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Abstract: Let J3 be the number of vertices commonly adjacent to any 

pair of non-adjacent vertices. It is proved that every strongly regular 

graph with even order and J3 ~ 1 is l-extendable. We also show that 

every strongly regular graph of degree at least 3 and cyclic edge 

connecti vity at least 3k -3 is 2-extendab Ie. Strongly regular graphs of 

k 
even order and of degree k at least 3 with J3 ~"3 are 2-extendab Ie, 

except the Petersen graph and one other graph. 

1. I nt rod uct ion a nd term i nolog y 

All graphs considered are finite, undirected. connected and simple. 

A graph G is called strongly regular if G is k-regular and there are 

two integers' eX,~ ~ 0 such that for each pair of vertices u and v, u 

;z: v, the number of the common neighbours of u and v is eX or ~ 

according as u and v are adjacent or non-adjacent. A strongly regular 

graph with v vertices is called a (v, k. eX, J3)-graph. These general 

parameters will be assumed unless stated otherw ise. 

A graph G is called cycl ically m-edge-connected if I S I ~ m for each 

edge cutset S of G such that there are two components in G - S each 

of which has a cycle. The set S is called a cyclic edge cutset. The 

size of a minimal cyclic edge cutset is called the cyclic edge 

connect! vi ty. and is denoted by c:A(G). 
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Suppose G has a perfect matching. A graph G is called n-extendable 

if for the given integer n ~ (v-2)/2. G has n independent edges and 

any n independent edges are contained in a perfect matching of G. 

In [1 J. the n-extendabi Ii ty of edge (vertex) transi ti ve graphs is 

discussed. When the cyclic edge connectivity is large enough. an edge 

transitive graph is n-extendable. We show here that there is a similar 

relation between cyclic edge connectivity and n-extendability in strongly 

regular graphs. We also find some n-extendable strongly regular graphs 

for arb i trary n. 

All terminology and notation not defined in this paper can be found in 
[2 J. 
Reference [4J provides a strong background for matching theory and [6] 

gives a survey of results in strongly regular graphs. 

Lemma If G is a strongly regular graph. then k(k-o(-l) = (v-k-l )~. 

Proof See Theorem 2.2 in [3]. o 

If G is a cubic strongly regular graph. then by Lemma 1. 3(2-0() = 
(v-4)~. For 0( = 2. we find G = K... If 0( = 1. then v is odd which 

is not possible since G is cubic. If 0( = O. then ~ = 1 and v = 10 

or ~ = 3 and v = 6. For ~ = 1. we obtain the Petersen graph P. 

whi Ie for ~ = 3 we get KJ,J' 

Lemma 2 Let G be a graph with even order. 

G is n-extendable. 

Proof See [5]. 

2. Matching of strongly regular graphs 

v 
If 8(G) > - + n. then -2 

o 

In this section. we show that every connected strongly regular graph 

with even order has a perfect matching. Furthermore. every edge of 

such a graph 1 ies in a perfect matching. 



Let G be a strongly regular graph with even order and ~ = O. By 

Lemma 1.0( = k-l. Let u.v be adjacent in G. Then we may suppose 

that u.v are both adjacent to w,. W2 ..... wk-l' Let A = 
{u.V.W'.W2 .... ,Wk-l}. If Wi.Wj are not adjacent then they are both 

adjacent to u and v. This contradicts the fact that ~ = O. Hence 

G[A] .:: Kk + 1. where G[A] is the graph induced by the vertex set A. 

Let x E V(G) - A. Now x cannot be adjacent to any vertex in A 

since each of these vertices has degree k already. Hence x must be in 

another component isomorphic to Kk+ 1 . 

So G.:: rKk+l' Such graphs are 1 - and 2-extendable if and only if k is 

odd. We therefore assume that ~ ~ 1 in the rest of this paper. 

Let G be a strongly regular graph with even order and let C"C2. 

Ct be the components of G - S. 

Lemma 3 Each vertex of Ci sends at least ~ edges to S 

Ci=1.2 ..... t). 

P roo f Let u be a vertex of Ct and v be a vertex of C j (i;t: j). 

Since u and v are non-adjacent. u and v have ~ common 

neighbours. Those neighbours can only be in S. So every vertex of Ci 

sends at least ~ edges to S. 0 

Lemma 4 There are at least k edges from Ci to S Ci= 1,2 ..... t). 

P roof Let m be the number of vertices of Ci' Let ?f be the 

minimum number of edges from a vertex of Ci to S. By Lemma 3. 

?f ~ ~ ~ 1. There are at least m?f edges from Ci to S. 

Suppose m?f < k. Then m < k/?f. Suppose m ~ k - ?f + 1. Then 
k/?f > k - ?f + 1. Hence k?f - ?f2 + ?f < k. So?f2 - k?f + k - ?f > 0 and 
(?f-k)(?f-l) > O. 

But 7f ~ k and 7f ~ 1. This contradiction shows that m < k - ?f + 1. 

