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Abstract: Let B be the number of vertices commonly adjacent to any
pair of non-adjacent vertices. It is proved that every strongly regular
graph with even order and B > 1 is 1-extendable. We also show that
every strongly regular graph of degree at least 3 and cyclic edge
connectivity at least 3k-3 is 2-extendable. Strongly regular graphs of

k
even order and of degree k at least 3 with § ZE are 2-extendable,

except the Petersen graph and one other graph.

1. Introduction and terminology
All graphs considered are finite, undirected, connected and simple.

A graph G is called strongly regular if G 1is k-regular and there are
two integers’ o8 > O such that for each pair of vertices u and v, u
2 v, the number of the common neighbours of u and v is o or §
according as u and v are adjacent or non-adjacent. A strongly regular
graph with v vertices is called a (v, k, « B)-graph. These general
parameters will be assumed unless stated otherwise.

A graph G is called cyclically m-edge-connected if ISI > m for each
edge cutset S of G such that there are two components in G - S each
of which has a cycle. The set S is called a cyclic edge cutset. The
size of a minimal cyclic edge cutset is called the cyclic edge
connectivity, and is denoted by cX(G).
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Suppose G has a perfect matching. A graph G 1is called n-extendable
if for the given integer n < (v-2)/2, G has n independent edges and
any n independent edges are contained in a perfect matching of G.

In [1], the n-extendability of edge (vertex) transitive graphs is
discussed. When the cyclic edge connectivity is large enough, an edge
transitive graph is n-extendable. We show here that there is a similar
relation between cyclic edge connectivity and n-extendability in strongly
regular graphs. We also find some n-extendable strongly regular graphs
for arbitrary n.

All terminology and notation not defined in this paper can be found in
[21.

Reference [4] provides a strong background for matching theory and [6]
gives a survey of results in strongly regular graphs.

Lemma 1 If G is a strongly regular graph, then k(k-ot=1) = (v-k-1)8.
Proof See Theorem 2.2 in [3]. a

If G is a cubic strongly regular graph, then by Lemma 1, 3(2-) =
(v-4)B. For o =2, we find G =Ky If o =1, then v is odd which
is not possible since G is cubic. If o =0, then B =1 and v = 10
or =3 and v =6. For B =1, we obtain the Petersen graph P,
while for 8 = 3 we get Kjz3j.

U
Lemma 2 Let G be a graph with even order. If §(G) 3-2— + n, then

G is n-extendable.

Proof See [5]. Q

2. Matching of strongly regular graphs

In this section, we show that every connected strongly regular graph
with even order has a perfect matching. Furthermore, every edge of
such a graph lies in a perfect matching.




Let G be a strongly regular graph with even order and 8 = 0. By
Lemma 1, o« = k-1. Let u,v be adjacent in G. Then we may suppose
that u,v are both adjacent to w;, Wy, ..., Wg_1. Let A=

{uv,wywa..owgq b I wiwj are not adjacent then they are both
adjacent to u and v. This contradicts the fact that 8 = 0. Hence
G[A] =Ky,q, where GI[A] is the graph induced by the vertex set A.

Llet xe V(B) - A. Now x cannot be adjacent to any vertex in A
since each of these vertices has degree k already. Hence x must be in
another component isomorphic to Kg,1.

S0 G =rKg,1. Such graphs are 1- and 2-extendable if and only if k s
odd. We therefore assume that B > 1 in the rest of this paper.

Let G be a strongly regular graph with even order and let C,,Cy, ...,
Cy be the components of G - S.

Lemma 3 Each vertex of Ci{ sends at least B edges to S
(i=1,2,...,1).

Proof Let u be a vertex of C; and v be a vertex of Cj (iz]).

Since u and v are non-adjacent, u and v have § common
neighbours. Those neighbours can only be in S. So every vertex of C;

i
sends at least B edges to S. a

Lemma 4 There are at least k edges from C; to S (i=1,2, ..., t).

