Matching Extensions of Strongly Regular Graphs

D A Holton and Dingjun Lou

Department of Mathematics and Statistics University of Otago Dunedin, New Zealand

Abstract: Let β be the number of vertices commonly adjacent to any pair of non-adjacent vertices. It is proved that every strongly regular graph with even order and $\beta \ge 1$ is 1-extendable. We also show that every strongly regular graph of degree at least 3 and cyclic edge connectivity at least 3k-3 is 2-extendable. Strongly regular graphs of even order and of degree k at least 3 with $\beta \ge \frac{k}{3}$ are 2-extendable, except the Petersen graph and one other graph.

1. Introduction and terminology

All graphs considered are finite, undirected, connected and simple.

A graph G is called <u>strongly regular</u> if G is k-regular and there are two integers $\alpha, \beta \ge 0$ such that for each pair of vertices u and v, u z v, the number of the common neighbours of u and v is α or β according as u and v are adjacent or non-adjacent. A strongly regular graph with v vertices is called a (v, k, α, β) -graph. These general parameters will be assumed unless stated otherwise.

A graph G is called <u>cyclically m-edge-connected</u> if $|S| \ge m$ for each edge cutset S of G such that there are two components in G - S each of which has a cycle. The set S is called a cyclic edge cutset. The size of a minimal cyclic edge cutset is called the <u>cyclic edge</u> <u>connectivity</u>, and is denoted by $c\lambda(G)$.

Australasian Journal of Combinatorics 6(1992), pp.187-208

Suppose G has a perfect matching. A graph G is called <u>n-extendable</u> if for the given integer $n \le (v-2)/2$, G has n independent edges and any n independent edges are contained in a perfect matching of G.

In [1], the n-extendability of edge (vertex) transitive graphs is discussed. When the cyclic edge connectivity is large enough, an edge transitive graph is n-extendable. We show here that there is a similar relation between cyclic edge connectivity and n-extendability in strongly regular graphs. We also find some n-extendable strongly regular graphs for arbitrary n.

All terminology and notation not defined in this paper can be found in [2].

Reference [4] provides a strong background for matching theory and [6] gives a survey of results in strongly regular graphs.

Lemma 1 If G is a strongly regular graph, then $k(k-\alpha-1) = (v-k-1)\beta$.

Proof See Theorem 2.2 in [3].

If G is a cubic strongly regular graph, then by Lemma 1, $3(2-\alpha) = (\upsilon-4)\beta$. For $\alpha = 2$, we find G = K₄. If $\alpha = 1$, then υ is odd which is not possible since G is cubic. If $\alpha = 0$, then $\beta = 1$ and $\upsilon = 10$ or $\beta = 3$ and $\upsilon = 6$. For $\beta = 1$, we obtain the Petersen graph P, while for $\beta = 3$ we get K_{3,3}.

Lemma 2 Let G be a graph with even order. If $\delta(G) \ge \frac{v}{2} + n$, then G is n-extendable.

Proof See [5].

2. Matching of strongly regular graphs

In this section, we show that every connected strongly regular graph with even order has a perfect matching. Furthermore, every edge of such a graph lies in a perfect matching. Let G be a strongly regular graph with even order and $\beta = 0$. By Lemma 1, $\alpha = k-1$. Let u,v be adjacent in G. Then we may suppose that u,v are both adjacent to $w_1, w_2, ..., w_{k-1}$. Let A = $\{u,v,w_1,w_2,...,w_{k-1}\}$. If w_i,w_j are not adjacent then they are both adjacent to u and v. This contradicts the fact that $\beta = 0$. Hence $G[A] \cong K_{k+1}$, where G[A] is the graph induced by the vertex set A.

Let $x \in V(G)$ - A. Now x cannot be adjacent to any vertex in A since each of these vertices has degree k already. Hence x must be in another component isomorphic to K_{k+1} .

So $G \cong rK_{k+1}$. Such graphs are 1- and 2-extendable if and only if k is odd. We therefore assume that $\beta \ge 1$ in the rest of this paper.

Let G be a strongly regular graph with even order and let $C_1, C_2, ..., C_t$ be the components of G - S.

Lemma 3 Each vertex of C_i sends at least β edges to S (i=1,2,...,t).

Proof Let u be a vertex of C_i and v be a vertex of C_j $(i \neq j)$. Since u and v are non-adjacent, u and v have β common neighbours. Those neighbours can only be in S. So every vertex of C_i sends at least β edges to S.

Lemma 4 There are at least k edges from C_i to S (i=1,2, ..., t).

Proof Let m be the number of vertices of C_i . Let \mathscr{T} be the minimum number of edges from a vertex of C_i to S. By Lemma 3, $\mathscr{T} \geq \beta \geq 1$. There are at least m \mathscr{T} edges from C_i to S.

Suppose $m\mathcal{T} < k$. Then $m < k/\mathcal{T}$. Suppose $m \ge k - \mathcal{T} + 1$. Then $k/\mathcal{T} > k - \mathcal{T} + 1$. Hence $k\mathcal{T} - \mathcal{T}^2 + \mathcal{T} < k$. So $\mathcal{T}^2 - k\mathcal{T} + k - \mathcal{T} > 0$ and $(\mathcal{T}-k)(\mathcal{T}-1) > 0$.

But $\Im \leq k$ and $\Im \geq 1$. This contradiction shows that $m < k - \Im + 1$. But now each vertex u of C_i is adjacent to at most $k - \Im - 1$ vertices in C_i . So there are at least $\mathcal{T} + 1$ edges from u to S by the k-regularity. This contradicts the assumption on the minimality of \mathcal{T} . So $m\mathcal{T} \geq k$.

Theorem 1 Every strongly regular graph of even order $(\beta \ge 1)$ has a perfect matching.

Proof Assume that G has no perfect matching, that $S \subseteq V(G)$ such that o(G-S) > |S|, where o(G-S) is the number of odd component of G-S, and that $C_1, C_2, ..., C_t$ are the components of G-S.