But now each vertex u of Ci is adjacent to at most k - ?f - 1 
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vert ices inC i' So there are at least a' + 1 edges from u to S by 

the k-regularity. This contradicts the assumption on the minimality of 

a'. So ma' ~ k. 0 

Theorem 1 Every strongly regular graph of even order ($~ 1) has a 

perfect matching. 

Proof Assume that G has no perfect matching, that S £ V(G) such 
that o(G-S) > I S I. where o(G-S) is the number of odd component of 
G-S. and that Cl • C2 • Ct are the components of G-S. 

By the k -regulari ty of G. S accepts at most k Is/ edges from C, .C2• 

Ct. By Lemma 4. C,.C2 ••••• Ct send at least kt > k I S I edges to 

S. This is a contradiction. 0 

Theorem 2 Every strongly regular graph G with even order is 
1 -extendab Ie ($~ 1 ). 

Proof Suppose G is not l-extendable. There is an edge e = uv such 
that G - {u.v} does not have a perfect matching. Let G' = G - {u,v}. 
By Tutte's Theorem. there is a set S' £ V(G') such that o(G'-S') > 

I s'l· By parity. o(G'-S') ~ I s'l + 2. Let S = S· U {u.v}. o(G-S) = 
o(G'-S') ~ I S'I + 2 = I S I. By Theorem 1 t o(G-S) .:5. Is /. So 

o(G-S) = Is /. Let C,.C2 ..... Cis I be the odd components of G - S. 

By k -regulari ty. S can accept at most k I S I - 2 

.... Cis I' By Lemma 4. there are at least k Is/ 

Cis I to S. This is a contradiction. 

Not every strongly regular graph is 2-extendable. 
a counterexample. 

edges from C,.C2 • 

edges from C"C2• 

o 

The Petersen graph is 

3. Relation between cyclic edge connectivity and 2-
extendability 

In [1], it was proved that an edge (vertex) transitive graph is n
extendable when the cycl ic edge connectivity is large enough. For 
strongly regular graphs. we have a similar relation between cyclic edge 
connectivity and 2-extendability. 
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Theorem 3 Let G be a strongly regular graph with even order and 

k ~ 4. If c:A.(G) ~ 3k - 3. G is 2-extendable. 

Proof Suppose G is not 2-extendable. There are two edges et = uivi 

0=1.2) such that G - {u,.V,.U2.V2} does not have a perfect matching. 
Let G' = G - {u,.V,.U2.V2}. By Tutte's Theorem. there is a set 

S' £ V(G') such that o(G'-S') > I s'l. By parity, o(G'-S') = ,S', + 2m 

(m~1). Let 

S = S' u {u, ,V,.U2.V2}' o(G-S) = o(G'-S') = I s'l + 2m = I S I - 4 + 2m. 

By Theorem 1. o(G-S) ~ I S I. SO 1 ~ m ~ 2. 

If o(G-S) = I s I. there are at least k I S I edges from the components 
of G - S to S by Lemma 4. By the k-regularity. S can accept at 

most k I S I - 4 edges, a contradiction. So o(G-S) = I S I - 2 and 

m = 1. Let C,.C2 ..... Cis 1-2 be the odd components of G - S. 

Let N be the number of edges from the components of G - S to S. 

By k-regularity. N ~ k I S I - 4. By Lemma 4. N ~ k( Is 1-2). So there 

are at most k + k I S I - 4 - k( Is \-2) = 3k - 4 edges from a component 
of G - S to S. Hence every component of G - S is a tree or else the 
fact the c:A.(G) ~ 3k-3 is contradicted. 

Claim 1 Every component of G - S has order at most three. 

Let b be the order of a component C of G - S. But C is a tree. So 
kb - 2(b-l) ~ 3k - 4. Hence (k-2) b ~ 3k - 6. So b ~ 3. 

Claim 2 0< = 0 and so no triangle exists. 

I f there is a triangle T. and the edge cut (T ,G- T) is a cYClIc edge 

cutset. it has size 3k - 6. contradicting c:A.(G) ~ 3k - 3. Suppose 
(T ,G-T) is not a cyclic edge cutset. Let c be the order of G - T. As 

G - T is a forest. kc - 2(c-l) ~ 3k - 6. So c < 3. By hypothesis G 

has even order. So G has order four. But this is not possible since 

k ~ 4. 

We now show that G-S contains at least three singletons. 

(1) If there is a component C of C,.C 2 ... , Cis 1-2 with order three, 

then there are at least three singleton components of G - S. 
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Without loss of generality. assume C, has or.der three. As C, is a 
tree. there are k)(3 - 2)«(3-1) = 3k - 4 edges from C, to S. By 

counting the edges from the components of G - 5 to 5. there are 

exactly k edges from each of C2.C3 ..... Cis 1-2 to 5. But C2.C3. 

Cis 1-2 are trees. 50. since k ~ 4. C2.C3 ..... Cis 1-2 are singletons. 

As there are k 151 - 4 edges from C,.C2 ..... C 151-2 to 5. G[S] 

has exactly two edges. 

