Matching Extensions of Strongly Regular Graphs

D A Holton and Dingjun Lou

Department of Mathematics and Statistics
University of Otago
Dunedin, New Zealand

Abstract: Let β be the number of vertices commonly adjacent to any pair of non-adjacent vertices. It is proved that every strongly regular graph with even order and $\beta \geq 1$ is 1 -extendable. We also show that every strongly regular graph of degree at least 3 and cyclic edge connectivity at least $3 \mathrm{k}-3$ is 2 -extendable. Strongly regular graphs of even order and of degree k at least 3 with $\beta \geq \frac{k}{3}$ are 2 -extendable, except the Petersen graph and one other graph.

1. Introduction and terminology

All graphs considered are finite, undirected, connected and simple.
A graph G is called strongly regular if G is k-regular and there are two integers $\alpha, \beta \geq 0$ such that for each pair of vertices u and v, u $z v$, the number of the common neighbours of u and v is α or β according as u and v are adjacent or non-adjacent. A strongly regular graph with v vertices is called a (v, k, α, β)-graph. These general parameters will be assumed unless stated otherwise.

A graph G is called cyclically m-edge-connected if $|S| \geq m$ for each edge cutset S of G such that there are two components in G - S each of which has a cycle. The set S is called a cyclic edge cutset. The size of a minimal cyclic edge cutset is called the cyclic edge connectivity, and is denoted by $c \lambda(G)$.

Suppose G has a perfect matching. A graph G is called n-extendable if for the given integer $n \leq(v-2) / 2, G$ has n independent edges and any n independent edges are contained in a perfect matching of G.

In [1], the n-extendability of edge (vertex) transitive graphs is discussed. When the cyclic edge connectivity is large enough, an edge transitive graph is n-extendable. We show here that there is a similar relation between cyclic edge connectivity and n-extendability in strongly regular graphs. We also find some n-extendable strongly regular graphs for arbitrary n.

All terminology and notation not defined in this paper can be found in [2].
Reference [4] provides a strong background for matching theory and [6] gives a survey of results in strongly regular graphs.

Lemma 1 If G is a strongly regular graph, then $k(k-\alpha-1)=(v-k-1) \beta$.

Proof See Theorem 2.2 in [3].

If G is a cubic strongly regular graph, then by Lemma $1,3(2-\alpha)=$ $(v-4) \beta$. For $\alpha=2$, we find $G=K_{4}$. If $\alpha=1$, then v is odd which is not possible since G is cubic. If $\alpha=0$, then $\beta=1$ and $v=10$ or $\beta=3$ and $v=6$. For $\beta=1$, we obtain the Petersen graph P, while for $\beta=3$ we get $K_{3,3}$.

Lemma 2 Let G be a graph with even order. If $\delta(G) \geq \frac{v}{2}+n$, then G is n-extendable.

Proof See [5].

2. Matching of strongly regular graphs

In this section, we show that every connected strongly regular graph with even order has a perfect matching. Furthermore, every edge of such a graph lies in a perfect matching.

Let G be a strongly regular graph with even order and $\beta=0$. $B y$ Lemma $1, \alpha=k-1$. Let u, v be adjacent in G. Then we may suppose that u, v are both adjacent to $w_{1}, w_{2}, \ldots, w_{k-1}$. Let $A=$ $\left\{u, v, w_{1}, w_{2}, \ldots, w_{k-1}\right\}$. If w_{i}, w_{j} are not adjacent then they are both adjacent to u and v. This contradicts the fact that $\beta=0$. Hence $G[A] \cong K_{k+1}$, where $G[A]$ is the graph induced by the vertex set A.

Let $x \in V(G)$ - A. Now x cannot be adjacent to any vertex in A since each of these vertices has degree k already. Hence x must be in another component isomorphic to $\mathrm{K}_{\mathrm{k}+1}$.

So $G \cong r K_{k+1}$. Such graphs are 1 - and 2 -extendable if and only if k is odd. We therefore assume that $\beta \geq 1$ in the rest of this paper.

Let G be a strongly regular graph with even order and let C_{1}, C_{2}, \ldots. C_{t} be the components of $G-S$.

Lemma 3 Each vertex of C_{i} sends at least β edges to S ($i=1,2, \ldots, t$).

Proof Let u be a vertex of c_{i} and v be a vertex of $c_{j}(i \neq j)$. Since u and v are non-adjacent, u and v have β common neighbours. Those neighbours can only be in s. So every vertex of c_{i} sends at least β edges to S.

Lemma 4 There are at least k edges from C_{i} to $s(i=1,2, \ldots, t)$.

Proof Let m be the number of vertices of c_{i}. Let γ be the minimum number of edges from a vertex of C_{i} to S. By Lemma 3 , $\gamma \geq \beta \geq 1$. There are at least $m \gamma$ edges from C_{i} to s.

Suppose $m \gamma<k$. Then $m<k / \gamma$. Suppose $m \geq k-\gamma+1$. Then $k / \gamma>k-\gamma+1$. Hence $k \gamma-\gamma^{2}+\gamma<k$. So $\gamma^{2}-k \gamma+k-\gamma>0$ and $(\gamma-k)(\gamma-1)>0$.

But $\gamma \leq k$ and $\gamma \geq 1$. This contradiction shows that $m<k-\gamma+1$. But now each vertex u of c_{i} is adjacent to at most $k-\gamma-1$
vertices in c_{i}. So there are at least $\gamma+1$ edges from u to S by the k-regularity. This contradicts the assumption on the minimality of γ. So $m \gamma \geq k$.

Theorem 1 Every strongly regular graph of even order ($\beta \geq 1$) has a perfect matching.

Proof Assume that G has no perfect matching, that $S \subseteq V(G)$ such that $O(G-S)>|S|$, where $O(G-S)$ is the number of odd component of G-S, and that $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{t}}$ are the components of $\mathrm{G}-\mathrm{S}$.

By the k-regularity of G, S accepts at most $k|s|$ edges from C_{1}, C_{2}, \ldots, C_{t}. By Lemma 4, $C_{1}, C_{2}, \ldots, C_{t}$ send at least $k t>k|s|$ edges to S. This is a contradiction.