By the k-regularity of G, S accepts at most k|S| edges from C_1, C_2 , ..., C_t . By Lemma 4, C_1, C_2 , ..., C_t send at least kt > k|S| edges to S. This is a contradiction.

Theorem 2 Every strongly regular graph G with even order is 1-extendable $(\beta \ge 1)$.

Proof Suppose G is not 1-extendable. There is an edge e = uv such that G - {u,v} does not have a perfect matching. Let G' = G - {u,v}. By Tutte's Theorem, there is a set S' \subseteq V(G') such that o(G'-S') > |S'|. By parity, $o(G'-S') \ge |S'| + 2$. Let S = S' \cup {u,v}. $o(G-S) = o(G'-S') \ge |S'| + 2 = |S|$. By Theorem 1, $o(G-S) \le |S|$. So o(G-S) = |S|. Let $C_1, C_2, ..., C|_S|$ be the odd components of G - S.

By k-regularity, S can accept at most k|S| - 2 edges from C_1, C_2 , ..., C|S|. By Lemma 4, there are at least k|S| edges from $C_1, C_2, ..., C|S|$ to S. This is a contradiction.

Not every strongly regular graph is 2-extendable. The Petersen graph is a counterexample.

3. Relation between cyclic edge connectivity and 2extendability

In [1], it was proved that an edge (vertex) transitive graph is nextendable when the cyclic edge connectivity is large enough. For strongly regular graphs, we have a similar relation between cyclic edge connectivity and 2-extendability. **Theorem 3** Let G be a strongly regular graph with even order and $k \ge 4$. If $c\lambda(G) \ge 3k - 3$, G is 2-extendable.

Proof Suppose G is not 2-extendable. There are two edges $e_i = u_i v_i$ (i=1,2) such that G - { u_1, v_1, u_2, v_2 } does not have a perfect matching. Let G' = G - { u_1, v_1, u_2, v_2 }. By Tutte's Theorem, there is a set S' <u>C</u> V(G') such that o(G'-S') > |S'|. By parity, o(G'-S') = |S'| + 2m(m \geq 1). Let S = S' U { u_1, v_1, u_2, v_2 }. o(G-S) = o(G'-S') = |S'| + 2m = |S| - 4 + 2m. By Theorem 1, $o(G-S) \leq |S|$. So $1 \leq m \leq 2$.

If o(G-S) = |S|, there are at least k|S| edges from the components of G - S to S by Lemma 4. By the k-regularity, S can accept at most k|S| - 4 edges, a contradiction. So o(G-S) = |S| - 2 and m = 1. Let $C_1, C_2, ..., C_{|S|-2}$ be the odd components of G - S.

Let N be the number of edges from the components of G - S to S. By k-regularity, $N \le k |S| - 4$. By Lemma 4, $N \ge k(|S|-2)$. So there are at most k + k |S| - 4 - k(|S|-2) = 3k - 4 edges from a component of G - S to S. Hence every component of G - S is a tree or else the fact the $c\lambda(G) \ge 3k-3$ is contradicted.

<u>Claim 1</u> Every component of G - S has order at most three.

Let b be the order of a component C of G - S. But C is a tree. So $kb - 2(b-1) \leq 3k - 4$. Hence $(k-2)b \leq 3k - 6$. So $b \leq 3$.

<u>Claim 2</u> $\alpha = 0$ and so no triangle exists.

If there is a triangle T, and the edge cut (T,G-T) is a cyclic edge cutset, it has size 3k - 6, contradicting $c\lambda(G) \ge 3k - 3$. Suppose (T,G-T) is not a cyclic edge cutset. Let c be the order of G - T. As G - T is a forest, $kc - 2(c-1) \le 3k - 6$. So c < 3. By hypothesis G has even order. So G has order four. But this is not possible since $k \ge 4$.

We now show that G-S contains at least three singletons.

(1) If there is a component C of $C_1, C_2, ..., C |S|-2$ with order three, then there are at least three singleton components of G - S.

Without loss of generality, assume C_1 has order three. As C_1 is a tree, there are $k \times 3 - 2 \times (3-1) = 3k - 4$ edges from C_1 to S. By counting the edges from the components of G - S to S, there are exactly k edges from each of $C_2, C_3, ..., C_{|S|-2}$ to S. But $C_2, C_3, ..., C_{|S|-2}$ are singletons. As there are k |S| - 4 edges from $C_1, C_2, ..., C_{|S|-2}$ to S, G[S] has exactly two edges.

If there are at most two singleton components of G - S the number of odd components of G - S is at most three and $|S| \leq 5$. Now G[S] contains two independent edges and C₂ is a singleton. As there are at least four edges from C₂ to S, there is always a triangle containing C₂, contradicting Claim 2.

(2) If each of $C_1, C_2, ..., C_{|S|-2}$ is a singleton, then there are at least three singleton components of G - S.

Since $|S| \ge 4$, $o(G-S) = |S| - 2 \ge 2$. Suppose |S| - 2 = 2. Then |S| = 4 and S contains two independent edges. But there are at least three edges from C_1 to S. So there is a triangle, contradicting Claim 2.

We may therefore assume that v_1 , v_2 , v_3 are singletons in o(G-S).

Let $r_1, r_2, ..., r_k$ be the neighbours of v_1 and $s_1, s_2, ..., s_k$ be the neighbours of v_2 . By the definition of strongly regular graphs, as v_1 and v_2 are non-adjacent, $|\{r_1, r_2, ..., r_k\} \cap \{s_1, s_2, ..., s_k\}| = \beta$. Without loss of generality, assume $\{r_1, r_2, ..., r_k\} \cap \{s_1, s_2, ..., s_k\} =$ $\{r_1, r_2, ..., r_\beta\} = \{s_1, s_2, ..., s_\beta\}$. Now $r_{\beta+1}, ..., r_k$ are not adjacent to v_2 , so each of $r_{\beta+1}, ..., r_k$ sends β edges to $s_{\beta+1}, ..., s_k$. There are $(k-\beta)\beta$ edges from $\{r_{\beta+1}, ..., r_k\}$ to $\{s_{\beta+1}, ..., s_k\}$. When $\beta = k$ and $\alpha = 0$, G is $K_{k,k}$, and hence is 2-extendable. For $1 \le \beta \le k-1$, the quadratic $(k-\beta)\beta$ is greater than or equal to k-1.