If there are at most two singleton components of G - S the number of 

odd components of G - S is at most three and I s I ~5. Now G[S] 

contains two independent edges and C2 is a singleton. As there are at 

least four edges from C2 to S. there is always a triangle containing 

C2. contradicting Claim 2. 

(2) If each of C,.C2 ..... Cis 1-2 is a singleton. then there are at least 

three singleton components of G - 5. 

Since 151 ~ 4. o(G-S) = 1 S I - 2 ~ 2. Suppose I S I - 2 = 2. Then 
151 = 4 and S contains two independent edges. But there are at least 

three edges from C, to S. So there is a triangle. contradicting Claim 

2. 

We may therefore assume that v,. v2. V3 are singletons in 0(G-5). 

Let r,.r2 ..... rk be the neighbours of v, and ::>,.s2 ..... sk be the 

neighbours of v2' By the definition of strongly regular graphs. as v, 

and v2 are non-adjacent. I {r,.r2' .... rk} n {S1.S2 ..... sk' I = J3. 

Without loss of generality. assume {r,.r2' .... rk} n {S,.S2 ..... sk} = 

{r,.r2' .... rJ3} = {s1' s2' .... s~}. Now rJ3+1' .... rk are not adjacent to 

v2.soeachof rJ3+1 ... ·.rk sends J3 edges to s13+1 .. ~ .• sk' There are 

(k-J3)J3 edges from {rJ3+1' .... rk} to {sJ3+1' .... skL When J3 = k and 

eX = O. G is Kk.k' and hence is 2-extendable. For 1 ~ J3 ~ k-l. the 

quadratic (k-J3)J3 is greater than or equal to k-1. 

Let t,.t 2 ..... tk be the neighbours of v3 in S. Now V3 has J3 

common neighbours with v2' 

5uppose {t,.t 2 ..... tk} n {s"S2' .... sk} = {S,.S2 ..... sJ3} = {t,.t2 ..... tJ31 

= {r,.r2 ..... rJ3}. 
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Then {t~+l' t~+2 ....• t k } n {s~+1.s~+2' .... sk} = lid and {t~+1.t~+2' 

.... tk} n {r,.r2' .... rk} = lid. Otherwise. v3 and V2. or v3 and v,. 

have more than ~ common neighbours. None of t~+ 1.t~+2' .... tk is 

adj acent to v2' Hence each of t ~ + l' .... tk sends ~ edges to 

s~+1.s~+2' .... sk' There are (k-M~ ~ k - 1 edges from {t~+l' .... t k } 

to {s ~ + l' .... sk L So G[S] has at least 2(k -1) ~ k + 1 edges for 

k ~ 4. By Lemma 4. there are at least k( 1 S 1-2) edges from C,.C2 ..... 

Cis 1-2 to S. By k-regularity. S can accept at most k 1 S 1 - 2(k+l) = 

k( I S 1-2) - 2 edges. a contradiction. 

We may therefore suppose that {t, ,t2 ..... tk} n {S,.S2 ..... sk} ;z: {S,.S2; 

.... s~}. 

Without loss of generality. assume {t,.t2 ..... t k } n is, ..... s~} = 

{S,.S2 ..... Sj} = {t,.t2.' .... til (i < M. 

If ttl, ...• tk }\{s, ..... sk} is contained in {r, ..... rk}' as s ~ is not 

adjacent to v3. s ~ sends.j3 edges to {r, ..... rk}. So there is a 

triangle containing v,. a contradiction. 

So there is a neighbour u of V3 which is not in {r, ..... rk} U is, ..... sk}' 

Assume ~ > 1. 

u is not adjacent to v2 and sends .j3 edges to {s" .... sk}. So G[S) 

contains at least (k -.j3).j3 + .j3 ~ k - 1 + .j3 ~ k - 1 + 2 = k + 1 edges. 

By Lemma 4. there are at least k( 1 S 1-2) edges from C,.C2 ..... Cis 1-2 
to 8. By k-regularity. 8 can accept at most k 181- 2(k+ 1) = k( 181-2) - 2 

edges. a contradiction. 

80 assume that .j3 = 1. 

V3 is adj acent to one vertex in {r,.r2' .... rk} and one vertex in is,. 

sk}. But k ~ 4 so V3 is adjacent to at least two vertices which 

are not in {r, ..... rk} U {s' ..... sk}. Let u.v be such two vertices, u 
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and v are not adjacent to v2' Both u and v send an edge to 
is, ..... sk L So G[S] has at least (k-J3)~ + 2 = k - 1 + 2 = k + 1 

edges. By Lemma 4. there are at least k( Is 1-2) edges from 

C, ..... Cis 1-2 to S. By k -regularity. S can accept at most 

k 1 S 1- 2(k + 1) = k( 1 S 1-2) - 2 edges, a contradiction. 

This contradiction proves the theorem. 0 

Corollary 1 Let G be a strongly regular graph with even order and 

k ~ 3. If CA(G) ~ 3k - 3. G is 2-extendable. 