Theorem 2 Every strongly regular graph G with even order is 1-extendable $(\beta \geq 1)$.

Proof Suppose G is not 1 -extendable. There is an edge $e=u v$ such that $G-\{u, v\}$ does not have a perfect matching. Let $G^{\prime}=G-\{u, v\}$. By Tutte's Theorem, there is a set $S^{\prime} \subseteq V\left(G^{\prime}\right)$ such that $o\left(G^{\prime}-S^{\prime}\right)>$ $\left|S^{\prime}\right|$. By parity, $o\left(G^{\prime}-S^{\prime}\right) \geq\left|S^{\prime}\right|+2$. Let $S=S^{\prime} \cup\{u, v\}$. $o(G-S)=$ $o\left(G^{\prime}-S^{\prime}\right) \geq\left|S^{\prime}\right|+2=|s|$. By Theorem 1.o(G-S) $\leq|s|$. So $o(G-S)=|s|$. Let $C_{1}, C_{2}, \ldots, C|s|$ be the odd components of $G-s$.

By k-regularity, s can accept at most $k|s|-2$ edges from c_{1}, C_{2}, $\ldots, \mathrm{C}|\mathrm{s}|$. By Lemma 4, there are at least $\mathrm{k}|\mathrm{s}|$ edges from $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots$. $c^{c}|s|$ to s. This is a contradiction.

Not every strongly regular graph is 2 -extendable. The Petersen graph is a counterexample.
3. Relation between cyclic edge connectivity and 2extendability

In [1], it was proved that an edge (vertex) transitive graph is n extendable when the cyclic edge connectivity is large enough. For strongly regular graphs, we have a similar relation between cyclic edge connectivity and 2 -extendability.

Theorem 3 Let G be a strongly regular graph with even order and $k \geq 4$. If $c \lambda(G) \geq 3 k-3, G$ is 2 -extendable.

Proof Suppose G is not 2-extendable. There are two edges $e_{i}=u_{i} v_{i}$ ($i=1,2$) such that $G-\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$ does not have a perfect matching. Let $G^{\prime}=G-\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$. By Tutte's Theorem, there is a set $S^{\prime} \subseteq V\left(G^{\prime}\right)$ such that $O\left(G^{\prime}-S^{\prime}\right)>\left|S^{\prime}\right|$. By parity. $O\left(G^{\prime}-S^{\prime}\right)=\left|S^{\prime}\right|+2 m$ $(m \geq 1)$. Let
$S=S^{\prime} \cup\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\} . \quad o(G-S)=o\left(G^{\prime}-S^{\prime}\right)=\left|S^{\prime}\right|+2 m=|s|-4+2 m$. By Theorem 1, o(G-S) $\leq|S|$. So $1 \leq m \leq 2$.

If $o(G-S)=|S|$, there are at least $k|S|$ edges from the components of $G-S$ to S by Lemma 4. By the k-regularity, S can accept at most $k|S|-4$ edges, a contradiction. So $o(G-S)=|S|-2$ and $m=1$. Let $C_{1}, C_{2}, \ldots, C_{|s|-2}$ be the odd components of $G-s$.

Let N be the number of edges from the components of $G-S$ to S. By k-regularity. $N \leq k|s|-4$. By Lemma 4, $N \geq k(|s|-2)$. So there are at most $k+k|s|-4-k(|s|-2)=3 k-4$ edges from a component of $G-S$ to S. Hence every component of $G-S$ is a tree or else the fact the $c \lambda(G) \geq 3 k-3$ is contradicted.

Claim 1 Every component of $G-S$ has order at most three.

Let b be the order of a component C of $G-S$. But C is a tree. So $k b-2(b-1) \leq 3 k-4$. Hence $(k-2) b \leq 3 k-6$. So $b \leq 3$.

Claim $2 \alpha=0$ and so no triangle exists.

If there is a triangle T, and the edge cut (T,G-T) is a cyclic edge cutset, it has size $3 k-6$, contradicting $c \lambda(G) \geq 3 k-3$. Suppose (T,G-T) is not a cyclic edge cutset. Let c be the order of $G-T$. As $G-T$ is a forest, $k c-2(c-1) \leq 3 k-6$. So $c<3$. By hypothesis G has even order. So G has order four. But this is not possible since $k \geq 4$.

We now show that G-S contains at least three singletons.
(1) If there is a component C of $C_{1}, C_{2}, \ldots, C|s|-2$ with order three, then there are at least three singleton components of $G-S$.

Without loss of generality, assume C_{1} has order three. As C_{1} is a tree, there are $k \times 3-2 \times(3-1)=3 k-4$ edges from C_{1} to S . By counting the edges from the components of $G-S$ to S, there are exactly k edges from each of $C_{2}, C_{3}, \ldots, C_{|s|-2}$ to S. But C_{2}, C_{3}, \ldots, $C|s|-2$ are trees. So, since $k \geq 4, C_{2}, C_{3}, \ldots, C|s|-2$ are singletons. As there are $\quad k|S|-4$ edges from $C_{1}, C_{2}, \ldots, C|S|-2$ to $S, G[S]$ has exactly two edges.

If there are at most two singleton components of $G-S$ the number of odd components of $G-S$ is at most three and $|S| \leq 5$. Now $G[S]$ contains two independent edges and C_{2} is a singleton. As there are at least four edges from C_{2} to S, there is always a triangle containing C_{2}. contradicting Claim 2.
(2) If each of $C_{1}, C_{2}, \ldots, C|s|-2$ is a singleton, then there are at least three singleton components of $G-S$.

Since $|s| \geq 4, o(G-S)=|s|-2 \geq 2$. Suppose $|s|-2=2$. Then $|S|=4$ and S contains two independent edges. But there are at least three edges from C_{1} to S. So there is a triangle, contradicting Claim 2.

