(u') = N_{G'}(v')$. Let $N_{G'}(u') = \{x_1, x_2, \dots, x_{n-k-1}\}$. Lemma 4.2 implies that no two x_i 's are joined by an edge of M' and the set $V(G') - N_{G'}(u')$ is an independent set of vertices. Since $\delta(G) \ge n + k - 1$ and $G[V(M) \cup \{u,v\}]$ has a maximum matching of size at most k - 1, at least one of u or v, say u, is joined to a vertex, w say, of $N_{G'}(u')$. (See Figure 4.3).

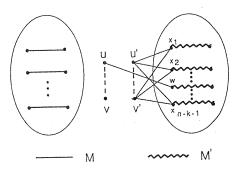
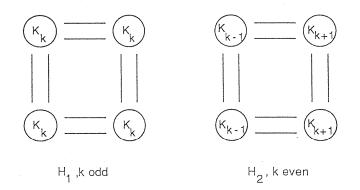


Figure 4.3.

Consider the matching $M'' = M \cup \{uw\}$. The subgraph G'' = G - V(M'') contains a set $S = \{v\} \cup (N_{G'}(u') \setminus \{w\})$ such that o(G'' - S) > |S|. Hence G'' does not contain a perfect matching and so G is not k-extendable, a contradiction. This completes the proof of the theorem.

Remark 3: For n < 2k the graph $K_{n,n}$ achieves the bound (4.1). For n = 2k the graphs H_1 and H_2 drawn in Figure 4.4 achieve the bound given in (4.1) for k odd and even, respectively. Note that in our diagrams a "double line" denotes the join. That H_1 and H_2 are k-critical is easily established. For example, in the case of H_2 if



uv $\notin E(H_1)$, then u and v are in diagonally opposite K_k 's and so for odd k it is easy to find a matching M of size k, with uv \in M, such that $H_1 - V(M)$ consists of two odd components.

Our next lemma establishes that 1-critical graphs are regular. Observe that a graph G is 1-critical if and only if G - u - v has no perfect matching for every pair of non-adjacent vertices u and v.

Lemma 4.3: If G is a 1-critical graph on 2n vertices, then G is regular.

Proof: Suppose to the contrary that G is not regular. Let $\delta(G) = r$. Since G is connected there exists adjacent vertices u and v with $d_{C}(u) = r$ and $d_{C}(v) > r$.

Let F be a perfect matching in G containing edge uv. Let

$$A = \{xy \in F | x \in N_{G}(u) - v, y \notin N_{G}(u)\}$$
$$B = \{xy \in F | x, y \in N_{G}(u)\}.$$

If v is adjacent to $x \in N_{G}(u) - v$ and $xy \in A$, then G - u - y has a perfect matching, namely $(F \setminus \{uv, xy\}) \cup \{vx\}$. But this contradicts the fact that G is 1-critical. Hence v is not adjacent to any vertex of $N_{G}(u) \cap V(A)$. Consequently, since |A| + 2|B| = r - 1, v is joined to a vertex, w say, different from u that does not belong to $V(A) \cup V(B)$. Let wz be the edge of G that is in F. The choice of w implies that wz $\notin A \cup B$. Now $(F \setminus \{uv, wz\}) \cup \{vw\}$ is a perfect matching in G - u - z, contradicting the criticality of G. This proves the lemma.

In the remainder of this paper, we make frequent use of the following notation. For $u \in V(G)$, we write $\overline{N}_{G}(u) = V(G) \setminus (N_{G}(u) \cup \{u\})$.

The following theorem provides a characterization of 1-critical graphs.

Theorem 4.4: A graph G on 2n vertices is 1-critical if and only if $G \cong K_{n,n}$ or K_{2n} .

Proof: The sufficiency is obvious as $K_{n,n}$ and K_{2n} are k-critical for $1 \le k \le n$. So we need to prove the necessity.

Let G be 1-critical. Then, by Lemma 4.3, G is r-regular for some $r \ge 2$. Take u, v, F, A and B as in the proof of Lemma 4.3. Then r = |A| + 2|B| + 1 and v is not adjacent to any vertex of $N_G(u) \cap V(A)$. We now prove that $G \cong K_{n,n}$ when $B = \phi$.