Let $t_1, t_2, ..., t_k$ be the neighbours of v_3 in S. Now v_3 has β common neighbours with v_2 .

Suppose $\{t_1, t_2, ..., t_k\} \cap \{s_1, s_2, ..., s_k\} = \{s_1, s_2, ..., s_\beta\} = \{t_1, t_2, ..., t_\beta\}$ = $\{r_1, r_2, ..., r_\beta\}$. Then $\{t_{\beta+1}, t_{\beta+2}, ..., t_k\} \cap \{s_{\beta+1}, s_{\beta+2}, ..., s_k\} = \emptyset$ and $\{t_{\beta+1}, t_{\beta+2}, ..., t_k\} \cap \{r_1, r_2, ..., r_k\} = \emptyset$. Otherwise, v_3 and v_2 , or v_3 and v_1 , have more than β common neighbours. None of $t_{\beta+1}, t_{\beta+2}, ..., t_k$ is adjacent to v_2 . Hence each of $t_{\beta+1}, ..., t_k$ sends β edges to $s_{\beta+1}, s_{\beta+2}, ..., s_k$. There are $(k-\beta)\beta \ge k - 1$ edges from $\{t_{\beta+1}, ..., t_k\}$ to $\{s_{\beta+1}, ..., s_k\}$. So G[S] has at least $2(k-1) \ge k + 1$ edges for $k \ge 4$. By Lemma 4, there are at least k(|S|-2) edges from $C_1, C_2, ..., C_{|S|-2}$ to S. By k-regularity, S can accept at most k|S| - 2(k+1) = k(|S|-2) - 2 edges, a contradiction.

We may therefore suppose that $\{t_1, t_2, ..., t_k\} \cap \{s_1, s_2, ..., s_k\} \neq \{s_1, s_2, ..., s_{\beta}\}$.

Without loss of generality, assume $\{t_1, t_2, ..., t_k\} \cap \{s_1, ..., s_\beta\} = \{s_1, s_2, ..., s_i\} = \{t_1, t_2, ..., t_i\}$ $(i < \beta).$

If $\{t_1, ..., t_k\} \setminus \{s_1, ..., s_k\}$ is contained in $\{r_1, ..., r_k\}$, as s_β is not adjacent to v_3 , s_β sends β edges to $\{r_1, ..., r_k\}$. So there is a triangle containing v_1 , a contradiction.

So there is a neighbour u of v_3 which is not in $\{r_1, ..., r_k\} \cup \{s_1, ..., s_k\}$.

Assume $\beta > 1$.

u is not adjacent to v_2 and sends β edges to $\{s_1, ..., s_k\}$. So G[S] contains at least $(k-\beta)\beta + \beta \ge k - 1 + \beta \ge k - 1 + 2 = k + 1$ edges. By Lemma 4, there are at least k(|S|-2) edges from $C_1, C_2, ..., C_{|S|-2}$ to S. By k-regularity, S can accept at most k|S| - 2(k+1) = k(|S|-2) - 2 edges, a contradiction.

So assume that $\beta = 1$.

 v_3 is adjacent to one vertex in $\{r_1, r_2, ..., r_k\}$ and one vertex in $\{s_1, ..., s_k\}$. But $k \ge 4$ so v_3 is adjacent to at least two vertices which are not in $\{r_1, ..., r_k\} \cup \{s_1, ..., s_k\}$. Let u,v be such two vertices, u

and v are not adjacent to v_2 . Both u and v send an edge to $\{s_1, ..., s_k\}$. So G[S] has at least $(k-\beta)\beta + 2 = k - 1 + 2 = k + 1$ edges. By Lemma 4, there are at least k(|S|-2) edges from $C_1, ..., C_{|S|-2}$ to S. By k-regularity, S can accept at most k|S| - 2(k + 1) = k(|S|-2) - 2 edges, a contradiction. This contradiction proves the theorem.

<u>Corollary 1</u> Let G be a strongly regular graph with even order and $k \ge 3$. If $c\lambda(G) \ge 3k - 3$, G is 2-extendable.

Proof The cubic strongly regular graphs are K_4 , $K_{3,3}$ and the Petersen graph. It is easy to verify the result holds for these graphs.

Since the girth of a strongly regular graph is at most 5, $c\lambda(G) \leq 5(k-2) = 5k - 10$. If we were to try to prove the 3extendability of stronger regular graphs by increasing the cyclic edge connectivity, we would need $c\lambda(G) \geq 5k - 6$. Hence it is necessary to look in another direction to find results of 3-extendable strongly regular graphs.

4. Some 2-extendable strongly regular graphs

In this section, we give some 2-extendable strongly regular graphs.

Theorem 4 A strongly regular graph with even order is 2extendable when $\frac{k}{3} \le \beta \le k - 1$ and $k \ge 4$. **Proof** Let G be a strongly regular graph of even order with $\frac{k}{3} \le \beta \le k - 1$.

Suppose G is not 2-extendable. By the arguments of Theorem 3, if N is the number of edges from the components of G-S to S, then $N \le k |S| - 4$ and $N \ge k (|S| - 2)$.

<u>Claim 1</u> There are at least $\frac{3}{2}$ k edges to S from a component C_i of order at least three $(1 \le i \le |S| - 2)$.