Proof Let m be the number of vertices of C;. Let & be the
minimum number of edges from a vertex of C; to S. By Lemma 3,
¥ > B> 1. There are at least m¥ edges from C; to s.

Suppose m¥ < k. Then m < k/%. Suppose m >k - & + 1. Then
k/8 >k -% + 1. Hence k¥ - %2 + ¥ <k. Sod¥2-k¥ + k - & > 0 and
(7-k)(Z-1) > 0.

But ¥ <k and % > 1. This contradiction shows that m < k - & + 1.
But now each vertex u of C; is adjacent to at most k - & - 1
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vertices in Ci. So there are at least ¥ + 1 edges from u to S by

the k-regularity. This contradicts the assumption on the minimality of
¥. So m¥ > k. Q

Theorem 1 Every strongly regular graph of even order (B>1) has a
perfect matching.

Proof Assume that G has no perfect matching, that S C V(G) such
that o(G-S) > |S| where o(G-S) is the number of odd component of
G-S, and that C,, C,, ..., C; are the components of G-S.

By the k-regularity of G, S accepts at most k]s[ edges from C,,C,,
«n Cy. By Lemma 4, Cy.Cp, ... Cy send at least kt > k|S| edges to

S. This is a contradiction. Q

Theorem 2 Every strongly regular graph G with even order is
1-extendable (8>1).

Proof Suppose G is not 1-extendable. There is an edge e = uv such
that G - {u,vl does not have a perfect matching. Let G' = G - {u.v}.
By Tutte's Theorem, there is a set S' C V(G') such that o(G'-S’) >
lS'I. By parity, o(G'-S') > |S| +2. Let S =58"U {uvh olG-S) =
o(6'-s") > |s'| + 2 = [s]. By Theorem 1, 0(6-S) < |s|. so

o(G-S) =|S|. Let C;.Cy ..., C|s| be the odd components of G - .

By k-regularity, S can accept at most k|S| - 2 edges from C;.C,,
CISI' By Lemma 4, there are at least klsf edges from C;.Cy, ...,
C|s| to S. This is a contradiction. Q

Not every strongly regular graph is 2-extendable. The Petersen graph is
a counterexample,

3. Relation between cyclic edge connectivity and 2-
extendability

In [1], it was proved that an edge (vertex) transitive graph is n-
extendable when the cyclic edge connectivity is large enough. For
strongly regular graphs, we have a similar relation between cyclic edge
connectivity and 2-extendability.
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Theorem 3 Let G be a strongly regular graph with even order and
k> 4. If cx(G) > 3k - 3, G is 2-extendable.

Proof Suppose G is not 2-extendable. There are two edges ei = UV

(i=1,2) such that G - {u;,vy.us.v,} does not have a perfect matching.
Let G6' = 6 - {uy.vy.up,val. By Tutte's Theorem, there is a set

S' C V(G') such that o(6'-8') > |s'|. By parity, o(6'-S’) = |s*| + 2m
(m>1). Let

§ = 8" U {u;.vy.upvpl. 0(G-S) = o(G'-8) = |s'| + 2m = |s| - 4 + 2m.
By Theorem 1, o(6-S) < |S|. So 1 <m < 2.

1f o(6-S) = |S|. there are at least k|S| edges from the components
of G-S to S by Lemma 4. By the k-regularity, S can accept at
most k|S| - 4 edges, a contradiction. So 0o(G-S) = |s| - 2 and
m=1. Let C4.Cy ... C|s|-2 be the odd components of G - S.

Let N be the number of edges from the components of G - S to S.
By k-regularity, N < k|s| - 4. By Lemma 4, N > k(|s|-2). So there
are at most k « k|S| - 4 - k(]|S]|-2) = 3k - 4 edges from a component
of G - S to S. Hence every component of G - S is a tree or else the
fact the cA(G) > 3k-3 is contradicted.

Claim 1 Every component of G - S has order at most three.

Let b be the order of a component C of G - S. But C is a tree. So
kb - 2(b-1) < 3k - 4. Hence (k-2) b < 3k - 6. So b < 3.