We may therefore assume that v_{1}, v_{2}, v_{3} are singletons in $o(G-S)$. Let $r_{1}, r_{2}, \ldots, r_{k}$ be the neighbours of v_{1} and $s_{1}, s_{2}, \ldots, s_{k}$ be the neighbours of v_{2}. By the definition of strongly regular graphs, as v_{1} and v_{2} are non-adjacent, $\left|\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cap\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}\right|=\beta$. Without loss of generality, assume $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cap\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}=$ $\left\{r_{1}, r_{2}, \ldots, r_{\beta}\right\}=\left\{s_{1}, s_{2}, \ldots, s_{\beta}\right\}$. Now $r_{\beta+1}, \ldots, r_{k}$ are not adjacent to v_{2}, so each of $r_{\beta+1}, \ldots, r_{k}$ sends β edges to $s_{\beta+1}, \ldots, s_{k}$. There are $(k-\beta) \beta$ edges from $\left\{r_{\beta+1}, \ldots, r_{k}\right\}$ to $\left\{s_{\beta+1}, \ldots, s_{k}\right\}$. When $\beta=k$ and $\alpha=0, G$ is $K_{k, k}$, and hence is 2 -extendable. For $1 \leq \beta \leq k-1$, the quadratic $(k-\beta) \beta$ is greater than or equal to $k-1$.

Let $t_{1}, t_{2}, \ldots, t_{k}$ be the neighbours of v_{3} in S. Now v_{3} has β common neighbours with v_{2}.

Suppose $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\} \cap\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}=\left\{s_{1}, s_{2}, \ldots, s_{\beta}\right\}=\left\{t_{1}, t_{2}, \ldots, t_{\beta}\right\}$ $=\left\{r_{1}, r_{2}, \ldots, r_{\beta}\right\}$.

Then $\left\{t_{\beta+1}, t_{\beta+2}, \ldots, t_{k}\right\} \cap\left\{s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}\right\}=\varnothing$ and $\left\{t_{\beta+1}, t_{\beta+2}\right.$, $\left.\ldots, t_{k}\right\} \cap\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}=\varnothing$. Otherwise, v_{3} and v_{2}, or v_{3} and v_{1}. have more than β common neighbours. None of $t_{\beta+1}, t_{\beta+2}, \ldots, t_{k}$ is adjacent to v_{2}. Hence each of $t_{\beta+1}, \ldots, t_{k}$ sends β edges to $s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}$. There are $(k-\beta) \beta \geq k-1$ edges from $\left\{t_{\beta+1}, \ldots, t_{k}\right\}$ to $\left\{s_{\beta+1}, \ldots, s_{k}\right\}$. So $G[S]$ has at least $2(k-1) \geq k+1$ edges for $k \geq 4$. By Lemma 4, there are at least $k(|s|-2)$ edges from C_{1}, C_{2}, \ldots. $c|s|-2$ to s. By k-regularity, s can accept at most $k|s|-2(k+1)=$ $k(|s|-2)-2$ edges, a contradiction.

We may therefore suppose that $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\} \cap\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \neq\left\{s_{1}, s_{2}\right.$; ..., $\left.s_{\beta}\right\}$.

Without loss of generality, assume $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\} \cap\left\{s_{1}, \ldots, s_{\beta}\right\}=$ $\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}=\left\{t_{1}, t_{2}, \ldots, t_{i}\right\} \quad(i<\beta)$.

If $\left\{t_{1}, \ldots, t_{k}\right\}\left\{s_{1}, \ldots, s_{k}\right\}$ is contained in $\left\{r_{1}, \ldots, r_{k}\right\}$, as s_{β} is not adjacent to v_{3}, s_{β} sends β edges to $\left\{r_{1}, \ldots, r_{k}\right\}$. So there is a triangle containing v_{1}, a contradiction.

So there is a neighbour u of v_{3} which is not in $\left\{r_{1}, \ldots, r_{k}\right\} \cup\left\{s_{1}, \ldots, s_{k}\right\}$.
Assume $\beta>1$.
u is not adjacent to v_{2} and sends β edges to $\left\{s_{1}, \ldots, s_{k}\right\}$. So $G[S]$ contains at least $(k-\beta) \beta+\beta \geq k-1+\beta \geq k-1+2=k+1$ edges. By Lemma 4, there are at least $k(|s|-2)$ edges from $C_{1}, C_{2}, \ldots, C|s|-2$ to s. By k-regularity, s can accept at most $k|s|-2(k+1)=k(|s|-2)-2$ edges, a contradiction.

So assume that $\beta=1$.
v_{3} is adjacent to one vertex in $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$ and one vertex in $\left\{s_{1}\right.$, ..., $\left.s_{k}\right\}$. But $k \geq 4$ so v_{3} is adjacent to at least two vertices which are not in $\left\{r_{1}, \ldots, r_{k}\right\} \cup\left\{s_{1}, \ldots, s_{k}\right\}$. Let u, v be such two vertices, u
and v are not adjacent to v_{2}. Both u and v send an edge to $\left\{s_{1}, \ldots, s_{k}\right\}$. So $G[S]$ has at least $(k-\beta) \beta+2=k-1+2=k+1$ edges. By Lemma 4, there are at least $k(|s|-2)$ edges from $C_{1}, \ldots, C_{|s|-2}$ to s. By k-regularity, s can accept at most $k|s|-2(k+1)=k(|s|-2)-2$ edges, a contradiction. This contradiction proves the theorem.

Corollary 1 Let G be a strongly regular graph with even order and $k \geq 3$. If $c \lambda(G) \geq 3 k-3, G$ is 2 -extendable.

Proof The cubic strongly regular graphs are $K_{4}, K_{3,3}$ and the Petersen graph. It is easy to verify the result holds for these graphs.

Since the girth of a strongly regular graph is at most 5 , $c \lambda(G) \leq 5(k-2)=5 k-10$. If we were to try to prove the 3 extendability of stronger regular graphs by increasing the cyclic edge connectivity, we would need $c \lambda(G) \geq 5 k-6$. Hence it is necessary to look in another direction to find results of 3 -extendable strongly regular graphs.