19/1

Let C_i be an odd component of order at least three. If C_i has order three, each vertex u of C_i is adjacent to at most two other vertices of C_i . There are therefore at least $k - 2 \ge \frac{k}{2}$ edges from u to S as $k \ge 4$. So there are $3 \times \frac{k}{2}$ edges from C_i to S. If C_i has order at least five, by Lemma 3 and $\beta \ge \frac{k}{3}$, there are at $\frac{k}{3}$

least $\frac{5k}{3} \ge \frac{3k}{2}$ edges from C₁ to S.

(1) Suppose there are at least three singleton components of G-S. Let these three vertices be v_1 , v_2 , v_3 . Let $\{r_1, r_2, ..., r_k\}$, $\{s_1, s_2, ..., s_k\}$, $\{t_1, t_2, ..., t_k\}$, be the neighbours of v_1 , v_2 , v_3 , respectively.

Since v_1 , v_2 are not adjacent, $|\{r_1, r_2, ..., r_k\} \cap \{s_1, s_2, ..., s_k\}| = \beta$. Without loss of generality we may assume that $\{r_1, r_2, ..., r_k\} \cap \{s_1, s_2, ..., s_k\} = \{r_1, r_2, ..., r_\beta\} = \{s_1, s_2, ..., s_\beta\}$.

Since $r_{\beta+1}, r_{\beta+2}, ..., r_k$ are not adjacent to v_2 , each of $r_{\beta+1}, r_{\beta+2}, ..., r_k$ is adjacent to β of the vertices $s_1, s_2, ..., s_k$. Hence there are $(k-\beta)\beta$ edges from $\{r_{\beta+1}, r_{\beta+2}, ..., r_k\}$ to $\{s_1, s_2, ..., s_k\}$. But $\frac{k}{3} \leq \beta \leq k - 1$, so $(k-\beta)\beta \geq k - 1$.

We also note that since v_1 and v_3 are not adjacent, $|\{r_1, r_2, ..., r_k\} \cap \{t_1, t_2, ..., t_k\}| = \beta$.

(1.1) Suppose $\{r_1, r_2, ..., r_k\} \cap \{t_1, t_2, ..., t_k\} = \{r_1, r_2, ..., r_\beta\}$ = $\{t_1, t_2, ..., t_\beta\}$. Then $\{r_1, r_2, ..., r_k\} \cap \{t_{\beta+1}, t_{\beta+2}, ..., t_k\} = \emptyset$ and $\{s_1, s_2, ..., s_k\} \cap \{t_{\beta+1}, t_{\beta+2}, ..., t_k\} = \emptyset$.

Since none of $t_{\beta+1}$, $t_{\beta+2}$, ..., t_k is adjacent to v_1 , there are β edges from each of $t_{\beta+1}$, $t_{\beta+2}$, ..., t_k to $\{r_1, r_2, ..., r_k\}$. Hence there are $(k-\beta)\beta \ge k - 1$ edges from $\{t_{\beta+1}, t_{\beta+2}, ..., t_k\}$ to $\{r_1, r_2, ..., r_k\}$. So G[S] has at least 2(k-1) edges. Since $k \ge 4$, 2(k-1) $\ge k + 1$. By Lemma 4, there are at least k(|S|-2) edges from $C_1, C_2 \dots C_{|S|-2}$ to S. However, by the k-regularity, the number of edges going into S is at most k|S| - 2(k+1) = k(|S|-2) - 2. This gives a contradiction.

(1.2) Suppose $\{r_1, r_2, ..., r_k\} \cap \{t_1, t_2, ..., t_k\} \neq \{r_1, r_2, ..., r_\beta\}$. Without loss of generality we may assume that $\{r_1, r_2, ..., r_\beta\} \cap \{t_1, t_2, ..., t_k\} = \{r_1, r_2, ..., r_i\} = \{t_1, t_2, ..., t_i\}$ for some $i < \beta$.

If $t_j \notin \{r_1, r_2, ..., r_k\} \cup \{s_1, s_2, ..., s_k\}$, then, since t_j and v_2 are not adjacent, there are β edges from t_j to $\{s_1, s_2, ..., s_k\}$. But $\beta \ge \frac{k}{3}$, and $k \ge 4$, so, since β is an integer, $\beta \ge 2$. Hence G[S] has at least $(k-\beta)\beta + \beta \ge (k-1) + 2 = k + 1$ edges. By the k-regularity, at most k |S| - 2(k+1) = k(|S|2) - 2 edges can enter S. However, by Lemma 4, there are at least k(|S|-2) edges from $C_1, C_2, ..., C|S|-2$ to S. This gives another contradiction.

Hence we may suppose that $\{t_1, t_2, ..., t_k\} \subseteq \{r_1, r_2, ..., r_k\} \cup \{s_1, s_2, ..., s_k\}$. Since none of the vertices $r_{\beta+1}, r_{\beta+2}, ..., r_k$ is adjacent to v_2 and none of the vertices $s_{\beta+1}, s_{\beta+2}, ..., s_k$ is adjacent to v_1 , there are $(k-\beta)\beta \ge k-1$ edges from $\{r_{\beta+1}, r_{\beta+2}, ..., r_k\}$ to $\{s_1, s_2, ..., s_k\}$ and at least k-1 edges from $\{s_{\beta+1}, s_{\beta+2}, ..., s_k\}$ to $\{r_1, r_2, ..., r_k\}$.

(1.2.1) Suppose there are at most $(k-\beta)\beta - 2$ edges between $\{r_{\beta+1}, r_{\beta+2}, ..., r_k\}$ and $\{s_{\beta+1}, s_{\beta+2}, ..., s_k\}$. Then there are at least two edges incident with $\{s_{\beta+1}, s_{\beta+2}, ..., s_k\}$ which are not incident with $\{r_{\beta+1}, r_{\beta+2}, ..., r_k\}$. Hence G[S] has at least (k-1) + 2 = k + 1 edges. Counting the edges into S by the two methods used above, again gives a contradiction.