Claim 2 of = 0 and so no triangle exists.

If there is a triangle T , and the edge cut (T,G-T) is a cyclic edge
cutset, it has size 3k - 6, contradicting cX(G) > 3k - 3. Suppose
(T.G-T) is not a cyclic edge cutset. Let c be the order of G - T. As
G - T isa forest, kc - 2(c-1) < 3k - 6. So ¢ < 3. By hypothesis G
has even order. So G has order four. But this is not possible since

k > 4.

We now show that G-S contains at least three singletons.

(1) If there is a component C of Cy.Cy, .., CISI‘2 with order three,
then there are at least three singleton components of G - S.
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Without loss of generality, assume C; has order three. As C; is a
tree, there are kx3 - 2x(3-1) = 3k - 4 edges from C, to S. By
counting the edges from the components of G - S to S, there are
exactly k edges from each of C,,Cj, ..., Clsl'2 to S. But C,Cjo ...
C|s|-2 are trees. So, since k > 4, C,.Cy, ..., Cls|'2 are singletons.
As there are  k|S| - 4 edges from Cy.Cy. ..., Cls|-2 to s, 6ls]
has exactly two edges. ' :

If there are at most two singleton components of G - S the number of
odd components of G - § is at most three and |S| < 5. Now 6[S]
contains two independent edges and C, is a singleton. As there are at
least four edges from C, to S, there is always a triangle containing
C,. contradicting Claim 2. '

(2) If each of C,.,Cy. ..., C}sl—2 is a singleton, then there are at least
three singleton components of G - S.

Since |S{ > 4, o(G-S) = ISI - 2> 2. Suppose |S| -2 =2. Then
]S| =4 and S contains two independent edges. But there are at least
three edges from C; to S. So there is a triangle, contradicting Claim
2.

We may therefore assume that vy, v,, vz are singletons in o(G-S).

Let ry.ry, ... ry be the neighbours of vy and s;.sy, ..., s be the
neighbours of v,. By the definition of strongly reguiar graphs, as v,
and v, are non-adjacent, |{ry.ry. ... reh N {sy.s, ..., st =B
Without loss of generality, assume {ry.ry, ..., redt O {sqy.5. o sk =
{ryrae o rgl = sy, sy, .., sgh. Now g+1. - g are not adjacent to
Vy, SO each of FB+1s - g sends B edges to SB4+1:+ wn Sk. There are
(k-B)§ edges from {rg, ;. ... r¢} to {sg.1. .. syl When B =k and

o0 =0, G is Kk,k' and hence is 2-extendable. For 1 < B < k-1, the
quadratic (k-B)B is greater than or equal to k-1.

Let ty.ty, ..., ty be the neighbours of vz in S. Now vz has 8
common neighbours with v,.

Suppose {ty.ta, ... t} N {sy,s5, ..., skt = {sy.55, ..., sgh = {ty.tg, ..., tgt
= {r1,r2. veey r)a}

192




Then {tﬁ,,], tﬁ*?. " tk} n {55*1'33*2' .o Skl = # and {tB+1.t5+2.

wo tgb O Aryra, oLl = &0 Otherwise, vy and vy, or vz and vy,
have more than B common neighbours. None of t5,1,t3*2, e by s
adjacent to v,. Hence each of tﬁq, ... ty sends B edges to
SB+1:584+2: - Sk. There are (k-$)B > k - 1 edges from {tg,q. ..., ty}
to {sg,1. ... sy}. So GI[S] has at least 2(k-1) > k + 1 edges for

k > 4. By Lemma 4, there are at least k(|S|-2) edges from C;.C,, ...,
Clsl_2 to S. By k-regularity, S can accept at most klsl - 2(k+1) =
k(|S|-2) - 2 edges. a contradiction.

We may therefore suppose that {ty.t, ... t} N {sy.55, ..., sgl = {sy.50;
. sgh
Without loss of generality, assume {ty,ty, ..., t} N {sy, ..., sgh =

{51.82. cees Si} = {t1.t2.' . ti} (i < B).