Proof The cubic strongly regular graphs are K1 • K3 •3 and the 

Petersen graph. It is easy to verify the result holds for these graphs. 

o 

Since the girth of a strongly regular graph is at most 5, 
CA(G) ~ 5(k-2) = 5k - 10. If we were to try to prove the 3-

extendabi lity of stronger regular graphs by increas i ng the cycl ic edge 
connectivity, we would need CA(G) ~ 5k - 6. Hence it is necessary to 

look in another direction to find results of 3-extendable strongly 

regular graphs. 

4. Some 2-extendable strongly regular graphs 

In th is section, we gi ve some 2-extendab Ie strongl y regular graphs. 

Theorem 4 A strongly regular graph with even order is 2-

k 
extendable when 3" ~ ~ ~ k - 1 and k ~ 4. 

Proof Let G be a strongly regular graph of even order with 

k 
-<A<k-1. 3- 9 -

Suppose G is not 2-extendable. By the arguments of Theorem 3, if N 

is the number of edges from the components of G-S to S, then N ~ 

kisl - 4 and N ~_ k(ISI-2). 

3 
Claim 1 There are at least 2 k edges to S from a component Ci of 

or de rat I e as t t h r ee ( 1 ~ i ~ I S I -2 ) . 
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three. If Ci 

three. each vertex u of Ci is adjacent to at most two other vertices 

of Ci' There are therefore at least k - 2 > .t. edges from u to S as 
- 2 

k ~ 4. So there are 3)( ~ edges from Ci to S. 

If Ci has order at least five, by Lemma 3 and I3 ~ .t.. there are at 
3 

least ~ > K edges from C\' to S. 
3 - 2 

(1) Suppose there are at least three singleton components of G-S. Let 

these three vertices be v,. v2. v3' Let {r,. r2 ..... rkL {51, 52. sk}, 

{t,. t2' .... tkL be the neighbours of v,. v2. v3. respectively. 

Since v,. v2 are not adjacent. I {rl. r2 ..... rk}n{s,. 52 .... Sk} I I3. 
Wi thout loss of genera I i ty we may assume that {r1. r2 ..... rk} n 

{51. 52 ..... Sk} :: {r,. r2 ..... rj3} :: {Sl. S2 ..... sj3}. 

Since rj3+1' rj3+2' .... rk are not adjacent to v2. each of rj3+1' 

rI3+2' .... rk is adjacent to I3 of the vertices 5,_ 52- .... sk' Hence 

there are (k-I3)I3 edges from {rj3+1' rj3+2' .... rk} to {S1. s2 . .... sk}. But 

k 
3~ I3 ~ k - 1. so (k-I3)j1 ~ k-1. 

We also note that since v, and V3 are not adjacent. 

I {rl. r2 ..... rk}n{t,. t2' .... tk} I :: I3. 

::: 

( 1.1) 

. t 2 .... , tj3}' Then 

• 52 •••.• sk}n{tI3+1' 

Since none of 

{rl- r2 ..... rk}n{t 1 , ..... t k } 

. r2 ..... rk}n{tj3+1' +2- .... tkr 

+2 ..... tk} 0. 

v,. there 



4. there are at least k( 1 S 1-2) edges from C,. C2 .... Cis 1-2 to S. 

However. by the k-regularity. the number of edges going into S is at 

most k 1 S 1 - 2(k+l) = k( 1 S 1-2) - 2. This gives a contradiction. 

(1.2) Suppose {r,. r2. rk}n{t,. t 2 ..... tk} ;1!: {r,. r2 ..... r~}. 

Without loss of generality we may assume that {r,. r2 ..... r~ }n{t,. t 2• 

tk} = {r,. r2 ..... q} = {t" t 2 ..... td for some i < fj. 

If tj Ef: {r,. r2 ..... rk}u{s,. s2 ..... sd. then. since tj and v2 are not 

k 
adjacent. there are fjedges from t j to is,. S2 ..... sk}. But fj ~"3 . and 

k ~ 4. so. since fj is an integer. fj ~ 2. Hence G[S] has at least (k -fj)fj + 

fj ~(k-l) + 2 = k + 1 edges. By the k-regularity. at most k lsi - 2(k+l) 

= k( 1 S 12) - 2 edges can enter S. However. by Lemma 4. there are at 

least k( 1 S 1-2) edges from Cl • C2 ..... Cis 1-2 to S. This gives another 

contradiction. 

Hence we may suppose that it,. t 2 ..... tkLcJr,. r2 ..... rk}u{s,. S2. 

skL Since none of the vertices r~+l' r~+2 ..... rk is adjacent to v2 

and none of the vertices s~+l. s~+2' .... sk is adjacent to v,. there are 

(k-fj)fj ~ k-l edges from {r~+l' r~+2' .... rk} to is,. S2 ..... Sk} and at 

least k-l edges from {S~+l' s~+2' .... sk} to {r,. r2 ..... rkL 

(1 .2.1) Suppose there are at most (k -fj)fj - 2 edges between 

{r~+l' r~+2' .... rk} and {S~+l' s~+2' .... skL Then there are at least 

two edges incident with {s~+l' s~+2' .... sk} which are not incident with 

{r~+l' r~+2' .... rk}. Hence G[S] has at least (k-l) + 2 = k + 1 edges. 