4. Some 2-extendable strongly regular graphs

In this section, we give some 2 -extendable strongly regular graphs.
Theorem 4 A strongly regular graph with even order is 2extendable when $\frac{k}{3} \leq \beta \leq k-1$ and $k \geq 4$.
Proof Let G be a strongly regular graph of even order with $\frac{k}{3} \leq \beta \leq k-1$.

Suppose G is not 2 -extendable. By the arguments of Theorem 3, if N is the number of edges from the components of G-S to S, then $N \leq$ $k|s|-4$ and $N \geq k(|s|-2)$.

Claim 1 There are at least $\frac{3}{2} k$ edges to s from a component c_{i} of order at least three $(1 \leq i \leq|s|-2)$.

Let c_{i} be an odd component of order at least three. If c_{i} has order three, each vertex u of c_{i} is adjacent to at most two other vertices of c_{i}. There are therefore at least $k-2 \geq \frac{k}{2}$ edges from u to s as $k \geq 4$. So there are $3 \times \frac{k}{2}$ edges from c_{i} to s.

If C_{i} has order at least five, by Lemma 3 and $\beta \geq \frac{k}{3}$, there are at least $\frac{5 k}{3} \geq \frac{3 k}{2}$ edges from c_{i} to S.
(1) Suppose there are at least three singleton components of G-S. Let these three vertices be v_{1}, v_{2}, v_{3}. Let $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\},\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$, be the neighbours of v_{1}, v_{2}, v_{3}, respectively.

Since v_{1}, v_{2} are not adjacent, $\left|\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cap\left\{s_{1}, s_{2}, \ldots s_{k}\right\}\right|=\beta$. Without loss of generality we may assume that $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cap$ $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}=\left\{r_{1}, r_{2}, \ldots, r_{\beta}\right\}=\left\{s_{1}, s_{2}, \ldots, s_{\beta}\right\}$.

Since $r_{\beta+1}, r_{\beta+2}, \ldots, r_{k}$ are not adjacent to v_{2}, each of $r_{\beta+1}$, $r_{\beta+2}, \ldots, r_{k}$ is adjacent to β of the vertices $s_{1}, s_{2}, \ldots, s_{k}$. Hence there are $(k-\beta) \beta$ edges from $\left\{r_{\beta+1}, r_{\beta+2}, \ldots, r_{k}\right\}$ to $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$. But $\frac{k}{3} \leq \beta \leq k-1$, so $(k-\beta) \beta \geq k-1$.

We also note that since v_{1} and v_{3} are not adjacent,
$\left|\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cap\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}\right|=\beta$.
(1.1) Suppose $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cap\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}=\left\{r_{1}, r_{2}, \ldots, r_{\beta}\right\}$ $=\left\{t_{1}, t_{2}, \ldots, t_{\beta}\right\}$. Then $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cap\left\{t_{\beta+1}, t_{\beta+2}, \ldots, t_{k}\right\}=\varnothing$ and $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \cap\left\{t_{\beta+1}, t_{\beta+2}, \ldots, t_{k}\right\}=\varnothing$.

Since none of $t_{\beta+1}, t_{\beta+2}, \ldots, t_{k}$ is adjacent to v_{1}, there are β edges from each of $t_{\beta+1}, t_{\beta+2}, \ldots, t_{k}$ to $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$. Hence there are $(k-\beta) \beta \geq k-1$ edges from $\left\{t_{\beta+1}, t_{\beta+2}, \ldots, t_{k}\right\}$ to $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$. So $G[S]$ has at least $2(k-1)$ edges. Since $k \geq 4,2(k-1) \geq k * 1$. By Lemma

4, there are at least $k(|s|-2)$ edges from $c_{1}, C_{2} \ldots, C|s|-2$ to s. However, by the k-regularity, the number of edges going into S is at most $k|s|-2(k+1)=k(|s|-2)-2$. This gives a contradiction.
(1.2) Suppose $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cap\left\{t_{1}, t_{2}, \ldots, t_{k}\right\} \neq\left\{r_{1}, r_{2}, \ldots, r_{\beta}\right\}$. Without loss of generality we may assume that $\left\{r_{1}, r_{2}, \ldots, r_{\beta}\right\} \cap\left\{t_{1}, t_{2}\right.$, $\left.\ldots, t_{k}\right\}=\left\{r_{1}, r_{2}, \ldots, r_{i}\right\}=\left\{t_{1}, t_{2}, \ldots, t_{i}\right\}$ for some $i<\beta$.

If $t_{j} \notin\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cup\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, then, since t_{j} and v_{2} are not adjacent, there are β edges from t_{j} to $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$. But $\beta \geq \frac{k}{3}$, and $k \geq 4$, so, since β is an integer, $\beta \geq 2$. Hence $G[S]$ has at least $(k-\beta) \beta+$ $\beta \geq(k-1)+2=k+1$ edges. By the k-regularity, at most $k|s|-2(k+1)$ $=k(|s| 2)-2$ edges can enter S. However, by Lemma 4, there are at least $k(|s|-2)$ edges from $C_{1}, C_{2}, \ldots, C|s|-2$ to s. This gives another contradiction.