(1.2.2) Suppose there are $(k-\beta)\beta$ edges from $\{r_{\beta+1}, r_{\beta+2}, ..., r_k\}$ to $\{s_{\beta+1}, s_{\beta+2}, ..., s_k\}$. Since r_β is not adjacent to v_3 , there are $\beta(\geq 2)$ edges from r_β to $\{t_1, t_2, ..., t_k\}$. The fact that G[S] contains at least (k-1) + 2 = k + 1 edges again leads to a contradiction.

(1.2.3) Hence we may suppose that there are $(k-\beta)\beta-1$ edges between $\{r_{\beta+1}, r_{\beta+2}, ..., r_k\}$ and $\{s_{\beta+1}, s_{\beta+2}, ..., s_k\}$. Let $u \in \{r_{i+1}, r_{i+2}, ..., r_{\beta}\}$ not be adjacent to $\{r_{\beta+1}, r_{\beta+2}, ..., r_k\} \cup \{s_{\beta+1}, s_{\beta+2}, ..., s_k\}$. Since u and

 v_3 are not adjacent, there are β edges from u to $\{t_1, t_2, ..., t_k\}$. The usual counting argument now produces the contradiction. Hence any vertex in $\{r_{i+1}, r_{i+2}, ..., r_{\beta}\}$ must be adjacent to a vertex in $\{r_{\beta+1}, r_{\beta+2}, ..., r_k\} \cup \{s_{\beta+1}, s_{\beta+2}, ..., s_k\}$.

Suppose two vertices u, v exist in $\{r_{i+1}, r_{i+2}, ..., r_{\beta}\}$. As neither u nor v is adjacent to v_3 , there are $\beta \ge 2$ edges from each of u, v to $\{t_1, t_2, ..., t_k\}$. Hence again G[S] contains at least k + 1 edges and we again obtain a contradiction.

Hence there is only one vertex in $\{r_{i+1}, r_{i+2}, ..., r_{\beta}\}$. Thus $i = \beta - 1$.

Now consider v₃. First v₃ is adjacent to $r_1, r_2, ..., r_{\beta-1}$. Since, by the early part of (1.2), {t₁, t₂, ..., t_k}<u>C</u>{ $r_1, r_2, ..., r_k$ }U{s₁, s₂, ..., s_k}, and the fact that v₁ and v₃, and v₂ and v₃ have β vertices in common, we see that v₃ is adjacent to precisely one vertex each in { $r_{\beta+1}, r_{\beta+2}, ..., r_k$ } and { $s_{\beta+1}, s_{\beta+2}, ..., s_k$ }. Hence k = β + 1.

So there are $(k-\beta)\beta - 1 + 1 = \beta$ edges between $r_k = r_{\beta+1}$ and $\{s_{\beta}, s_{\beta+1}\}$. So $\beta \le 2$ and $k = \beta + 1 \le 3$. This contradicts the fact that $k \ge 4$.

(2) Suppose there are exactly two singleton components of G - S.

Let v_1 and v_2 be the vertices of the singleton components. Let r_1 , r_2 , ..., r_k be the neighbours of v_1 , let $s_1, s_2, ..., s_k$ be the neighbours in S of v_2 . As v_1 and v_2 are not adjacent, $|\{r_1, ..., r_k\} \cap \{s_1, ..., s_k\}| = \beta$. As each vertex of $\{r_1, ..., r_k\} \setminus \{s_1, s_2, ..., s_k\}$ is not adjacent to v_2 , there are at least $(k-\beta)\beta \ge k - 1$ edges from $\{r_1, r_2, ..., r_k\} \setminus \{s_1, s_2, ..., s_k\}$ to $\{s_1, s_2, ..., s_k\}$. So G[S] contains at least k - 1 edges. S can accept at most k |S| - 2(k-1) = k |S| - 2k + 2 edges.

(2.1) Suppose there are at least two odd components of order at least three. Let C_3 and C_4 be two odd components of order at least three. By Claim 1, there are at least $\frac{3}{2}$ k edges from each of C_3 and C_4 to S. By Lemma 4, there are at least $(|S|-4)k + 2 \times \frac{3}{2}k = k|S| - k$ edges from C₁, C₂, ..., C_{|S|-2} to S, contradicting the fact that S can accept at most |k|S| - 2k + 2 edges.

(2.2) Suppose there is only one odd component of order at least three. Now there are only three odd components of G - S, so |S| = 5. Let C_3 be the odd component of order at least three.

(2.2.1) Suppose there is an even component C of G - S. If C has order at least four, by Lemma 3, there are at least $\frac{4}{3}$ k edges from C

to S. If $|V(C_3)| \ge 5$, by Lemma 3, there are at least $\frac{5}{3}$ k edges from C_3 to S. So the number of edges from S to G-S is N \ge $\frac{4}{3}$ k + $\frac{5}{3}$ k + 2k = 5k > 5k - 4, contradicting N \le k |S| - 4. If $|V(C_3)| = 3$, there are at least 3k - 6 edges from C_3 to S. N $\ge \frac{4}{3}$ k + 3k - 6 + 2k = 5k + $\frac{4}{3}$ k - 6 > 5k - 4 for k \ge 4, contradicting N \le k |S| - 4. If C has order two, there are 2k - 2 edges from C to S. By Lemma 4, N \ge 3k + 2k - 2 = 5k - 2 > 5k - 4, contradicting N \le k |S| - 4.

(2.2.2) No even component exists.

(2.2.2.1) Suppose $|V(C_3)| \ge 5$.

By Lemma 3, there are at least $\frac{5}{3}$ k edges from C₃ to S.

 $N \ge \frac{5}{3}k + 2k > 3k + 2$, when $k \ge 4$, contradicting the fact that S can accept at most k |S| - 2k + 2 = 5k - 2k + 2 = 3k + 2 edges. (2.2.2.2) Suppose $|V(C_3)| = 3$. By Claim 1, there are at least $\frac{3}{2}$ k edges from C₃ to S.