Suppose B =
$$\phi$$
. If $vw \in E(G)$, with $w \in \overline{N}_{G}(u) \setminus V(A)$, then

$$F' = (F \setminus \{uv, ww'\}) \cup \{vw\},$$

where ww' \in F, is a perfect matching in G - u - w'. But then G is not 1-critical. Hence v is not adjacent to any vertex of $\overline{N}_{G}(u)\setminus V(A)$. Now since v has degree r it must be joined to every vertex of $V(A) \cap \overline{N}_{G}(u)$. Let x be any vertex of $N_{G}(u) - v$. Suppose that $xy \in E(G)$ with y \neq u and y $\notin \overline{N}_{G}(u) \cap V(A)$. Let xx' and yy' belong to F. Then v is adjacent to at least one of x' or y', say x'. Since $B = \phi$, u is not adjacent to y'. Now

$$(F \{uv, xx', yy'\}) \cup \{vx', xy\}$$

is a perfect matching in G - u - y', contradicting the criticality of G. Hence $N_{\overline{G}}(u)$ is an independent set, each vertex of which is adjacent to every vertex of $\overline{N}_{\overline{G}}(u) \cap V(A)$. Consequently, $\overline{N}_{\overline{G}}(u) \setminus V(A) = \phi$. Hence r = n and $G \cong K_{n,n}$.

We next prove that $G \cong K_{2n}$ when $B \neq \phi$. Suppose $B \neq \phi$. Consider the edge bb' \in B. If vb \notin E(G), then (F\{uv,bb'}) \cup {ub'} is a perfect matching in G - v - b, contradicting the criticality of G. Hence V(B) $\subseteq N_{G}(v)$. A similar argument establishes that any two vertices of V(B) are adjacent. Therefore the vertices u,v and V(B) form a complete subgraph in G. Now let aa' \in A with a $\notin N_{G}(u)$. If va \notin E(G), then $(F \setminus \{uv, aa'\}) \cup \{ua'\}$ is a perfect matching in G - v - a, contradicting the criticality of G. Hence v is joined to every vertex of $V(A) \cap \overline{N}_{G}(u)$. Consider any edge bb' $\in B$. If $ab \notin E(G)$, then $(F \setminus \{aa', bb', uv\}) \cup \{ua', vb'\}$ is a perfect matching in G - a - b, a contradiction. Consequently each vertex of $\overline{N}_{G}(u) \cap V(A)$ is adjacent to every vertex of $v \cup V(B)$.

Suppose s,t are non-adjacent vertices with $s \in V(A) \cap N_{G}(u)$ and $t \in V(A) \cap \overline{N}_{G}(u)$. Let tt', ss' $\in A$. Now

$$F (ss', tt', uv) \cup (ut', vs')$$

is a perfect matching in G - s - t, a contradiction. Hence each vertex of V(A) $\cap \overline{N}_{G}(u)$ is adjacent to every vertex of V(A) $\cap N_{G}(u)$. Consequently $N_{G}(u) \subseteq N_{G}(a)$ for every $a \in V(A) \cap \overline{N}_{G}(u)$. Further, since G is r-regular $N_{G}(u) = N_{G}(a)$.

Now suppose that $\overline{N}_{G}(u)\setminus V(A) \neq \phi$ and let $p \in \overline{N}_{G}(u)\setminus V(A)$. Since G is r-regular p is not adjacent to any vertex of $(V(A) \cap \overline{N}_{G}(u))$ or $(\{v\} \cup V(B))$. Since G is connected, $pq \in E(G)$ for some $q \in V(A) \cap N_{G}(u)$. Let pp', $qq' \in F$. Now

 $(F \leq pp', qq', uv\}) \cup \{pq, vq'\}$

is a perfect matching in G - u - p', a contradiction. Hence $\overline{N}_{C}(u) \setminus V(A) = \phi$. We complete the proof by showing that $A = \phi$.

Suppose A $\neq \phi$ and let $a_1 \in V(A) \cap N_G(u)$. Since a_1 is not joined to v or any vertex of V(B), we have

$$r = |A| + 2|B| + 1 \le 2|A|$$

and hence $|A| \ge 2|B| + 1 \ge 3$. Let $a_2 \in V(A) \cap N_G(u)$ and $a_1a'_1$, $a_2a'_2 \in A$. If $a_1a_2 \in E(G)$, then $(F \setminus \{a_1a'_1, a_2a'_2\}) \cup \{a_1a_2\}$ is a perfect matching in $G - a'_1 - a'_2$. Since $a'_1a'_2 \notin E(G)$, this contradicts the criticality of G. Hence the vertices of $N_G(u) \cap V(A)$ form an independent set. But then $d_{G}(a_{1}) \leq |A| + 1 < r$, a contradiction. This proves that $A = \phi$ and hence $G \cong K_{2n}$. This completes the proof of the theorem.

