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Abstract. Let G = EA(g) of order g be the abelian group 
ZPl X ZPl X . .. X ZPl X ... X ZPn X ZPn X ... X ZPII 

n 

whereZpi occurs ri times with IT pp the prime decomposition of g. 
i = 1 

It is shown that the necessary conditions 

A==O(modg) 

v?:: 3n 

v == 0 (mod n) 

A(V - n) == 0 (mod 2) 

v v n - 0 (mod 24) if g is even, 
A ( _ ) = (0 (mod 6) if g is odd, 

are sufficient for the existence of a PGBRD(v, 3, A, n; EA(g)). 

1. Introduction 

A design is a pair (X, B) where X is a finite set (whose elements are called points) 
and B is a collection of (not necessarily distinct) subsets Bi (called blocks) of X. A point 
and a block are said to be incident if and only if the point belongs to the block. For a 
design (X, B) with v points and b blocks, the incidence matrix N is a v x b matrix, 

N = (nij), such that 
n .. = (1 if point i belongs to block j 

I] 0 otherwise. 

A balanced incomplete block design, BIBD(v, b, r, k, A), is a design (X, B) with v 
points and b blocks such that: 

(i) each element of X appears in exactly r blocks; 
(ii) each block contains exactly k « v ) elements of X; and 
(iii) each pair of distinct elements of X appear together in exactly A blocks. 

As r(k -1) = A(V - 1) and vr = bk are well-known necessary conditions for the 
existence of a BIBD(v, b, r, k, A) we denote this design by BIBD(v, k, A). 

Let v and A be positive integers and K a set of positive integers. A design (X, B) 
\vith v and b blocks is a pairwise balanced design, PBD(v; K; A), if: 
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(i) X contains exactly v points; 
(ii) if a block contains k points then k belongs to K ; 
(iii) each pair of distinct points appear together in exactly A blocks. 
A pairwise balanced design PBD(v; {k}; A), where K = {k} consists of exactly one integer, is a BIBD(v, k, A). 

A group divisible design, ODD (v, b, r, A1, A2, m, n), is a triple (X, S,A) where: 
(i) X is a set of v elements (called points); 
(ii) S is a class of m subsets of X (called groups), each of size n, which partitions X; 
(iii) A is a class of b (not necessarily distinct) subsets of X (called blocks), each of size k ~ 2; 
(iv) each point appears in exactly r blocks; 
(v) each pair {x, y} of points contained in a group is contained in exactly Al 

blocks; 
(vi) each pair {x, y} of elements of X not contained in a group is contained in 

exactly A2 blocks. 
We apply the term "group" here to describe elements of S and the reader is reminded not to confuse the use of this term with the word "group" used in the algebraic sense of the word. 

A transversal design, TD, with k groups each of size n and index A, denoted by 
TD(k, A; n), is a ODD on kn points where: 

(i) each block intersects each group in exactly one point; 
(ii) each pair {x, y} of points not contained in a group is contained in exactly A blocks. 
It is well-known (see, for example, Street and Street (1987» that a TD(k, A; n) is a 

ODD(kn, Iln2, An, k, 0, A, k, n). 

Suppose that x and y are distinct points in a ODD. We say that x and y are first associates if {x, y} is contained in a group. If {x, y} is not contained in a group then x 
and y are said to be second associates. For a ODD(v, b, r, AI' A2, m, n) we define the 
association matrices 

B i = (b ist), 1 5, i 5, 2, and 1 5, s, t 5, v 
as v x v (0, 1) - matrices given by 

b i = (1 if points sand tare ith associates, 
st ° otherwise. 

It is well-known (see, for example, Street and Street (1987» that, if N is the 
incidence matrix of a ODD (v, b, r, AI' A2, m, n) then 

NNT = rIv+ A1B 1+ ~B2> 
where Iv is the identity matrix of order v. Let us suppose that the association scheme of a 
ODD(v, b, r, AI' A2' m, n) is such that the ith group consists of the n points 

(i -1)n +1, (i -l)n +2, '" , in 
for i = 1, ... , m. Then the matrix NN T can be partitioned into m2 square submatrices 
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each of order n. The diagonal submatrices have all diagonal entries to r and all 
off-diagonal entries equal to AI' while all entries of the submatrices are equal 

to "-2. Thus, in this case, NN T can be written as 

NNT= ®[(r-Al)ln+Al1n]+(lm )® 

where we write A ® B for the Kronecker product of the matrices A and B and for the 

square matrix of order n whose entries are all 1 'so When A} 0, = A the expression 
for NN T takes the form 

In this paper we are concerned with the class of ODDs with = ° and = A; and a 
ODD in this class will be denoted b, r, k, A, n). When no confusion is 

a b, r, k, A, n) is denoted in terms of the parameters v, k, A 
and n by k, A, We note that all IDs to this class of ODDs. 