Counting the edges into S by the two methods used above. again gives a 

cont radict ion. 

(1.2.2) Suppose there are (k-~)~ edges from {r~+l' r~+2' .... rk} to 

{s~+l' s~+2' .... sk}. Since r~ is not adjacent to V3. there are fj(~2) 

edges from r~ to {t,. t 2 ..... tkL The fact that G[S] contains at least 

(k -1) + 2 = k + 1 edges again leads to a contradict ion. 

(1.2.3) Hence we may suppose that there are (k-fj)fj-l edges between 

{r~+l' r~+2' .... rk} and {S~+l' s~+2' .... sk}. Let u E {ri+l. ri+2' .... r~} 

not be adjacent to {r~+l' r~+2' .... rk}u{s~+l' s~+2' .... sk L Since u and 
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V3 are not acent. there are .j3 from u to {t,. . ... tk L The 

usual counting argument now produces the contradiction. Hence any 

vertex in {ri+l' rj+2' r~} must be adjacent to a vertex in 1- 1. r~+2' 

rk}u {S~+l' S13+2. "'1 Sk}' 

Suppose two vert ices u. v exist in {ri + 1. rj +2, .... r ~}. As neither u 

nor v is adjacent to vJ, there are .j3 ~ 2 edges from each of u, v to 

{t" .... tk}. Hence again G[S] contains at least k + 1 edges and we 

again obtain a contradiction. 

Hence there is only one vertex in {ri+l' ri+2. rl3}. Thus i:: .j3-1. 

Now consider V3' First vJ is adjacent to r" r2. 1. Since. by 

the early part of (1.2), {t,. t21 "'1 tk}~{rl. r2 ..... rk}u{s,. 52 .... , 5k}, 

and the fact that v, and V3. and v2 and V3 have .j3 vertices in common. we 

see that V3 is adjacent to precisely one vertex each in {r13+" r13+2' "'1 

rk} and {S13+1' s13+2' '''' sk}. Hence k :: .j3 + 1. 

So there are (k-.j3).j3 - 1 + 1 :::: .j3 between rk :: + 1 and 

{s13' S13+1}. SO .j3 ~ 2 and k :: .j3 + 1 ~ 3. This contradicts the fact that 

k ~ 4. 

(2 ) Suppose there are exactly two singleton components of G - S. 

Let v, and v2 be the vertices of the singleton components. Let r" 

r2 ..... rk be the neighbours of v,. let s,. s2 ..... sk be the 

neighbours in S of v2' As v, and v2 are not adjacent. I {r,. 
rk} n {S1.· ... }I .j3. As each vertex of {r, ..... rk} \{s,. s2. 

sk} is not acent to v2. there are at least (k ).j3 ~ k - 1 

from {r,.r2 ..... rk} \ .52. "" 5k} to {S1. S2 ..... sk}. So G[S] 

contains at least k - 1 S can accept at most k I S I - 2(k -1) :: 

k I S I 2k + 2 

(2.1) 

three. Let 

there are at least two 

and be two odd 

of order at least 

order at least three. 

By Claim 1. there are at least ~ k edges from each of C3 and C4 to 
2 
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S. By Lemma 4, there are at least (ISI-4)k + 2 x ~-k::: klSI - k 
2 

edges from C" C2 ..... Cis 1-2 to S. contradicting the fact that S 

can accept at most k I S I - 2k + 2 edges. 

(2.2) Suppose there is only one odd component of order at least three. 

Now there are only three odd components of G S, so I S I ::: 5. Let 

C3 be the odd component of order at least three. 

(2.2.1) Suppose there is an even component C of G - S. If C has 

order at least four. by Lemma 3, there are at least ~ k edges from C 
3 

to S. If 

from 

by Lemma 3, there are at least ~ kedges 
3 

to S. So the number of from S to G-S is N ~ 

~ k + ~ k + 2k ::: 5k > 5k - 4. contradicting N ~ k I S I - 4. 
3 3 

I f I V(C 3 ) I 3. there are at least 3k - 6 edges from C3 to S. 

4 
N ~ ~k + 3k - 6 + 2k ::: 5k 

3 
- k - 6 > 5k - 4 for k ~ 4. contradict ing 
3 

N ~ k I S I 4. If C has order two, 

S. By Lemma 4. N~ 3k + 2k - 2 ::: 

klsl 4. 

(2.2 No even exists. 

(2.2.2.1) Supposel ~ 5. 

Lemma 3, there are at least ~ k 
3 

there are 2k 

5k - 2 > 5k 

from 

N > ~- k + 2k > 3k + 2. when k 4, contradict 
- 3 

at most k I S I - 2k + 2 ::: 5k - 2k + 2 ::: 

(2.2.2.2) Suppose I V(C3 ) I 3. 
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By Claim 1, there are at least ~ k edges from C3 to S. 
2 

N > ~ k + 2k :: 3k +..l If k ~ 5, N > 3k + 2. contradicting the fact - 2 2 . 

that S can accept at most 3k + 2 edges. So k:: 4. We see by Lemma 

1 that there is no(10.4.eX.fj)-graph. 