Since a graph G of order 2n is n-critical if and only if G - u - v has no perfect matching for every non-adjacent pair of vertices u and v, it follows that G is n-critical if and only if it is 1-critical. Hence we have :

Theorem 4.5: A graph G on 2n vertices is n-critical if and only if $G \cong K_{n,n}$ or K_{2n} .

The following result gives a characterization of (n - 1) - critical graphs :

Theorem 4.6: Let G be a graph on $2n \ge 4$ vertices. Then G is (n - 1)-critical if and only if $G \cong K_{n,n}$ or K_{2n} .

Proof: We need only prove the necessity condition as $K_{n,n}$ and K_{2n} are clearly (n - 1)-critical. So suppose that G is (n - 1)-critical and G \notin $K_{n,n}$ and K_{2n} . We can assume that $n \ge 3$ as otherwise the result follows from Theorem 4.4. Then n < 2(n - 1) and so, by theorems 2.4 (b) and 4.3, $\delta(G) = n$.

Let $d_{G}(u) = n$. By Theorem 2.4 (c), $N_{G}(u)$ is independent. Consequently every vertex in $N_{G}(u)$ is adjacent to every vertex in $\bar{N}_{G}(u)$. Consider any vertex $v \in N_{G}(u)$. $d_{G}(v) = n$ and so $N_{G}(v)$ is independent. Hence $\bar{N}_{G}(u)$ is an independent set and therefore $G \cong K_{n,n}$.

This completes the proof of the theorem.

We now turn our attention to (n - 2)-critical graphs. We begin with the following lemma.

Lemma 4.4: If G is an (n - 2)-critical graph on $2n \ge 6$ vertices, then $\delta(G) > n - 1$.

Proof: Suppose to the contrary that $\delta(G) \leq n - 1$. Then, by Theorem 2.4(b), $\delta(G) = n - 1$. If n = 3, then, by Lemma 4.3 and Theorem 2.4(b), G is the cycle C_6 . But C_6 is not 1-critical, and so we need only consider $n \geq 4$.

Consider a pair of adjacent vertices u and v with $d_{G}(u) = n - 1$. By Theorem 2.4(c) $N_{G}(u)$ is an independent set of vertices. Let F be a perfect matching of G containing the edge uv. Then there exists an edge xy in F such that x and y are in $\overline{N}_{G}(u)$. We now prove that the subgraph H induced by the vertices in $\overline{N}_{G}(u)$ contains only one independent edge. Suppose xy and x'y' are independent edges of H. Then the graph

$$G' = G - \{x, y, x', y'\}$$

has 2n - 4 vertices and contains $N_{G}(u)$ as an independent set of n - 1 vertices. Clearly G' cannot have a perfect matching, contradicting the fact that G is k-critical, $k \ge 2$. Hence H contains only one independent edge.

Now since H contains one independent edge, $|\overline{N}_{G}(u)| = n \ge 4$ and $\delta(G) = n - 1$, at least one of x or y is adjacent to a vertex of

 $N_{G}(u)$. Suppose $xz \in E(G)$ with $z \in N_{G}(u)$. If $yw \in E(G)$, $w \neq z \in N_{G}(u)$, then the graph $G'' = G - \{x, y, z, w\}$ contains two disjoint independent sets of order n - 1 and n - 3 and hence cannot have a perfect matching. Since G is k-critical, $k \ge 2$, we must have $|N_{G}(y) \cap N_{G}(u)| \le 1$. In fact, if $|N_{G}(y) \cap N_{G}(u)| = 1$ then $yz \in E(G)$ and so each of x, y and z have degree, in G, at least n (Theorem 2.4 (c)). Consequently, y is joined to every vertex of $\overline{N}_{G}(u)$. Thus H consists of a star with centre y. Therefore the graph G'' = G - u - y is a bipartite graph with bipartition $(N_{G}(u), \overline{N}_{G}(u) - y)$ and $\delta(G'') \ge$ n - 2. But then, by Theorem 3.1, G'' is (n - 3)-extendable implying that G + uy is (n - 2)-extendable, a contradiction. This completes the proof of the lemma.