 $N \ge \frac{3}{2}k + 2k = 3k + \frac{k}{2}$. If $k \ge 5$, N > 3k + 2, contradicting the fact that S can accept at most 3k + 2 edges. So k = 4. We see by Lemma 1 that there is $no(10,4,\alpha,\beta)$ -graph.

(2.3) No odd component of order at least three exists. Now there are only two odd components of G - S. Both are singletons. |S| = 4. As C_1 is only adjacent to vertices of S, k = 4.

Suppose there is an even component C. By Lemma 4, there are at least k edges from C to S. Hence $N \ge 3k > 2k + 2$. But since |S| = 4, this contradicts the fact that $N \le k |S| - 2k + 2 = 2k + 2$.

So no even component exists. However, by Lemma 1 there is no

(6, 4, α , β)-graph with $\frac{k}{3} \leq \beta \leq k - 1$. We conclude that there are not precisely two singletons.

(3) There is at most one singleton component of G - S.

(3.1) Suppose there are at least four odd components with order at least three. Let C_1 , C_2 , C_3 and C_4 be four odd components with order at least three. There are |S|-6 other odd components. By Claim 1, there are $\frac{3}{2}k$ edges from each of C_1 , C_2 , C_3 , C_4 to S. By Lemma 4, $N \ge 4 \times \frac{3}{2}k + k(|S|-6) = k|S|$, contradicting $N \le k|S| - 4$.

(3.2) Suppose there are exactly three odd components $\rm C_1,\, C_2$ and $\rm C_3$ with order at least three.

(3.2.1) Suppose there is an even component C of G - S.

Since C has order at least two, by Lemma 3, there are at least $2\beta \ge \frac{2}{3}k$ edges from C to S. By Claim 1 there are at least $\frac{3}{2}k$ edges from C₁, C₂, C₃ to S. Hence by Lemma 4, N $\ge \frac{2}{3}k + 3 \times \frac{3}{2}k + k$ (|S| - 5) $= k|S| + \frac{1}{6}k > k|S| - 4$. This contradicts the fact that N $\le k|S| - 4$.

(3.2.2) No even component exists.

Suppose one of C_1 , C_2 and C_3 has order at least seven. There are at least $\frac{7}{3}$ k edges from that component to S. By Claim 1 and Lemma 3, $N \ge \frac{7}{3}$ k + 2 × $\frac{3}{2}$ k + k(|S|-5) = k|S| + $\frac{k}{3}$ > k|S| - 4, contradicting N \le k|S| - 4.

So none of C_1, C_2, C_3 has order larger than five.

(3.2.2.1) Suppose $|V(C_1)| = |V(C_2)| = |V(C_3)| = 5$.

By Lemma 3, there are at least $\frac{5}{3}$ k edges from each of C_i (i = 1,2,3) to S. N \ge 3 × $\frac{5}{3}$ k + k(|S|-5) > k|S| - 4, contradicting N \le k|S| - 4

(3.2.2.2) Suppose $|V(C_1)| = |V(C_2)| = 5$ and $|V(C_3)| = 3$.

By Lemma 3, there are at least $\frac{5}{3}$ k edges from each of C₁ and C₂ to S and there are at least 3k - 6 edges from C₃ to S.

N ≥ 2 × $\frac{5}{3}$ k + 3k - 6 + k(|S|-5) = k|S| + $\frac{4}{3}$ k - 6 > k|S| - 4 for k ≥ 4, a contradiction.

(3.2.2.3) Suppose $|V(C_1)| = 5$ and $|V(C_2)| = |V(C_3)| = 3$.

There are at least $\frac{5}{3}$ k edges from C₁ to S and there are at least 3k - 6 edges from each of C₂ and C₃ to S.

 $N \ge \frac{5}{3}k + 2(3k-6) + k(|S|-5) = k|S| + \frac{8}{3}k - 12 > k|S| - 4 \text{ for } k \ge 4,$ a contradiction.

(3.2.2.4) Suppose $|V(C_1)| = |VC_2| = |V(C_3)| = 3$.

There are at least 3k-6 edges from each of C_1 , C_2 and C_3 to S. N $\geq 3(3k-6) + k(|S|-5) = k|S| + 4k - 18 > k|S| - 4$ for $k \geq 4$, a contradiction.

(3.3) Suppose there are exactly two odd components $\,{\rm C}_1\,$ and $\,{\rm C}_2\,$ with order at least three.

(3.3.1) Suppose that there is an even component C of G - S.

If C has order at least four, there are at least $\frac{4}{3}$ k edges from C to S.

$$\begin{split} N &\geq \frac{4}{3}k + 2 \times \frac{3}{2}k + k(\left|S\right| - 4) = k\left|S\right| + \frac{k}{3} > k\left|S\right| - 4, \text{ contradicting} \\ N &\leq k\left|S\right| - 4. \text{ If } C \text{ has order two, there are } 2k - 2 \text{ edges from } C \\ \text{to } S. N &\geq 2k - 2 + 2 \times \frac{3}{2}k + k(\left|S\right| - 4) = k\left|S\right| + k - 2 > k\left|S\right| - 4, \text{ a contradiction.} \end{split}$$

(3.3.2) No even component exists.

Suppose one of C_1 and C_2 has order at least seven. Assume $|V(C_1)| \ge 7$, there are at least $\frac{7}{3}$ k edges from C_1 to S. If $|V(C_2)| \ge 5$, there are at least $\frac{5}{3}$ k edges from C_2 to S.

004

 $N \geq \frac{7}{3} k + \frac{5}{3} k + k(|S|-4) = k|S| > k|S| - 4, \text{ contradicting } N \leq k|S| - 4.$

If $|V(C_2)| = 3$, there are at least 3k - 6 edges from C_2 to S. $N \ge \frac{7}{3}k + 3k - 6 + k(|S| - 4) = k|S| + \frac{4}{3}k - 6 > k|S| - 4$ for $k \ge 4$, a contradiction.