If {ty, o teMNsq, ., s is contained in {ry, ..., rgh as Sg is not
adjacent to wvj, sg sends B edges to {ry, ... rg}l. So there is a
triangle containing v;, a contradiction.

So there is a neighbour u of vz which is not in {ry, ..., rb U isy, ..., sih.

Assume § > 1,

u is not adjacent to v, and sends B edges to f{s;, .., sg}. So G[S]
contains at least (k-8)B + B>k -1+ B>k -1+2 = k + 1 edges.
By Lemma 4, there are at least k(|S|-2) edges from C;.C,, ..., Cls|-2

to S. By k-regularity, S can accept at most k|S|- 2(k+1) = k(|S|-2) -2
edges, a contradiction.

So assume that § = 1.

vs is adjacent to one vertex in {ry.ry, .., rl and one vertex in {s,,
. sgho But k> 4 so vz is adjacent to at least two vertices which

are not in {ry, ... b U {sy,...s ). Let uv be such two vertices, u
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and v are not adjacent to v,. Both u and v send an edge to

{s1, .... sy}, So G[S] has at least (k-B)B + 2 =k - 1 + 2 =k + 1
edges. By Lemma 4, there are at least k(]SI»Z) edges from
Cyiovens C|s|-2 to S. By k-regularity, S can accept at most
k|s|- 2k « 1) = k(|s|-2) - 2 edges, a contradiction.

This contradiction proves the theorem. a

Corollary 1 Let G be a strongly regular graph with even order and
k>3, If cA(G) >3k - 3, G is 2-extendable.

Proof  The cubic strongly regular graphs are K4, K3,z and the

Petersen graph. It is easy to verify the result holds for these graphs.
a

Since the girth of a strongly regular graph is at most 5,

ch(G) < 5(k-2) = 5k - 10. If we were to try to prove the 3-
extendability of stronger regular graphs by increasing the cyclic edge
connectivity, we would need ci(G) > 5k - 6. Hence it is necessary to
look in another direction to find results of 3-extendable strongly
regular graphs.

4. Some 2-extendable strongly regular graphs
In this section, we give some 2-extendable strongly regular graphs.

Theorem 4 A strongly regular graph with even order is 2-

K
extendable when —3~_5 B<k-1 and k > 4.

Proof Let G be a strongly regular graph of even order with
k

giﬁsk—k

Suppose G is not 2-extendable. By the arguments of Theorem 3, if N
is the number of edges from the components of G-S to S, then N <
k[s| -4 and N> k(|s]-2).

3
Claim 1 There are at least £y k edges to S from a component C; of

order at least three (1515_|SI-2).
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Let C; be an odd component of order at least three. If C; has order
three, each vertex u of C; is adjacent to at most two other vertices

of Ci. There are therefore at least k - 2 32— edges fromu to S as
k > 4. So there are 3 x KZ' edges from C; to S.

It Ci has order at least five, by Lemma 3 and B > K , there are at
3

least

oK ~3—2L edges from C; to S.

=z
3

(1) Suppose there are at least three singleton components of G-S. Let

these three vertices be vy, vo, vz. Let {ry, ro, ... rh sy, so. .o, s¢l.
{ty. ty. ..., t}. be the neighbours of vy, vy, vz, respectively.

Since vy, vo are not adjacent, |{r1. Fo. o Tkinisq, so, .. sk}l = B.
Without loss of generality we may assume that {ry, ro, ..., rgl N
{51, S, .« Sk} = {l’], Fo, ooy rg} = {51. S92, . 35}

Since rg,1.rg.o. ... [y are not adjacent to v,, each of FBet.
rg+2. - Mg is adjacent to § of the vertices sy, s5, ..., sg. Hence
there are (k-B)B edges from {rg.;.rg.p. ... gt to {sy. s, ..., sgl. But

k
gf_ﬁik - 1. s0 (k-8)B > k -1.