Let G = {hI = e, h2 , ••. , 

the matrix W, 
be a finite group 1ripnf-l1hl e ) of order g. Form 

W 

where are v x b 1) matrices such that the Hadamard PWldw:;t 

A t A j = 0 for any k Now let 

W+ = (h1- 1 A 1+ ... + hg-1Ag)T, 

and 
Then we say that W is 
classes over POBRD, denoted 

k, A, n; if: 
N is the incidence matrix of the 

where is association matrix of the 

that 

WW+= relv + ( 
geI1lerallZ(;~d Bhaskar Rao 

satisfies 
NNT 

with two association 
or in abbreviated form 

that 

+ 
b, k, A, n) corresporLdHlg to = A; and 

)( 
with one association denoted 

and 

with two association over 
association class over we say that 



GBRDs over elementary abelian groups other than Z2 have been studied recently by 
Lam and Seberry (1984) and Seberry (1985). de Launey, Sarvate and Seberry (1985) 
considered GBRDs over Z 4 which is an abelian (but not elementary) group. Some 
GBRDs over various groups (abelian and non-abelian) have been studied by Gibbons and 
Mathon (1987A, 1987B). Palmer and Seberry (1988) have shown that the necessary 
conditions are sufficient for the existence of GBRDs over the non-abelian groups Q, S3' 

D4, D6 and over the abelian group Z2 x Z4' GBRDs over cyclic groups of even order 
have been considered recently by Bowler, Quinn and Seberry (199). 

Recently Curran and Vanstone (1989) have used GBRDs to construct doubly 
resolvable BIBDs. Sarvate and Seberry (199 ) have used GBRDs in the construction of 
balanced ternary designs. Generalized Bhaskar Rao designs and generalized Hadamard 
matrices have been used by Mackenzie and Seberry (1988) to obtain q - ary codes. 

Our aim in this paper is to establish the existence of the designs 
PGBRD(v, 3, 'A, n; EA(g». For each integer g, EA(g) is the abelian group 

ZPl X ZPl X . .. X ZPl X ... X Zpn X ZPII X ... X ZPII 

where g = Pl" 'Pn and each Pi is a prime. In an earlier paper (Palmer (1990) it was 
shown that the necessary conditions are sufficient for the existence of a 
PGBRD(v, 3, 'A, 2; EA(g». 

2. Constructions 

The constructions which will be used extensively in this paper are contained in the 
following five theorems. 

Theorem 2.1 (Palmer (1990» Suppose that a GDD(v, k, 'A, n) and a 
GBRD(k, k, ~; G) exists. Then a PGBRD(v, k, 'A~, n; G) exists. 

Theorem 2.2 (Palmer (1990» Suppose that a PBD(v; H; A) exists and that/or each h 

belonging to H a PGBRD(nh, k, 11, n; G) exists. Then a PGBRD(nv, k, 'A~, n; G) 
exists. 

Theorem 2.3 (Palmer (1990» Suppose that a BIBD(v, k, 'A) and a 
PGBRD(nk,j,~, n; G) exists. Then there exists a PGBRD(nv,j, 'A~, n; G). 

The next theorem is a generalization of Theorem 2.4 found in Palmer (1990), 

Theorem 2.4 Let G and H be groups 0/ orders g and h respectively. Suppose that 
a GBRD(v, k, 'A; G x H) exists, then a PGBRD(hv, k, 'A /h, h; G) exists. 

Proof: Let A GBRD(v, k, 'A; G x H) and suppose that (a, 13), where a and 13 belong 
to G and H respectively, is any non-zero entry in A. We fonn the matrix B by 
replacing the zero entries of A by square zero matrices of size h and by replacing every 
non-zero entry (a, (3) by the matrix aP~ where p~ corresponds to 13 in the right regular 
representation of H, We claim that B is a PGBRD(hv, k, 'A /h, h; G). 