None of C_1 and C_2 has order larger than five.

(3.3.2.1) Suppose $|V(C_1)| = |V(C_2)| = 5$.

There are at least 5k-20 edges from each of C_1 and C_2 to S. $N \ge 2(5k-20) + k(|S| - 4) = k|S| + 6k - 40$. When $k \ge 7$, N > k|S| - 4, a contradiction.

Suppose there is a singleton component C_3 . |S| = 5. As C_3 is only adjacent to vertices of S, $k \le 5$. By Lemma 1, the only two possible $(16,k,\alpha,\beta)$ -graphs for $4 \le k \le 5$ are (16,5,0,2) and (16,5,2,1).

Suppose the graph is a (16,5,0,2)-graph. As C_3 is adjacent to all vertices of S and S contains two independent edges, there is a triangle containing C_3 , contradicting $\alpha = 0$.

Suppose the graph is a (16,5,2,1)-graph. As $\beta \ge \frac{k}{3}$ and $k \ge 4$, $\beta \ge 2$. A (16,5,2,1)-graph doesn't satisfy the assumption of the theorem.

Now no singleton exists. |S| = 4. We can verify by Lemma 2 that there are no $(14, k, \alpha, \beta)$ -graphs for $4 \le k \le 6$.

(3.3.2.2) Suppose $|V(C_1)| = 5$ and $|V(C_2)| = 3$.

There are at least $\frac{5}{3}$ k edges from C₁ to S and there are at least 3k - 6 edges from C₂ to S. $N \ge \frac{5}{3}k + 3k - 6 + k(|S| - 4) = k|S| + \frac{2}{3}k - 6 > k|S| - 4$ for $k \ge 4$, a contradiction. (3.3.2.3) Suppose $|V(C_1)| = |V(C_2)| = 3$.

There are at least 3k - 6 edges from each of C_1 and C_2 to S. N $\geq 2(3k-6) + k(|S| - 4) = k|S| + 2k - 12$. N > k|S| - 4 for k ≥ 5 , a contradiction.

If k = 4, suppose there is a singleton component C_3 . |S| = 5. We can verify by Lemma 1 that there is no $(12,4,\alpha,\beta)$ -graph.

Now no singleton exists and |S| = 4. We can verify by Lemma 1 that there is no $(10,4,\alpha,\beta)$ -graph.

(3.4) Suppose there is exactly one odd component C_1 with order at least three.

Now |S| = 4 and there is a singleton component C_2 .

(3.4.1) Suppose there is an even component C of G - S.

If C has order at least four, there are at least $\frac{4}{3}$ k edges from C to S.

If $|V(C_1)| \ge 5$, there are at least $\frac{5}{3}$ k edges from C_1 to S.

$$\begin{split} N &\geq \frac{4}{3}k + \frac{5}{3}k + k = 4k > 4k - 4, \text{ contradicting } N < k \left| S \right| - 4. \text{ If} \\ \left| V(C_1) \right| &= 3, \text{ there are at least } 3k - 6 \text{ edges from } C_1 \text{ to } S. \\ N &\geq \frac{4}{3}k + 3k - 6 + k > 4k - 4 \text{ for } k \geq 4, \text{ contradicting } N \leq k \left| S \right| - 4. \end{split}$$

If C has order two, there are 2k - 2 edges from C to S. By Claim 1, there are at least $\frac{3}{2}k$ edges from C₁ to S. N $\ge 2k - 2 + \frac{3}{2}k + k = 4k + \frac{k}{2} - 2 > 4k - 4$, a contradiction.

(3.4.2) No even component exists.

(3.4.2.1) Suppose $|V(C_1)| \ge 9$.

There are at least $\frac{9}{3}k$ edges from C₁ to S. $N \ge \frac{9}{3}k + k = 4k > 4k - 4$, contradicting $N \le k |S| - 4$.

(3.4.2.2) Suppose $3 \leq |V(C_1)| \leq 7$.

Now |S| = 4. C_2 is only adjacent to vertices of S. So k = 4. We can verify by Lemma 1 that there are no $(v, 4, \alpha, \beta)$ -graphs with

 $\frac{k}{3} \le \beta \le k - 1$ for v = 8, 10 or 12.

Theorem 5: Every strongly regular graph of even order with $\beta = k$ and $k \ge 4$ is 2-extendable, except the (6,4,2,4)-graph.

Proof: Let G be a strongly regular graph (v, k, α, β) with even order, $\beta = k$ and $k \ge 4$.

If $\alpha = 0$, G is $K_{k,k}$. Hence G is 2-extendable. So assume $\alpha \neq 0$. Let w be a vertex of G and $w_1, w_2, ..., w_k$ be the vertices adjacent to w. As $\beta = k$, every vertex of V(G) - { $w, w_1, w_2, ..., w_k$ } is adjacent to $w_1, w_2, ..., w_k$. As $\alpha > 0$, there is an edge $e = w_i w_j$. All the vertices of V(G) - { $w_1, w_2, ..., w_k$ } are common neighbours of w_i and w_j . So $\alpha \geq v - k$. Since w and w_i have α common neighbours, there are α edges from w_i to { $w_1, ..., w_k$ }. So $k \geq$

2(v-k). Therefore $k \ge \frac{2}{3}v$.