(2.3) No odd component of order at least three exists. Now there are 

only two odd components of G - S. Both are singletons. I S I :: 4. As 
C, is only acent to vert ices of S, k :: 4 . 

Suppose there is an even component C. By Lemma 4, there are at least 

k edges from C to S. Hence N ~ 3k > 2k + 2. But since I S I :: 4. this 

contradicts the fact that N ~ k I S I 2k + 2 :: 2k + 2. 

So no even component exists. However. by Lemma 1 there is no 

(6, 4. eX, with ..l ~ fj ~ k - 1. We conclude that there are not 
3 

precisely two singletons. 

(3) There is at most one singleton component of G - S . 

(3.1) Suppose there are at least four odd components with order at 

least three. Let C,. C2 • and Cot be four odd components with 

order at 

least three. There are Is 1-6 other odd components. By Claim 1, there 

are Ji k 
2 

edges from each of to S. By Lemma 4, 

N ~ 4 x -} k + k( Is 1-6) :: k I S I. contradicting N ~ k I S I - 4 . 

(3.2) Suppose there are exactly three odd components C1 • C2 and C3 

with order at least three. 

(3.2.1) Suppose there is an even component C of G - S. 



Since C has order at least two, by Lemma 3, there are at least 

2$ .?::. 2. k edges from C to S. By Claim 1 there are at least d. k edges 
3 2 

from C,. C2, C3 to S. Hence by Lemma 4, N .?::.1 + 3 x ~ k + k (I S 1 - 5) 

= k 1 S I + ~ k > k 1 S 1 - 4. This contradicts the fact that N ~ k 1 S 1 - 4. 

(3.2.2) No even component exists. 

Suppose one of C" C2 and C3 has order at least seven. There are at 

least f k edges from that component to S. By Claim 1 and Lemma 3, 

N .?::. ~ k + 2 x ~ k + k( 1 S 1-5) = k 1 S I + ~ > k 1 S 1 - 4, contradicting N 

~ k 1 S I - 4. 

So none of C,. C2• C3 has order larger than five. 

By Lemma 3, there are at least .§.. k edges from each of Ci (i = 1.2,3) 
3 

to S. N.?::. 3 x .§.. k + k( Is 1-5) > k I S I - 4. contradicting N ~ k I S I - 4 
3 

(3.2.2.2) Suppose I V(C,) I 

By Lemma 3. there are at least .§.. k edges from each of C, and C2 to S 
3 

and there are at least 3k - 6 edges from C3 to S. 

N .?::. 2 x ~ k + 3k - 6 + k( 1 S 1-5) = k I S I + f k - 6 > k lsi - 4 for k.?::. 

4, a contradiction. 
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(3.2.2.3) Suppose 1 V(C,) 1 = 5 and 1 V(C 2) 1 = 1 V(C 3) 1 = 3. 

There are at least -} k edges from C, to S and there are at least 3k 

- 6 edges from each of C2 and C3 to S. 

N ~ } k + 2 (3 k - 6) + k ( I S 1-5) = k I s I + ~ k - 1 2 > k 1 s 1 - 4 for k ~ 4. 

a contradict ion. 

There are at least 3k-6 edges from each of C,. C2 and C3 to S. N 

~ 3(3k -6) + k ( 1 S 1-5) = k 1 S I + 4k - 18 > k 1 S 1 - 4 for k ~ 4. a 

contradict ion. 

(3.3) Suppose there are exactly two odd components C, and C2 with 

order at least three. 

(3.3.1) Suppose that there is an even component C of G - S. 

If C has order at least four. there are at least ..1. k edges from C to 
3 

S. 

N > ..1. k + 2 )( ~ k + k( 1 S 1-4) = k 1 s I + L > k 1 S 1 - 4. contradicting 
- 3 2 3 

N ~ k I s I - 4. If C has order two. there are 2k - 2 edges from C 

to S. N ~ 2k - 2 + 2 )( ~ k + k( I S 1-4) = k 1 s 1 + k 2 > k I S I - 4. a 
2 

contradict ion. 

(3.3.2) No even component exists. 

Suppose one of C, and C2 has order at least seven. 

Assume 1 V(C,) 1 ~ 7. there are at least f k edges from C, to S. 

If I V(C2) 1 ~ 5. there are at least.§.. k edges from C2 to S. 
3 



N> l k +.§..k + k(ISI-4) = klSI > klSI - 4. contradicting N~klsl-4. 
- 3 3 

If 1 V(C 2) 1 = 3. there are at least 3k - 6 edges from C2 to S. 

N > l k + 3k - 6 + k( 1 S 1 - 4) = k I S I + .1. k - 6 > k lsi - 4 for k ~ 4. 
- 3 3 

a contradiction. 