Hence we may suppose that $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\} \subseteq \subseteq\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cup\left\{s_{1}, s_{2}\right.$, $\ldots, s_{k} \nmid$. Since none of the vertices $r_{\beta+1}, r_{\beta+2}, \ldots, r_{k}$ is adjacent to v_{2} and none of the vertices $s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}$ is adjacent to v_{1}, there are $(k-\beta) \beta \geq k-1$ edges from $\left\{r_{\beta+1}, r_{\beta+2}, \ldots, r_{k}\right\}$ to $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and at least $k-1$ edges from $\left\{s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}\right\}$ to $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$.
(1.2.1) Suppose there are at most $(k-\beta) \beta-2$ edges between
$\left\{r_{\beta+1}, r_{\beta+2}, \ldots, r_{k}\right\}$ and $\left\{s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}\right\}$. Then there are at least two edges incident with $\left\{s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}\right\}$ which are not incident with $\left\{r_{\beta+1}, r_{\beta+2}, \ldots, r_{k}\right\}$. Hence $G[S]$ has at least $(k-1)+2=k+1$ edges.
Counting the edges into S by the two methods used above, again gives a contradiction.
(1.2.2) Suppose there are $(k-\beta) \beta$ edges from $\left\{r_{\beta+1}, r_{\beta+2}, \ldots, r_{k}\right\}$ to $\left\{s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}\right\}$. Since r_{β} is not adjacent to v_{3}, there are $\beta(\geq 2)$ edges from r_{β} to $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$. The fact that $G[S]$ contains at least $(k-1)+2=k+1$ edges again leads to a contradiction.
(1.2.3) Hence we may suppose that there are $(k-\beta) \beta-1$ edges between $\left\{r_{\beta+1}, r_{\beta+2}, \ldots, r_{k}\right\}$ and $\left\{s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}\right\}$. Let $u \in\left\{r_{i+1}, r_{i+2}, \ldots, r_{\beta}\right\}$ not be adjacent to $\left\{r_{\beta+1}, r_{\beta+2}, \ldots, r_{k}\right\} \cup\left\{s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}\right\}$. Since u and
v_{3} are not adjacent, there are β edges from u to $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$. The usual counting argument now produces the contradiction. Hence any vertex in $\left\{r_{i+1}, r_{i+2}, \ldots, r_{\beta}\right\}$ must be adjacent to a vertex in $\left\{r_{\beta+1}, r_{\beta+2}\right.$, $\left.\ldots, r_{k}\right\} \cup\left\{s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}\right\}$.

Suppose two vertices u, v exist in $\left\{r_{i+1}, r_{i+2}, \ldots, r_{\beta}\right\}$. As neither u nor v is adjacent to v_{3}, there are $\beta \geq 2$ edges from each of u, v to $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$. Hence again $G[S]$ contains at least $k+1$ edges and we again obtain a contradiction.

Hence there is only one vertex in $\left\{r_{i+1}, r_{i+2}, \ldots, r_{\beta}\right\}$. Thus $i=\beta-1$.

Now consider v_{3}. First v_{3} is adjacent to $r_{1}, r_{2}, \ldots, r_{\beta-1}$. Since, by the early part of (1.2), $\left\{t_{1}, t_{2}, \ldots, t_{k}\right\} \mathcal{C}\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \cup\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, and the fact that v_{1} and v_{3}, and v_{2} and v_{3} have β vertices in common, we see that v_{3} is adjacent to precisely one vertex each in $\left\{r_{\beta+1}, r_{\beta+2}, \ldots\right.$, $\left.r_{k}\right\}$ and $\left\{s_{\beta+1}, s_{\beta+2}, \ldots, s_{k}\right\}$. Hence $k=\beta+1$.

So there are $(k-\beta) \beta-1+1=\beta$ edges between $r_{k}=r_{\beta+1}$ and $\left\{s_{\beta}, s_{\beta+1}\right\}$. So $\beta \leq 2$ and $k=\beta+1 \leq 3$. This contradicts the fact that $k \geq 4$.
(2) Suppose there are exactly two singleton components of $G-S$.

Let v_{1} and v_{2} be the vertices of the singleton components. Let r_{1}, r_{2}, \ldots, r_{k} be the neighbours of v_{1}, let $s_{1}, s_{2}, \ldots, s_{k}$ be the neighbours in s of v_{2}. As v_{1} and v_{2} are not adjacent. $\mid\left\{r_{1}, \ldots\right.$, $\left.r_{k}\right\} \cap\left\{s_{1}, \ldots, s_{k}\right\} \mid=\beta$. As each vertex of $\left\{r_{1}, \ldots, r_{k}\right\} \backslash\left\{s_{1}, s_{2}, \ldots\right.$, $\left.s_{k}\right\}$ is not adjacent to v_{2}, there are at least $(k-\beta) \beta \geq k-1$ edges from $\left\{r_{1}, r_{2}, \ldots, r_{k}\right\} \backslash\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ to $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$. So $G[s]$ contains at least $k-1$ edges. s can accept at most $k|s|-2(k-1)=$ $k|s|-2 k+2$ edges.
(2.1) Suppose there are at least two odd components of order at least three. Let C_{3} and C_{4} be two odd components of order at least three.

By Claim 1, there are at least $\frac{3}{2} k$ edges from each of C_{3} and C_{4} to
S. By Lemma 4, there are at least $(|S|-4) k+2 \times \frac{3}{2} k=k|s|-k$ edges from $c_{1}, c_{2}, \ldots, C_{|s|-2}$ to s, contradicting the fact that s can accept at most $k|s|-2 k+2$ edges.
(2.2) Suppose there is only one odd component of order at least three. Now there are only three odd components of $G-S$, so $|S|=5$. Let C_{3} be the odd component of order at least three.
(2.2.1) Suppose there is an even component C of $G-S$. If C has order at least four, by Lemma 3, there are at least $\frac{4}{3} k$ edges from C to s. If $\left|V\left(C_{3}\right)\right| \geq 5$, by Lemma 3, there are at least $\frac{5}{3} k$ edges from C_{3} to S. So the number of edges from S to $G-S$ is $N \geq$ $\frac{4}{3} k+\frac{5}{3} k+2 k=5 k>5 k-4$, contradicting $N \leq k|S|-4$. If $\left|V\left(C_{3}\right)\right|=3$, there are at least $3 k-6$ edges from C_{3} to S. $N \geq \frac{4}{3} k+3 k-6+2 k=5 k+\frac{4}{3} k-6>5 k-4$ for $k \geq 4$, contradicting $N \leq k|s|-4$. If C has order two, there are $2 k-2$ edges from C to S. By Lemma 4. $N \geq 3 k+2 k-2=5 k-2>5 k-4$, contradicting $N \leq$ $k|s|-4$.
(2.2.2) No even component exists.
(2.2.2.1) Suppose $\left|V\left(C_{3}\right)\right| \geq 5$.

By Lemma 3, there are at least $\frac{5}{3} k$ edges from C_{3} to S.
$N \geq \frac{5}{3} k+2 k>3 k+2$, when $k \geq 4$, contradicting the fact that s can accept at most $k|s|-2 k+2=5 k-2 k+2=3 k+2$ edges.
(2.2.2.2) Suppose $\left|V\left(C_{3}\right)\right|=3$.