Theorem 2.S Suppose that a PGBRD(v, k, 'A, n; G) and a TD(k, 1; s) exists. Then a 
PGBRD(sv, k, 'A, sn; G) exists. 
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Proof: Let A be a PGBRD(v, k, A, n; G). Let B be the incidence matrix of a 
TD(k, 1; s). We write B as 

lI] 
where each B j ,i = 1,2, ... , k, is a matrix of size s x s2. Let a1> Uz, ... , ak be the 

non-zero entries of the first column of A. We now replace al by alB l , a2 by a2B2," 

. , ak by aJ!3 k and the zero entries by zero matrices of size s x s2. This process is 
repeated for the remaining columns of A. The new matrix thus formed is a 
PGBRD(sv, k, A, sn; G). 

It is well-known (see, for example, Street and Street (1987», that a T(k, 1; s) exists 
if and only if there exist k -2 mutually orthogonal latin squares of order s. So a T(3, 1; s) 
exists when s is a positive integer. Thus we have the 

Coronary 2.6 Let s be a positive integer. Suppose that a PGBRD(v, 3, A, n; G) 
exists. Then a PGBRD(sv, 3, A, sn; G) exists. 

3. Necessary conditions 

Hanani (1975) has shown that a GDD(v, 3, A, n) exists if and only if 
v - 0 (mod n ) (3.1) 
v ~ 3n (3.2) 

A(V -n ) == 0 (mod 2) (3.3) 
AV (v -n ) == 0 (mod 6) (3.4) 

For the existence of a PGBRD(v, k, A, n; G) we also require 

A == 0 (mod g ) (3.5) 
where g is the order of the group G. In view of Theorems 2.4 and 3.1 (Palmer (1990» 
we have the extra necessary condition, 

AV (v -n) == 0 (mod 24), (3.6) 
for the existence of a PGBRD(v, k, A, n; EA(g» when g is even. Hence, we obtain 

Theorem 3.1 Necessary conditions for the existence of a PGBRD(v, k, A, n; EA(g» 
are: 

A - 0 (mod g) (3.7) 
v - o (mod n) (3.8) 
v ~ 3n (3.9) 

A(V -n) - o (mod2) (3.10) 
AV (v -n) - 0 (mod 6), if g is odd (3.11) 
AV (v -n) - 0 (mod 24), if g is even. (3.12) 

In the remaining sections of the paper we will show that these necessary conditions 
are sufficient for the existence of a PGBRD(v, 3, A, n; EA(g». 
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4. PGBRD(v, 3, A, n; EA(g», n == lor 5 (mod 6) 

Theorem 4.1 Suppose n == lor 5 (mod 6), Then the necessary conditions (3.7), 
(3.8), (3.9), (3.10), (3.11) and (3.12) are sufficient for the existence of a 
PGBRD(v, 3, A, n; EA(g». 

Proof: Let p be a non-negative integer. By Theorem 3.1, a 
PGBRD«6p +l)m, 3, A, 6p +1; EA(g» can exist only if 

A == 0 (modg) 

m ~3 

A(m -1) == 0 (mod 2) 

(4.1) 

(4.2) 
(4.3) 

Amv(m _ 1) == (0 (mod 6) i~ g i~ odd, (4.4) 
o (mod 24) If g IS even. 

The conditions (4.1), (4.2),(4.3) and (4.4) are necessary and sufficient conditions for the 
existence of a PGBRD(m ,3, A, 1; EA(g» (Seberry (1985»). Thus, using Corollary 2.6, 
we can construct the design PGBRD(v = (6p +l)m, 3, A, n = 6p +1; EA(g») from the 
design PGBRD(m, 3, A, 1; EA(g» whenever v, A, n, and g satisfy the necessary 
conditions given in Theorem 3.1. 

Also, by repeating the argument of the previous paragraph for the case where 
n = 6p + 5, it can be shown that a PGBRD(v , 3, A, n; EA(g» exists if and only if v, A, 
nand g satisfy the necessary conditions given in Theorem 3.1. 

5. PGBRD(v, 3, A, n; EA(g», n == 2 or 4 (mod 6) 

Theorem 5.1 Suppose n == 2 or 4 (mod 6). The necessary conditions (3.7), (3.8), 
(3.9), (3.10), (3.11) and (3.12) are sufficientfor the existence of a 
PGBRD(v, 3, A, n; EA(g». 