We also note that since vy and vz are not adjacent,
l{r], Fo. v, TNty to, ., tk}l = B.

(1.0 Suppose {ry, ra. ... rdnity, to, o ted = {rq. rp, o rgl
= {ty. to . tgh Then {ry, ro. o rbnitg g, tgap. ot} = 2 and
{s1, sq. ..., Sk}n{tﬁﬂ. tﬁ+2' a2 oo

Since none of tg,q, tg,o. ... ty is adjacent to vy, there are B
edges from each of tg.q, tg,o, ... ty to {ry. rp, ..., rgl. Hence there are
(k-B)B > k - 1 edges from {tg,q, tg,o. ..., tc} to {ry, ry, ., 1l So

GIS] has at least 2(k-1) edges. Since k > 4, 2{k-1Y > ¥ + 1. By Lemma



4. there are at least k(|S|-2) edges from C;, C, ..., Cls|-2 tos.

However, by the k-regularity, the number of edges going into S is at
most k|S| - 2(k«1) = k(|S|-2) - 2. This gives a contradiction.

(1.2) Suppose {ry, ra, ... rhnity, ta, .. ted = {ry, o, .o rgt.
Without loss of generality we may assume that {rq, ro. ..., rginity, ty,
s tk} = {r1. T ri} = {t‘lv tz, vens tl} for some i < 5

If tj & {ry, ra, o redUisy, sy, ..., s¢l, then, since tj and v, are not
k
adjacent, there are B edges from tj to {sy, sg, .... sxl. But B 3?' and

k > 4, so, since B is an integer, B > 2. Hence G[S] has at least (k-B)B +
B >(k-1) + 2 = k + 1 edges. By the k-regularity, at most k|s| - 2(k+1)
= k(|S|2) - 2 edges can enter S. However, by Lemma 4, there are at

least k(|S|~2) edges from C,, C,, ..., C|5|_2 to S. This gives another
contradiction.
Hence we may suppose that {t, t;, ... telClry, ra, ..., rulsy, sy,
. sgl. Since none of the vertices FB+1: TR+ - g is adjacent to v,
and none of the vertices sg,1, Sg+2. .- Sk is adjacent to vy, there are
(k-B)B > k-1 edges from {rg,1. rg.p. ... rgh to {sy, sy ..., sg} and at
least k-1 edges from {sg.1.sg.2. ... s¢} to {ry, ra, ... r¢h

(1.2.1)  Suppose there are at most (k-B)B - 2 edges between

{rge1. rge2. ... rgb and {sg,q. sg.p. ... s¢b. Then there are at least
two edges incident with {sg.1.58.2. ... sx} which are not incident with
{rge1. rgs2. o gl Hence GIS] has at least (k-1) + 2 = k + 1 edges.

Counting the edges into S by the two methods used above, again gives a
contradiction.

(1.2.2) Suppose there are (k-8)B edges from {r3+1, FBe20 womn rq¢t to
{sgv1. sgeg. o sgh. Since rg is not adjacent to vj, there are B(>2)
edges from rg to {ty, tp, ..., tg}. The fact that GIS] contains at least
(k-1) + 2 = k + 1 edges again leads to a contradiction.

(1.2.3) Hence we may suppose that there are (k-B)B-1 edges between

{rger. rgez. oo ek and {sguq. sgap. o sgh Let u e {ri,q, rjag. ... rgt
not be adjacent to {r3,1, TR+2s wom rk}u{sﬁﬂ, SB+2. - Sk} Since u and
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vz are not adjacent, there are § edges from u to {t;, t,, ..., ty}. The
usual counting argument now produces the contradiction. Hence any
vertex in {ri,q, ri,2. .... rgl must be adjacent to a vertex in {rg,. rg.o.
ooy rk}u {Sﬁ+1' SBe2r weer Sk}.