By Claim 1, there are at least $\frac{3}{2} k$ edges from C_{3} to S.
$N \geq \frac{3}{2} k+2 k=3 k+\frac{k}{2}$. If $k \geq 5, N>3 k+2$. contradicting the fact
that S can accept at most $3 k+2$ edges. So $k=4$. We see by Lemma 1 that there is no(10.4, $\alpha, \beta)$-graph.
(2.3) No odd component of order at least three exists. Now there are only two odd components of $G-S$. Both are singletons. $|S|=4$. As C_{1} is only adjacent to vertices of $S, k=4$.

Suppose there is an even component C. By Lemma 4, there are at least k edges from C to S. Hence $N \geq 3 k>2 k+2$. But since $|s|=4$, this contradicts the fact that $N \leq k|S|-2 k+2=2 k+2$.

So no even component exists. However, by Lemma 1 there is no
(6, 4, α, β)-graph with $\frac{k}{3} \leq \beta \leq k-1$. We conclude that there are not precisely two singletons.
(3) There is at most one singleton component of G-S.
(3.1) Suppose there are at least four odd components with order at least three. Let C_{1}, C_{2}, C_{3} and C_{4} be four odd components with order at
least three. There are $|s|-6$ other odd components. By Claim 1, there are $\frac{3}{2} k$ edges from each of $C_{1}, C_{2}, C_{3}, C_{4}$ to s. By Lemma 4 . $N \geq 4 \times \frac{3}{2} k+k(|s|-6)=k|s|$, contradicting $N \leq k|S|-4$.
(3.2) Suppose there are exactly three odd components C_{1}, C_{2} and C_{3} with order at least three.
(3.2.1) Suppose there is an even component C of $G-S$.

Since C has order at least two, by Lemma 3 , there are at least $2 \beta \geq \frac{2}{3} k$ edges from C to $s . B y$ Claim 1 there are at least $\frac{3}{2} k$ edges from C_{1}, C_{2}, C_{3} to S. Hence by Lemma $4, N \geq \frac{2}{3} k+3 \times \frac{3}{2} k+k(|S|-5)$ $=k|S|+\frac{1}{6} k>k|s|-4$. This contradicts the fact that $N \leq k|s|-4$.
(3.2.2) No even component exists.

Suppose one of C_{1}, C_{2} and C_{3} has order at least seven. There are at least $\frac{7}{3} k$ edges from that component to S. By Claim 1 and Lemma 3 , $N \geq \frac{7}{3} k+2 \times \frac{3}{2} k+k(|s|-5)=k|s|+\frac{k}{3}>k|s|-4$, contradicting N $\leq k|s|-4$.

So none of C_{1}, C_{2}, C_{3} has order larger than five.
(3.2.2.1) Suppose $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=\left|V\left(C_{3}\right)\right|=5$.

By Lemma 3, there are at least $\frac{5}{3} k$ edges from each of $C_{i}(i=1,2,3)$ to $S . N \geq 3 \times \frac{5}{3} k+k(|S|-5)>k|s|-4$, contradicting $N \leq k|s|-4$
(3.2.2.2) Suppose $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=5$ and $\left|V\left(C_{3}\right)\right|=3$.

By Lemma 3, there are at least $\frac{5}{3} k$ edges from each of C_{1} and C_{2} to S and there are at least $3 k-6$ edges from C_{3} to S.
$N \geq 2 \times \frac{5}{3} k+3 k-6+k(|s|-5)=k|s|+\frac{4}{3} k-6>k|s|-4$ for $k \geq$ 4. a contradiction.
(3.2.2.3) Suppose $\left|V\left(C_{1}\right)\right|=5$ and $\left|V\left(C_{2}\right)\right|=\left|V\left(C_{3}\right)\right|=3$.

There are at least $\frac{5}{3} k$ edges from C_{1} to s and there are at least $3 k$ - 6 edges from each of C_{2} and C_{3} to S.
$N \geq \frac{5}{3} k+2(3 k-6)+k(|s|-5)=k|s|+\frac{8}{3} k-12>k|s|-4$ for $k \geq 4$. a contradiction.
(3.2.2.4) Suppose $\left|V\left(C_{1}\right)\right|=\left|V C_{2}\right|=\left|V\left(C_{3}\right)\right|=3$.

There are at least $3 k-6$ edges from each of C_{1}, C_{2} and C_{3} to $S . N$ $\geq 3(3 k-6)+k(|s|-5)=k|s|+4 k-18>k|s|-4$ for $k \geq 4$, a contradiction.
(3.3) Suppose there are exactly two odd components C_{1} and C_{2} with order at least three.
(3.3.1) Suppose that there is an even component C of $G-S$.

If C has order at least four, there are at least $\frac{4}{3} k$ edges from C to S.
$N \geq \frac{4}{3} k+2 \times \frac{3}{2} k+k(|s|-4)=k|s|+\frac{k}{3}>k|s|-4$, contradicting $N \leq k|S|-4$. If C has order two, there are $2 k-2$ edges from C to s. $N \geq 2 k-2+2 \times \frac{3}{2} k+k(|s|-4)=k|s|+k-2>k|s|-4$ a a contradiction.
(3.3.2) No even component exists.

Suppose one of C_{1} and C_{2} has order at least seven.
Assume $\left|V\left(C_{1}\right)\right| \geq 7$, there are at least $\frac{7}{3} k$ edges from C_{1} to S.
If $\left|V\left(C_{2}\right)\right| \geq 5$, there are at least $\frac{5}{3} k$ edges from C_{2} to s.
$N \geq \frac{7}{3} k+\frac{5}{3} k+k(|s|-4)=k|s|>k|s|-4$, contradicting $N \leq k|s|-4$.
If $\left|V\left(C_{2}\right)\right|=3$, there are at least $3 k-6$ edges from C_{2} to S.
$N \geq \frac{7}{3} k+3 k-6+k(|S|-4)=k|S|+\frac{4}{3} k-6>k|S|-4$ for $k \geq 4$. a contradiction.