When $v \ge 12$, $k \ge \frac{v}{2} + 2$, so by Lemma 2, G is 2-extendable. For $v \le 10$, $\beta = k \ge 4$ and $\alpha > 0$, the only parameters which satisfy Lemma 1 are given below

(10,9,8,9) this graph is K_{10} and is 2-extendable (10,8,6,8) $k \ge \frac{v}{2} + 2$, so these graphs are 2-extendable (10,7,4,7) see below

204

(10,6,2,6) (8,7,6,7)	see below this graph is K ₈ and is 2-extendable
(8,6,4,6)	$k \ge \frac{v}{2} + 2$, so these graphs are 2-extendable
(8,5,2,5)	see below
(6,5,4,5) (6,4,2,4)	this graph is K_6 and is 2-extendable see below

In the (10,7,4,7)-graphs, let w be adjacent to the set $W = \{w_1, w_2, ..., w_7\}$. Then G[W] is a (7,4,1,4)-graph. However, the neighbours N of w_1 in G[W] are adjacent to three vertices. Since not all members of N are adjacent, the value of α in G[W] is at least 3, a contradiction.

Consider the graphs (10,6,2,6). By previous arguments all the vertices of V(G) - {w, w₁, w₂, ..., w₆} are adjacent to all the vertices {w₁,w₂,...,w₆}. Since there must be an edge between w_i and w_j for some i, j, this means that w_i and w_j have at least 4 common neighbours, so $\alpha \ge 4$, a contradiction.

A similar argument with (8,5,2,5) shows that $\alpha \ge 3$, a contradiction.

In Figure 1 we show the (6,4,2,4)-graph. The edges u_1v_1 , u_2v_2 cannot be extended to a perfect matching.

Figure 1

<u>Corollary 2</u>: A strongly regular graph with even order and $k \ge 3$ is 2-extendable when $\beta \ge \frac{k}{3}$, except the Petersen graph and the (6,4,2,4)graph.

<u>Corollary 3:</u> A strongly regular graph with k = 3, 4, 5, 6 is 2extendable unless it is the Petersen graph or the (6,4,2,4)-graph.

<u>Proof</u>. For k = 4,5,6 if $\beta \ge \frac{1}{3}$ k implies $\beta \ge 2$. So we only need test the 2-extendability of $(v, k, \alpha, 1)$ -graphs with k = 4,5,6. There are no such graphs.

We conjecture that all but a few strongly regular graphs are 2extendable.

5. A family of strongly regular graphs and their nextendability

Given any n, we now construct a family of strongly regular graphs, each of which is n-extendable.

Let G be a graph and S be a vertex set and $S \cap V(G) = \emptyset$. G + S is defined by $V(G + S) = V(G) \cup S$ and each vertex of S is joined to all vertices of G.

We define a family of graphs S_i (i = 0,1, ...) by

(1) $S_0 = C_4$, a 4-cycle.

(2) Assume S_k is defined. $S_{k+1} = S_k + \{u_{k+1}, v_{k+1}\}$, where u_{k+1} , $v_{k+1} \notin V(S_k)$.

Theorem 6 The family S_i (i = 0,1, ...) is a family of strongly regular graphs. Each S_i is a (4+2i, 2+2i, 2i, 2+2i)-graph (i = 0,1, ...).

Proof It is easy to verify that S_0 is a (4,2,0,2)-graph. Assume S_i is a (4+2i, 2+2i, 2i, 2+2i)-graph. By definition, $S_{i+1} = S_i + \{u_{i+1}, v_{i+1}\}$. Hence $V(S_{i+1}) = 4+2i+2 = 4 + 2(i+1)$. As u_{i+1} and v_{i+1} are joined to all vertices of S_i , $d(u_{i+1}) = d(v_{i+1}) = 4 + 2i = 2 + 2(i+1)$. For each vertex u in $V(S_i)$, as u is joined to u_{i+1} and v_{i+1} , d(u) = 2 + 2i + 2 = 2 + 2(i+1). So S_{i+1} is [2 + 2(i+1)]-regular.

Let u and v be a pair of non-adjacent vertices. If $u = u_{i+1}$ and $v = v_{i+1}$, all the vertices of S_i are common neighbours of u and v. So u and v have 4 + 2i = 2 + 2(i+1) common neighbours. If u, $v \in V(S_i)$ by the induction hypothesis, u and v have 2 + 2i common neighbours in S_i . u_{i+1} and v_{i+1} are also common neighbours of u and v. So u and v have 2 + 2i + 2 = 2 + 2(i+1) common neighbours of u and v. So u and v have 2 + 2i + 2 = 2 + 2(i+1) common neighbours. Hence $\beta(S_{i+1}) = 2 + 2(i+1)$.

Let u and v be a pair of adjacent vertices. If $u = u_{i+1}$ or v_{i+1} and v is in V(S_i), as S_i is 2 + 2i regular, u and v have exactly 2 + 2i = 2(i+1) common neighbours. If u and v are in V(S_i), by the induction hypothesis, u and v have 2i common neighbours in S_i. But u_{i+1} and v_{i+1} are also common neighbours of u and v. So u and v have 2i + 2 = 2(i+1) common neighbours. Hence $\alpha(S_{i+1}) = 2(i+1)$. S_{i+1} is therefore a (4 + 2(i+1), 2 + 2(i+1), 2(i+1), 2 + 2(i+1))-graph. \Box

Theorem 7 S_i is i-extendable (i = 0,1, ...).

Proof As the degree $k = 2 + 2i = 2 + i + i \ge \frac{v}{2} + i$, S_i is i-extendable by Lemma 2.

References

- [1] R E L Aldred, D A Holton and Dingjun Lou, n-Extendability of Symmetric Graphs, submitted.
- [2] J A Bondy and U S R Murty, Graph theory with Applications. Macmillan Press, London (1976).
- [3] P J Cameron, Strongly regular graphs, Selected Topics in Graph Theory, Academic Press (1978), 337-360.
- [4] L Lovász and M D Plummer, Matching Theory, Elsevier Science Publishers B V, North Holland (1986).
- [5] M D Plummer, On n-extendable graphs, <u>Discrete Math. 31</u> (1981), 201-210.
- [6] J J Seidel, Strongly regular graphs, Survey in Combinatorics, London Math. Soc. Lecture Notes Ser. 38 (1978), 157-180.

(Received 3/4/91; revised 14/5/91)