Proof: Let p be a non-negative integer. By Theorem 3.1, the design 
PGBRD«6p+2)m, 3, A, 6p +2; EA(g» can exist only if 

A - 0 (mod g ) (5.1) 
m ~ 3 (5.2) 

Am (m -1) - 0 (mod 3). (5.3) 

We note that Palmer (1990) has shown that (5.1), (5.2) and (5.3) are necessary and 
sufficient conditions for the existence of the design PGBRD(v = 2m, 3, A, 2; EA(g». 
Thus, for n = 6p +2 == 2 (mod 6) and v and A satisfying the necessary conditions (3.7), 
(3.8), (3.9), (3.10), (3.11) and (3.12), we can apply Corollary 2.6 to construct the design 
PGBRD(v = (6p +2)m, 3, A, 6p +2; EA(g» from a PGBRD(v = 2m, 3, A, 2; EA(g». 

By similar reasoning, we can show that the necessary conditions are sufficient for the 
existence of the design PGBRD(v = (6p +4)m, 3, A, 6p +4; EA(g». 
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6. PGBRD(v, 3, A, n; EA(g», n == 0 (mod 6) 

Lemma 6.1 There exists a PGBRD(v = 6m, 3, A, 6; EA(g» if and only if 
m ~3 
A =0 (modg) 

Proof: When g == 0, 1,3 (mod 4) a GBRD(3,3, g; EA(g» exists (Seberry (1985». 
Also when m ~ 3, a GDD(6m, 3,1,6) exists (Ranani (1975». Hence, on application of 
Theorem 2.1 (Palmer (1990», we can construct a PGBRD(v = 6m, 3, g, 6; EA(g», 
g == 0, 1,3 (mod 4), m ~ 3. 

A GBRD(m, 3, 12h; Z 2 x EA(h) x Z 2 x Z3), h odd, exists if and only if m ~ 3 
(Seberry (1985». Thus, by applying Theorem 2.4, we can construct the design 
PGBRD(v = 6m, 3, 2h, 6; Z2 x EA(h» if and only if g 2h == 2 (mod 4) and m ~ 3. A 
PGBRD(v = 6m, 3, A = gt, 6; EA(g» can be constructed by taking t copies of a 
PGBRD(v = 6m, 3, g, 6; EA(g». 

Theorem 6.2 The necessary conditions (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12) 
are sufficientfor the existence of the design PGBRD(v, 3, A, n; EA(g», n == 0 (mod 6). 

Proof: The necessary conditions for the existence of the design 
PGBRD(v = 6mp, 3, A, n = 6p; EA(g»,p a positive integer, are now: 

A = 0 (mod g) 
m ~ 3. 

By application of Corollary 2.6 and Lemma 6.1, we see that these conditions are sufficient 
for the existence of the design PGBRD(v, 3, A, n; EA(g», n == 0 (mod 6). 

7. PGBRD(v, 3, A, n; EA(g», n == 3 (mod 6) 

Lemma 7.1 The necessary conditions are sufficient for the existence of a 
PGBRD(v = 3m, 3, A =gt, 3; EA(g». 

Proof: By Theorem 3.1, the necessary conditions for the existence of the design 
PGBRD(v = 3m, 3, A =gt, 3; EA(g» give rise to the following cases: 
(a) g odd, todd, m = 1 (mod 2) and m ~ 3; 
(b) g odd, t even, m ~ 3; 
(c) g = 0 (mod 4), m ~ 3; 
(d) g = 2 (mod 4), todd, m == 0 or 1 (mod 4)and m ~ 3; 
(e) g = 2 (mod 4), t even, m = 0 or 1 (mod 4) and m 3. 

Cases Ca) and Cb): Here a GBRD(3, 3, g; EA(g » exists (Seberry (1985» Hanani (1975) 
has shown that a GDD(3m, 3, 1,3) exists if and only if m == 1 (mod 2) and m ~ 3, and a 
GDD(3m,3, 2, 3) exists if and only if m ~ 3. Hence, by Theorem 2.1, we see that a 
PGBRD(3m, 3, g; EA(g» exists for m == 1 (mod 2) and m ~ 3, and a 
PGBRD(3m,3, 2g; EA(g» exists for m ~ 3. The designs PGBRD(3m, 3, gt; EA(g» and 
PGBRD(3m,3, 2gt; EA(g» can be obtained by taking t multiples of the designs 
PGBRD(3m, 3, g; EA(g» and PGBRD(3m, 3, 2g; EA(g» respectively. 
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Case (c): As in (a), for all odd m ~ 3, a PGBRD(3m, 3, g, 3; EA(g» exists. By 
Seberry (1985) a GBRD(2p, 3, 12q; EA(12q», p ~ 2, q ~ 1, exists. Thus, by Theorem 
2.4, a PGBRD(3(2p),3, g, 4q); EA(g» exists for all even m = 2p ~ 2. The design 
PGBRD(3m, 3, A = tg, 3; EA(g» is obtained by taking a t multiple of a 
PGBRD(3m,3, g, 3; EA(g». 