None of C_{1} and C_{2} has order larger than five.
(3.3.2.1) Suppose $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=5$.

There are at least $5 k-20$ edges from each of C_{1} and C_{2} to s. $N \geq 2(5 k-20)+k(|s|-4)=k|s|+6 k-40$. When $k \geq 7, N>k|s|-4$, a contradiction.

Suppose there is a singleton component $C_{3} .|s|=5$. As C_{3} is only adjacent to vertices of $S, k \leq 5$. By Lemma 1, the only two possible $(16, k, \alpha, \beta)$-graphs for $4 \leq k \leq 5$ are (16,5,0,2) and ($16,5,2,1$).

Suppose the graph is a $(16,5,0,2)$-graph. As C_{3} is adjacent to all vertices of S and S contains two independent edges, there is a triangle containing C_{3}, contradicting $\alpha=0$.

Suppose the graph is a $(16,5,2,1)$-graph. As $\beta \geq \frac{k}{3}$ and $k \geq 4, \beta \geq 2$. A (16,5,2,1)-graph doesn't satisfy the assumption of the theorem.

Now no singleton exists. $|s|=4$. We can verify by Lemma 2 that there are no ($14, k, \alpha, \beta$)-graphs for $4 \leq k \leq 6$.
(3.3.2.2) Suppose $\left|V\left(C_{1}\right)\right|=5$ and $\left|V\left(C_{2}\right)\right|=3$.

There are at least $\frac{5}{3} k$ edges from C_{1} to s and there are at least $3 k-6$ edges from C_{2} to $s . N \geq \frac{5}{3} k+3 k-6+k(|s|-4)=k|s|+$ $\frac{2}{3} k-6>k|s|-4$ for $k \geq 4$, a contradiction.
(3.3.2.3) Suppose $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=3$.

There are at least $3 k-6$ edges from each of C_{1} and C_{2} to S. $N \geq$ $2(3 k-6)+k(|s|-4)=k|s|+2 k-12 . N>k|s|-4$ for $k \geq 5$, a contradiction.

If $k=4$, suppose there is a singleton component $C_{3} .|S|=5$. We can verify by Lemma 1 that there is no ($12,4, \alpha, \beta$)-graph.

Now no singleton exists and $|s|=4$. We can verify by Lemma 1 that there is no ($10,4, \alpha, \beta$)-graph.
(3.4) Suppose there is exactly one odd component C_{1} with order at least three.

Now $|S|=4$ and there is a singleton component C_{2}.
(3.4.1) Suppose there is an even component C of $G-S$.

If C has order at least four, there are at least $\frac{4}{3} k$ edges from C to S.
If $\left|V\left(C_{1}\right)\right| \geq 5$, there are at least $\frac{5}{3} k$ edges from C_{1} to S.
$N \geq \frac{4}{3} k+\frac{5}{3} k+k=4 k>4 k-4$. contradicting $N<k|S|-4$. If
$\left|V\left(C_{1}\right)\right|=3$, there are at least $3 k-6$ edges from C_{1} to s.
$N \geq \frac{4}{3} k+3 k-6+k>4 k-4$ for $k \geq 4$, contradicting $N \leq k|S|-4$.

If C has order two, there are $2 k-2$ edges from C to S. By Claim

1. there are at least $\frac{3}{2} k$ edges from C_{1} to S. $N \geq 2 k-2+\frac{3}{2} k+k=$
$4 k+\frac{k}{2}-2>4 k-4$, a contradiction.
(3.4.2) No even component exists.
(3.4.2.1) Suppose $\left|V\left(C_{1}\right)\right| \geq 9$.

There are at least $\frac{9}{3} k$ edges from C_{1} to $S . ~ N \geq \frac{9}{3} k+k=4 k>4 k-4$. contradicting $N \leq k|s|-4$.
(3.4.2.2) Suppose $3 \leq\left|V\left(C_{1}\right)\right| \leq 7$.

Now $|S|=4 . C_{2}$ is only adjacent to vertices of S. So $k=4$. We can verify by Lemma 1 that there are no ($v, 4, \alpha, \beta$)-graphs with

$$
\frac{k}{3} \leq \beta \leq k-1 \text { for } v=8,10 \text { or } 12 \text {. }
$$

Theorem 5: Every strongly regular graph of even order with $\beta=k$ and $k \geq 4$ is 2 -extendable, except the ($6,4,2,4$)-graph.

Proof: Let G be a strongly regular graph (v, k, α, β) with even order, $\beta=k$ and $k \geq 4$.

If $\alpha=0, G$ is $K_{k, k}$. Hence G is 2 -extendable. So assume $\alpha \neq 0$. Let w be a vertex of G and $w_{1}, w_{2}, \ldots, w_{k}$ be the vertices adjacent to w. As $\beta=k$, every vertex of $V(G)-\left\{w, w_{1}, w_{2}, \ldots, w_{k}\right\}$ is adjacent to $w_{1}, w_{2}, \ldots, w_{k}$. As $\alpha>0$, there is an edge $e=w_{i} w_{j}$. All the vertices of $V(G)-\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ are common neighbours of w_{i} and w_{j}. So $\alpha \geq v-k$. Since w and w_{i} have α common neighbours, there are α edges from w_{i} to $\left\{w_{1}, \ldots, w_{k}\right\}$. So $k \geq$ $2(v-k)$. Therefore $k \geq \frac{2}{3} v$.

When $v \geq 12, k \geq \frac{v}{2}+2$, so by Lemma $2, G$ is 2 -extendable.
For $v \leq 10, \beta=k \geq 4$ and $\alpha>0$, the only parameters which satisfy Lemma 1 are given below
$(10,9,8,9)$ this graph is K_{10} and is 2-extendable $(10,8,6,8) \quad k \geq \frac{v}{2}+2$, so these graphs are 2-extendable (10.7,4,7) see below
($10,6,2,6$) see below
$(8,7,6,7) \quad$ this graph is K_{8} and is 2-extendable
$(8,6,4,6) \quad k \geq \frac{v}{2}+2$, so these graphs are 2-extendable
($8,5,2,5$) see below
(6.5.4.5) this graph is K_{6} and is 2-extendable
(6,4,2,4) see below

In the (10, 7,4,7)-graphs, let W be adjacent to the set $W=\left\{w_{1}, W_{2}, \ldots\right.$, $\left.w_{7}\right\}$. Then $G[W]$ is a (7,4,1,4)-graph. However, the neighbours N of w_{1} in $G[W]$ are adjacent to three vertices. Since not all members of N are adjacent, the value of α in $G[W]$ is at least 3 , a contradiction.