We now characterize (n - 2)-critical graphs on 2n vertices which have minimum degree n.

Theorem 4.7: Let G be an (n - 2)-critical graph on 2n vertices with $\delta(G) = n \ge 5$. Then $G \cong K_{n-n}$.

Proof: Let $d_{G}(u) = n$. The main task in proving the theorem is to prove that $N_{G}(u)$ is an independent set. Suppose that this is not so and that v and w are adjacent vertices of $N_{G}(u)$. Then by Theorem 3.2, the subgraph induced by the vertices of $N_{G}(u)$ contains only one independent edge.

Let t be any vertex of $N_{G}(u) - v - w$ (since $n \ge 5$ such a t exists) and F a perfect matching of G containing the edges ut and vw. Denote the subgraph of G induced by the vertices in $\overline{N}_{G}(u)$ by H. Clearly F contains an edge, xy say, of H. We claim that H contains only one independent edge. For let x'y' and xy be a pair of independent edges in H. Then the graph G' = G - {x,y,x',y',v,w} has 2n - 6 vertices and contains an independent set of order n - 2 and hence cannot contain a perfect matching. This contradicts the fact that G is k-extendable, $k \ge 3$. Hence H contains only one independent edge. Consequently the graph $\hat{G} = G - \{v,w,x,y\}$ is bipartite with bipartitioning sets (X,Y), with $X = N_{G}(u) \setminus \{v,w\}$ and $Y = (\bar{N}_{G}(u) \cup \{u\}) \setminus \{x,y\}$.

If $(N_{G}(x) \cup N_{G}(y)) \cap N_{G}(u) = \{v,w\}$, then every vertex of $\overline{N}_{G}(u)$ is joined to x and y, as otherwise $d_{G}(x)$ or $d_{G}(y)$ is less than n. But then, since $n \geq 5$, H contains a pair of independent edges. Consequently, we may assume without loss of generality that G contains the edge xz, $z \in N_{G}(u) - v - w$. Since $n \geq 5$, y is joined to vertices other than v, w, x and z. Let z' be any such vertex. If $z' \notin \overline{N}_{G}(u)$, then $\hat{G} - z - z'$ is bipartite with bipartitioning sets of order n - 2and n - 4 and hence does not have a perfect matching. But the subgraph G[v,w,x,y,z,z'] has 3 independent edges and these edges must extend to a perfect matching in G. Hence $z' \in \overline{N}_{G}(u)$. Consequently $|N_{G}(y) \cap \overline{N}_{G}(u)| \geq n - 3$, and $|N_{G}(y) \cap N_{G}(u)| \leq 3$.

If $|N_{G}(y) \cap N_{G}(u)| = 3$, then vw and xz are two independent edges in $G[N_{G}(y)]$ and so $d_{G}(y) \ge n + 1$ (Theorem 3.2). Consequently y is joined to every vertex of $\overline{N}_{G}(u)$ and $\overline{N}_{G}(u) - y$ is an independent set; otherwise, H contains a pair of independent edges. This establishes that $\overline{N}_{G}(u) - y$ is an independent set.

We claim that $N_G(u) - v$ or $N_G(u) - w$ is independent. Suppose that this is not the case. Then tv and tw $\in E(G)$ for some

 $t \in N_{G}(u)$. Now consider any vertex $t' \in N_{G}(u) \setminus \{v, w, t, z\}; t'$ exists since $n \ge 5$. Since $G[N_{G}(u)]$ contains only one independent edge, t' is not adjacent to any vertex in $N_{G}(u)$ and hence $N_{G}(t') \subseteq \overline{N}_{G}(u) \cup \{u\}$. From our earlier discussion we known that t' is not adjacent to y. But then $|N_{G}(t')| \le n - 1$, a contradiction. Thus at least one of $N_{G}(u) - v$ or $N_{G}(u) - w$ is independent. Suppose without any loss of generality that $N_{G}(u) - v$ is independent.

If $vy \notin E(G)$, then $d_{G}(y) = n$ and $N_{G}(y) = \{w, z\} \cup (\overline{N}_{G}(u) \setminus \{y\})$. Since $N_{G}(u) - v$ is independent, v is the only vertex of $N_{G}(u)$ that is adjacent to w. Therefore w is joined to at least $n - 4 \ge 1$ vertices of $\overline{N}_{G}(u) \setminus \{x, y\}$. Let w' be such a vertex. But now ww' and xz are two independent edges in $G[N_{G}(y)]$, contradicting Theorem 3.2. Hence $vy \in E(G)$.