None of C, and C2 has order larger than five. 

(3.3.2.1) Suppose IV(c,)1 

There are at least 5k-20 edges from each of C, and C2 to S. 

N ~ 2(5k-20) + k( I S 1- 4) = k lsi + 6k 40. When k ~ 7. N > k 1 S 1- 4. 

a contradiction. 

Suppose there is a singleton component C,3. 1 S I = 5. As C,3 is only 

adjacent to vertices of S. k ~ 5. By Lemma 1. the only two possible 

(16.k.o<.13)-graphs for 4 ~ k ~ 5 are (16.5,0,2) and (16.5,2.1). 

Suppose the graph is a (16.5,O,2)-graph. As C3 is adjacent to all 

vertices of Sand S contains two independent edges, there is a 

triangle containing C3 , contradicting eX = O. 

Suppose the graph is a (16.5.2,O-graph. As 13 ~ -~ and k ~ 4. 13 ~ 2. 

A (16.5.2.1 )-graph doesn't satisfy the assumption of the theorem. 

Now no singleton exists. 1 S I = 4. We can veri fy by Lemma 2 that 

there are no (14.k,oc13)-graphs for 4 ~ k ~ 6. 

(3.3.2.2) Suppose I V(C,) 1 = 5 and 1 V(C 2) I = 3. 

There are at least 
5 "3 k edges from C, to S and there are at least 

3k - 6 edges from C2 to S. N ~ } k + 3k - 6 + k( I S 1- 4) = k 1 S 1 + 

2.. k - 6 > k 1 S 1 - 4 for k ~ 4, a contradiction. 
3 
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(3.3.2.3) Suppose I V(C,) I ::: 1 V(C 2) 1 ::: 3. 

There are at least 3k 6 edges from each of C, and C2 to S. N.?::.. 

2(3k-6) + k( Is 1- 4) ::: k I S I + 2k - 12. N > k lsi - 4 for k.?::.. 5, a 

contradiction. 

If k::: 4, suppose there is a singleton component C3 . 1 S I ::: 5. We can 

verify by Lemma 1 that there is no (12,4.o{,M-graph. 

Now no singleton exists and lsi::: 4. We can veri fy by Lemma 1 that 

there is no (10.4,o{.~)-graph. 

(3.4) Suppose there is exactly one odd component C, with order at 

least three. 

Now I s I ::: 4 and there is a singleton component C2• 

(3.4.1 ) Suppose there is an even component C of G - S. 

If C has order at least four, there are at least ~k from C to S. 
3 

If I V(C,) I ~ 5, there are at least ~ kedges from C, to S. 
3 

N > ~ k + ~ k + k ::: 4k > 4k - 4, contradicting N ~ k I S I - 4. If 
- 3 3 

I V(e,) I ::: 3, there are at least 3k - 6 edges from C, to S. 

N .?::.. {k + 3k- 6 + k > 4k - 4 for k.?::.. 4, contradicting N ~ k I S I 4. 

If C has order two, there are 2k 2 edges from C to S. By Claim 

1, there are at least ~ k edges from C, to S. N.?::.. 2k - 2 + ~ k + k ::: 
2 2 

4k + JL - 2 > 4k - 4, a contradiction. 
2 

(3.4.2) No even component exists. 

(3.4.2.1) Suppose I V(C,) I .?::.. 9. 
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There are at least JL k edges from C, to S. N > JL k + k = 4k > 4k - 4. 
3 - 3 

contradicting N ~ k I S I - 4. 

(3.4.2.2) Suppose 3 ~ I V(C,) I ~ 7. 

Now I S I = 4. C2 is only adjacent to vertices of S. So k = 4. We 

can verify by Lemma that there are no (v.4.eX.:t3)-graphs with 

for v = 8. 10 or 12. o 

Theorem 5: Every strongly regular graph of even order with :t3 k 

and k ~ 4 is 2-extendable. except the (6.4.2.4)-graph. 

Proof: Let G be a strongly regular graph (v.k,eX.:t3) with even order. 

:t3 = k and k ~ 4. 

If eX = O. G is Kk .k . Hence G is 2-extendable. So assume eX;t O. 

Let w be a vertex of G and W"W2 ..... wk be the vertices adjacent 

to w. As :t3 = k. every vertex of V(G) - {W.W,.W2' .... wk} is 

adjacent to w,. W2 ..... wk' As 0( > 0 . there is an edge e = wiw j' 

All the vertices of V(G) - {W,.W2 ..... Wk} are common neighbours of 

wi and W j' So eX ~ V - k. Since wand wi have eX common 

neighbours. there are eX edges from wi to {w, ..... Wk}. So k ~ 

2(v-k). Therefore k > 2 v. 
- 3 

When v ~ 12. k ~ ~ + 2. so by Lemma 2. G is 2-extendable. 