Consider the graphs ($10,6,2,6$). By previous arguments all the vertices of $V(G)-\left\{w, w_{1}, w_{2}, \ldots, w_{6}\right\}$ are adjacent to all the vertices $\left\{w_{1}, w_{2}, \ldots, w_{6}\right\}$. Since there must be an edge between w_{i} and w_{j} for some i, j, this means that w_{i} and w_{j} have at least 4 common neighbours, so $\alpha \geq 4$, a contradiction.

A similar argument with $(8,5,2,5)$ shows that $\alpha \geq 3$, a contradiction.
In Figure 1 we show the (6,4,2,4)-graph. The edges $u_{1} v_{1}, u_{2} v_{2}$ cannot be extended to a perfect matching.

Figure 1

Corollary 2: A strongly regular graph with even order and $k \geq 3$ is 2 -extendable when $\beta \geq \frac{k}{3}$, except the Petersen graph and the (6,4,2,4)graph.

Corollary 3: A strongly regular graph with $k=3,4,5,6$ is 2 extendable unless it is the Petersen graph or the (6,4,2,4)-graph.

Proof. For $k=4,5,6$ if $\beta \geq \frac{1}{3} k$ implies $\beta \geq 2$. So we only need test the 2 -extendability of ($v, k, \alpha, 1$)-graphs with $k=4.5,6$. There are no such graphs.

We conjecture that all but a few strongly regular graphs are 2extendable.

5. A family of strongly regular graphs and their n extendability

Given any n, we now construct a family of strongly regular graphs, each of which is n-extendable.

Let G be a graph and S be a vertex set and $S \cap V(G)=\varnothing$. $G+S$ is defined by $V(G+S)=V(G) \cup S$ and each vertex of S is joined to all vertices of G.

We define a family of graphs $s_{i}(i=0,1, \ldots)$ by
(1) $S_{0}=C_{4}$, a 4-cycle.
(2) Assume s_{k} is defined. $S_{k+1}=s_{k}+\left\{u_{k+1}, v_{k+1}\right\}$, where u_{k+1}, $v_{k+1} \notin V\left(S_{k}\right)$.

Theorem 6 The family $\mathrm{s}_{\mathrm{i}}(\mathrm{i}=0.1, \ldots)$ is a family of strongly regular graphs. Each s_{i} is a ($4+2 i, 2+2 i, 2 i, 2+2 i$)-graph $(i=0,1, \ldots)$.

Proof It is easy to verify that S_{0} is a (4,2,0,2)-graph. Assume S_{i} is a $(4+2 i, 2+2 i, 2 i, 2+2 i)$-graph. By definition, $s_{i+1}=s_{i}+\left\{u_{i+1}, v_{i+1}\right\}$. Hence $V\left(s_{i+1}\right)=4+2 i+2=4+2(i+1)$. As u_{i+1} and v_{i+1} are joined to all vertices of $s_{i}, d\left(u_{i+1}\right)=d\left(v_{i+1}\right)=4+2 i=2+2(i+1)$. For each vertex u in $v\left(s_{i}\right)$. as u is joined to u_{i+1} and v_{i+1}, $d(u)=2+2 i+2=2+2(i+1)$. So s_{i+1} is $[2+2(i+1)]$-regular.

Let u and v be a pair of non-adjacent vertices. If $u=u_{i+1}$ and $v=v_{i+1}$, all the vertices of s_{i} are common neighbours of u and v. So u and v have $4+2 i=2+2(i+1)$ common neighbours. If u, v $\in V\left(S_{i}\right)$ by the induction hypothesis, u and v have $2+2 i$ common neighbours in s_{i}, u_{i+1} and v_{i+1} are also common neighbours of u and v. So u and v have $2+2 i+2=2+2(i+1)$ common neighbours. Hence $B\left(S_{i+1}\right)=2+2(i+1)$.

Let u and v be a pair of adjacent vertices. If $u=u_{i+1}$ or v_{i+1} and v is in $V\left(s_{i}\right)$, as S_{i} is $2+2 i$ regular, u and v have exactly $2+2 i=2(i+1)$ common neighbours. If u and v are in $V\left(S_{i}\right)$, by the induction hypothesis, u and v have $2 i$ common neighbours in s_{i}. But u_{i+1} and v_{i+1} are also common neighbours of u and v. So u and v have $2 i+2=2(i+1)$ common neighbours. Hence $\alpha\left(s_{i+1}\right)=2(i+1) . s_{i+1}$ is therefore a $(4+2(i+1), 2+2(i+1), 2(i+1), 2+2(i+1))$-graph.

Theorem $7 \quad \mathrm{~s}_{\mathrm{i}}$ is i -extendable $(\mathrm{i}=0.1, \ldots)$.
Proof As the degree $k=2+2 i=2+i+i \geq \frac{v}{2}+i, S_{i}$ is i-extendable by Lemma 2.

References

[1] R E L Aldred, D A Holton and Dingjun Lou, n-Extendability of Symmetric Graphs, submitted.
[2] J A Bondy and U S R Murty, Graph theory with Applications, Macmillan Press, London (1976).
[3] P J Cameron, Strongly regular graphs, Selected Topics in Graph Theory. Academic Press (1978), 337-360.
[4] L Lovász and M D Plummer, Matching Theory, Elsevier Science Publishers B V. North Holland (1986).
[5] M D Plummer, On n-extendable graphs, Discrete Math. 31 (1981), 201-210.
[6] J J Seidel, Strongly regular graphs, Survey in Combinatorics, London Math. Soc. Lecture Notes Ser. 38 (1978), 157-180.