We now show that $N_{G}(v) \cap \overline{N}_{G}(u) = \{y\}$. Suppose that this is not the case and v is adjacent to the vertex $v' \neq y$ in $\overline{N}_{G}(u)$. Theorem 3.2 together with the fact that uv and xy are independent edges implies that w is joined to a vertex, w' say, of $\overline{N}_{G}(u)$ that is different from x, y and v'. If $x \neq v'$, then vv', ww' and xz are three independent edges in G. Further, since $N_{G}(y) \leq \overline{N}_{G}(u) \cup \{v,w,z\}$ at least two of these independent edges are in $G[N_{G}(y)]$, contradicting Theorem 3.2. Hence x = v'. Now if $vz \in E(G)$, then applying to z the above argument used on w, we establish the existence of the edge zz' with $z' \in \overline{N}_{G}(u) \setminus \{x,y,w'\}$. Note that if $vz \notin E(G)$, then for $d_{G}(z) \geq n$ there must still exist such a vertex z'. Now the edges vx, ww' and zz' are independent and at least two are in $G[N_{G}(y)]$, again contradicting Theorem 3.2. This establishes that $N_{G}(v) \cap \overline{N}_{G}(u) = \{y\}$.

Now the graph $G^* = G - u - y$ is bipartite with bipartitioning

sets $A = N_{G}(u) - v$ and $B = \{v\} \cup (\overline{N}_{G}(u) \setminus \{y\})$. Further $\delta(\overline{G}^{*}) \ge n - 2$. By Theorem 3.1, \overline{G}^{*} is (n - 3)-extendable. But then G + uy is (n - 2)-extendable, contradicting the fact that G is (n - 2)-critical. This proves that $N_{G}(u)$ is an independent set. Consequently the neighbour set of every vertex of degree n is an independent set. It thus follows that $G \cong K_{n,n}$. This completes the proof of the theorem.

Remark 4: When n = 4, the graphs in Figure 4.1 having 8 vertices, are 2-critical and all non-bipartite.

Our final result characterizes (n - 2)-critical graphs of order 2n.

Theorem 4.8: A graph G on $2n \ge 10$ vertices is (n - 2)-critical if and only if $G \cong K_{n,n}$ or K_{2n} .

Proof: Again we need only consider the necessity part. Suppose G is an (n - 2)-critical graph on $2n \ge 10$ vertices and $G \not\cong K_{2n}$ and $K_{n,n}$. Then n < 2(n - 2) and so, by theorems 2.4(b) and 4.3, we have $n - 1 \le \delta(G) \le n$. But now, by Lemma 4.4, $\delta(G) = n$ and so, by Theorem 4.7, $G \cong K_{n,n}$. This completes the proof of the theorem.

ACKNOWLEDGEMENT

This work has been supported, in part, by an Australian Research Grant (A48932119). We also thank the referee for drawing our attention to the recent work of Yu [8 and 9].

REFERENCES

- [1] J.A. Bondy and U.S.R. Murty, **Graph Theory with Applications**, The MacMillan Press, London, (1977).
- [2] D. Grant, C. Little and D.A. Holton, On Defect-d Matchings in Graphs, Discrete Mathematics, 13 (1975), 41-54.
- [3] L. Lovász and M.D. Plummer, Matching Theory, Ann. Discrete Mathematics, North-Holland, Amsterdam, (1986).
- [4] M.D. Plummer, On n-extendable Graphs, Discrete Mathematics, 31 (1980), 201-210.
- [5] M.D. Plummer, Matching Extension in Bipartite Graphs, Congressus Numerantium, 54 (1986), 245-258.
- [6] M.D. Plummer, Extending Matchings in Graphs: A Survey, (1991) (submitted).
- [7] A. Saito, Research Problem 114, Discrete Mathematics, 79 (1989/90), 109.
- [8] Q.L. Yu, A Note on n extendable Graphs, J. Graph Theory, (to appear).
- [9] Q.L. Yu, Factors and Factor Extensions, Doctoral Dissertation, Simon Fraser University, (1991).

(Received 16/10/91)