Case (d): By Seberry (1985), a GBRD(m, 3, (4q +2)3; EA«4q +2)3» exists if and only 
if m == 0 or 1 (mod 4) and m ~ 3. Thus, by Theorem 2.4, a PGBRD(3m, 3, (4q +2), 3; 
EA«4q +2» exists for m == 0 or 1 (mod 4) and m ~ 3. We can produce a PGBRD(3m, 3, 
(4q +2)t, 3; EA«4q +2» by taking t copies of a PGBRD(3m, 3, (4q +2),3; EA«4q +2». 

Case (e): The design GBRD(m, 3, (4q +2)6; EA«4q +2)3) exists if and only if m ~ 3. 
Theorem 2.4 shows that a PGBRD(3m, 3, (4q +2)2,3; EA«4q +2» exists if and only if 
m ~ 3. For all m ~ 3, we can construct the design 
PGBRD(3m, 3, (4q +2)2t, 3; EA«4q +2» by taking t copies of the design 
PGBRD(3m, 3, (4q +2)2, 3; EA«4q +2». 

Theorem 7.2 Suppose that n == 3 (mod 6). Then the necessary conditions (3.7), 
(3.8), (3.9), (3.10), (3. 11)and (3.12) are sufficient/or the existence of the design 
PGBRD(v, 3, A, n; EA(g». 

Proof: Letp be a positive integer. A PGBRD(v = (6p +3)m, 3, A, 6p +3; EA(g» can 
be constructed from a PGBRD(v = 3m, 3, A, 3; EA(g» on application of Corollary 2.6. 
However, by Theorem 3.1, a PGBRD(v = (6p +3)m, 3, A, 6p +3; EA(g» exists only if a 
PGBRD(v = 3m, 3, A, 3; EA(g» exists. We know, by Lemma 7.1, that the necessary 
conditions (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12) are sufficient for the existence 
of the design PGBRD(v = 3m, 3, A, 3; EA(g». Hence the necessary conditions (3.7), 
(3.8), (3.9), (3.10), (3.11) and (3.12) are also sufficient for the existence of the design 
PGBRD(v = (6p +3)m, 3, A, 6p +3; EA(g». 

8. Main Result and Applications 

By virtue of Theorems 4.1,5.1,6.2 and 7.2 we have the 

Theorem 8.1 The necessary conditions (3.7), (3.8), (3.9), (3.10), (3.11) and (3.12) 
are sufficient/or the existence of the design PGBRD(v, 3, A, n; EA(g». 

Let EA(g) = {e = hI" .. ,hg} where EA(g) is the elementary abelian group defined 

in section 1. Suppose that EA(g) is represented by the g x g permutation matrices PI' .. 

. , P g so that the element hi corresponds to the matrix Pi' 1 ~ i ::;; g. As in Street and 
Rodger (1980), Seberry (1982) and Palmer (1990), we construct, by replacing each group 
element entry of a PGBRD(v, 3, A, n ; EA(g » by its corresponding g x g permutation 
matrix, the incidence matrix of a group divisible design with v / n groups each of size ng 
and with the parameters 

v *= vg, b *= bg, r *= r, k *= 3, Al*= 0, ~*= A/g. 
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Hence we have part of Hanani's Theorem 6.2 (Han ani (1975)) but by a different 
approach: 

Theorem 8.2 The conditions 

A 0 (mod g) 
v 3n 
v 0 (mod n) 

A(V - n) == 0 (mod 2) 

A ( _ ) = J 0 (mod 6) if g is odd, 
v v n - \ 0 (mod 24) if g is even, 

are sufficient for the existence of a group divisible design with v /n groups each of size ng 
and the parameters: 

v *= vg, b *= b , r *= r, k *= 3, Al *= 0, A/g. 
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