Suppose two vertices u, v exist in {ri,j. ri,2, ... rgl. As neither u
nor v is adjacent to vz, there are B > 2 edges from each of u, v to
{ty. ta. ... tx}. Hence again G[S] contains at least k + 1 edges and we
again obtain a contradiction.

Hence there is only one vertex in {ri,y. ri,p, .... rgl. Thus i = B -1.
Now consider vz. First vz is adjacent to ry, ry, ..., rg-1. Since, by
the early part of (1.2), {t;. to, ..., txlCiry. ra. o, retulsy, sy, o, sih,

and the fact that v, and vz, and v, and vy have B vertices in common, we
see that v; is adjacent to precisely one vertex each in {rﬁ,1. PR+ woon

ret and {sg,y. sg.o. ... sgh. Hence k = § + 1.

So there are (k-8)B - 1 + 1 = B edges between ry = rg.1 and
{sg.sg.1}. So B <2andk =8+ 1< 3. This contradicts the fact that
k> 4.

(2) sSuppose there are exactly two singleton components of G - S.

Let v; and vy be the vertices of the singleton components. Let ry,

2. ... Iy Dbe the neighbours of vy, let sy, sy, ..., sy be the
neighbours in S of vy. As vy and v, are not adjacent, [{rl,
red 0 sy, sk}! = B . As each vertex of {ry, ... rgh N\ {sq, s, .,
st is not adjacent to vy, there are at least (k-B)B > k - 1 edges
from {rirg, o b Nfsyisg, o sgb to {sq.sy, .. sgh. So 6IS]
contains at least k - 1 edges. S can accept at most k]St - 2(k-1) =

kIS] - 2k + 2 edges.

(2.1) Suppose there are at least two odd components of order at least
three. Let C;z and C4 be two odd components of order at least three.

By Claim 1, there are at least 'g*k edges from each of Cz3 and C4 to
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5. By Lemma 4, there are at least (|S|-4)k + 2 x Sk = k[s]| - k

edges from Cy, Cy, ..., C{s{-z to S, contradicting the fact that S
can accept at most k |S[ - 2k + 2 edges.

(2.2) Suppose there is only one odd component of order at least three.

Now there are only three odd components of G - S, so [Sl = 5. Let
C3z be the odd component of order at least three.

(2.2.1) Suppose there is an even component C of G - S. If C has

order at least four, by Lemma 3, there are at least ﬂgk edges from C

to S, If [V(Cg)! > 5, by Lemma 3, there are at least %k edges

from Cz; to S. So the number of edges from S to G-S is N >

is‘-k +—§;—k+ 2k = 5k > 5k - 4, contradicting N < k|S]| - 4.

If IV(C3)| = 3, there are at least 3k - 6 edges from Cz to S.

4
N?_—";k +3km6+2k:5k+—3—kw6>5k‘4 for k > 4, contradicting
N < kIS] - 4. If C has order two, there are 2k - 2 edges from C to

S. By Lemma 4, N > 3k + 2k - 2 = 5k - 2 > 5k - 4, contradicting N <
kls| - 4.

(2.2.2) No even component exists.

(2.2.2.1) Suppose]V(Cs)! > 5.

By Lemma 3, there are at least %k edges from Cjz to S.

N > % k + 2k > 3k + 2, when Kk > 4, contradicting the fact that S can

accept at most le! -2k +2 = Bk -2k +2 = 3k + 2 edges.

(2.2.2.2) Suppose [V(Cs)[ = 3.
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By Claim 1, there are at least %k edges from Cz to S.

k

5 If k>S5, N> 3k + 2, contradicting the fact

N>-;’-k+2k=3k+

that S§ can accept at most 3k + 2 edges. So k = 4. We see by Lemma
1 that there is no(10.4,0.8)-graph.

(2.3) No odd component of order at least three exists. Now there are
only two odd components of G - S. Both are singletons. IS{ =4 . As
Cy is only adjacent to vertices of S, k = 4 .

Suppose there is an even component C. By Lemma 4, there are at least
k edges from C to S. Hence N > 3k > 2k + 2. But since ISI = 4, this
contradicts the fact that N < k ISI -2k + 2 =2k + 2.