For v ~ 10. :t3 = k ~ 4 and 0( > O. the only parameters which satisfy 

Lemma 1 are given below 

(10.9.8.9) 

(10.8.6.8) 

(10.7.4.7) 

this graph is K,o and is 2-extendable 

k > Jl.. + 2 so these graphs are 2-extendab Ie - 2 . 

see below 
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(10.6.2.6) see below 
(8.7.6.7) this graph is Kg and is 2-extendable 

(8.6.4.6) k ~ JL + 2. so these graphs are 2-extendable 
2 

(8.5.2.5) see below 

(6.5.4.5) this graph is Ks and is 2-extendab le 

(6.4.2.4) see below 

In the (10,7,4,7)-graphs, let w be adjacent to the set W = {w" W2 ..... 

W7}. Then G[W] is a 0.4.1,4)-graph. However. the neighbours N of w, 

in G[W] are adjacent to three vertices. Since not all members of N are 

adjacent, the value of 0< in G[W] is at least 3, a contradiction. 

Consider the graphs (10.6,2.6). By previous arguments all the vertices 

of V(G) - {w. w,. W2 ••.•• We} are adjacent to all the vertices 

{W'.W2 •...• Ws}. Since there must be an edge between Wi and Wj for 

some i, j. this means that Wi and w j have at least 4 common 

neighbours. so 0{ ~ 4. a contradiction. 

A similar argument with (8,5.2.5) shows that 0< ~ 3. a contradiction. 

In Figure 1 we show the (6,4.2.4)-graph. The edges 

be extended to a perfect matching. 

Figure 1 
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Corollary 2: A strongly regular graph with even order and k ~ 3 is 

2-extendable when 13 ~ }. except the Petersen graph and the (6.4.2.4)

graph. 

Corollary 3: A strongly regular graph with k = 3. 4. 5. 6 is 2-
extendable unless it is the Petersf!n graph or the (6.4.2.4)-graph. 

Proof. For k = 4.5.6 if 13 ~ ! k implies 13 ~ 2. So we only need test 

the 2-extendability of (v. k. 0(, 1 )-graphs with k = 4,5,6. There are no 

such graphs. 0 

We conjecture that all but a few strongly regular graphs are 2-
extendab Ie. 

5 • A fami ly of strongly regular graphs and their n
extendabi 1 i ty 

Given any n. we now construct a family of strongly regular graphs. each 
of which is n-extendable. 

Let G be a graph and S be a vertex set and S n V(G) = 0. G + S 

is defined by V(G + S) = V(G) U S and each vertex of S is joined to 
all vertices of G. 

We define a fami ly of graphs Si (i = 0.1 .... ) by 

( 1) So = C". a 4-cycle. 

(2) Assume Sk is defined. Sk+l = Sk + {uk+l' vk+l}, where uk+l' 

vk+l e: V(Sk)' 

Theorem 6 The fami ly Si (i = 0.1 .... ) is a family of strongly 

regular graphs. Each Si is a (4+2i. 2+2i. 21. 2+2i)-graph (i = 0.1 .... ). 
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Proof It is easy to verify that So is a (4.2.0.2)-graph. Assume Si 

is a (4+2i. 2+2i. 2i. 2+2i)-graph. By definition, Si+1:: Si + {Ut+l.Vt+1}. 

Hence V(St+,):: 4+2i+2 :: 4 + 20+'). As ui+l and vi+' are joined to 

all vertices of Si' d(ui +,) :: d(vi + 1) :: 4 + 2i :: 2 + 2(i + 1). For each 

vertex u in V(Si)' as u is joined to ui + 1 and vi +, • 

d(u) :: 2 + 2i + 2 :: 2 + 2(i+1). So St+, is [2 + 2(i+1)]-regular. 

Let u and v be a pair of non-adjacent vertices. If U:: ui +1 and 

v :: vi+" all the vertices of Si are common neighbours of u and v. 

So u and v have 4 + 2i :: 2 + 20+ 1) common neighbours. if U,V 
E VeSt) by the induction hypothesis. u and v have 2 + 2i common 

neighbours in St. ui+l and vi+' are also common neighbours of u and 

v. So u and v have 2 + 2i + 2 :: 2 ... 2(i+ 1) common neighbours. 

Hence ~(Si ... l):: 2 + 2(i+1). 

Let u and v be a pair of adjacent vertices. If U:: ut+1 or vi+l and 

v is in Ves i ), as Si is 2 + 21 regular, u and v have exactly 

2 + 2i :: 2(i ... 1) common neighbours. If u and v are in ves i). by the 

induction hypothesis. u and v have 2t common neighbours in St- But 

ui+l and vi+l are also common neighbours of u and v. So u and v 

have 2i + 2 :: 2(i+1) common neighbours. Hence o«Si+'):: 2(i+1). Si+1 

is therefore a (4 + 2(i+1), 2 + 20+1), 2(i+1). 2 + 2(i ... 1)-graph. 0 

Theorem 7 S1 is i-extendable (i:: 0,1 .... ). 

Proof As the degree 

by Lemma 2. 

k :: 2 ... 2i :: 2 ... i + i > .J2.. ... i. Si 
- 2 
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