So no even component exists. However, by Lemma 1 there is no

(6, 4, o B)-graph with % < B <k - 1. We conclude that there are not
precisely two singletons.

(3) There is at most one singleton component of G - S .

(3.1)  Suppose there are at least four odd components with order at
least three. Let C,, C;, C3 and C4 be four odd components with
order at

least three. There are ]S[—G other odd components. By Claim 1, there

are g—k edges from each of Cy, Cy, C3, Cy to S. By Lemma 4,

N34x%k + k(|s]-6) = k|s|. contradicting N < k|s| - 4 .

(3.2) Suppose there are exactly three odd components Cy. Cy and Cj;
with order at least three.

(3.2.1) Suppose there is an even component C of G - S.



Since C has order at least two, by Lemma 3, there are at least

28 > %k edges from C to S. By Claim 1 there are at least —g-k edges
from Cy, C,, C3 to S. Hence by Lemma 4, N _>_—§~k .3 x %k +k (|s| -5)

=k|s]| + é—k > k|S| - 4. This contradicts the fact that N < k|s| - 4.

(3.2.2) No even component exists.

Suppose one of C;, C, and Cjz has order at least seven. There are at

least %k edges from that component to S. By Claim 1 and Lemma 3,

N

v

L« c2x 3k v k(|s]-5) = «]s] + L5 x]s] - 4 contradicting N
<k|s| - 4

So none of Cy, Cy, C3 has order larger than five.

(3.2.2.1) suppose |V(Cy)| = |V(Cy)| = |vicy)| = s.

By Lemma 3, there are at least -g—k edges from each of C; (i = 1,2,3)

to S. N23x 2k o k|s]-5) > k|s| - 4, contradicting N < k|s]| - 4

(3.2.2.2) Suppose ]V(C,)l = !V(Cz)[ =5 and IV(C;,)[ = 3.

By Lemma 3, there are at least %k edges from each of C; and Cy to S

and there are at least 3k - 6 edges from Cy to S.

Nz2x 2k e3k-60k(s|-5) = k[s] + Th-s>kfs] -4 ror k>

4, a contradiction.
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(3.2.2.3) sSuppose |V(C;)| = 5 and |V(Cy)| = |vicp)| = 3.

There are at least %k edges from C; to S and there are at least 3k

- 6 edges from each of C, and C3 to S.

Nz—%K « 2(3k-6) + k(|S]-5) = k|s]| + -%k - 12> k|s| - 4 for k> 4,
a contradiction.

(3.2.2.4) suppose |V(C)| = |vCy| = |Vicy)| = 3.

There are at least 3k-6 edges from each of Cy, C, and Cz; to S. N

> 3(3k-6) + k(|S|-5) = k|s| + 4k - 18 > k|S| -4 for k >4, a
contradiction.

(3.3) Suppose there are exactly two odd components C; and C, with
order at least three.

(3.3.1) Suppose that there is an even component C of G - S.

If C has order at least four, there are at least g"k edges from C to
S.

N z%k .2 x g.k + k(]s]-4) = k|s]| « %—> k|s| - 4. contradicting

N < kiS| - 4. If C has order two, there are 2k - 2 edges from C

to S. N> 2k -2+ 2x 3

—2—k+k(|s|—4)=k|s| +k-2>k|s| -4, a

contradiction.
(3.3.2) No even component exists.

Suppose one of Cy and C, has order at least seven.

Assume |V(C1)l > 7, there are at least %k edges from Cy; to S.

If IV(c2)| > 5, there are at least i—k edges from C, to S.

Pup—_—



Nz% K+ —§~k + k(|s]|-4) = k|s| > k|s]| - 4. contradicting N < k|s]- 4.

If |V(Cp)| = 3, there are at least 3k - 6 edges from Cy to s,
N_>_—73-k+3k -6« k(|s| - 4) = k|s] +—;‘-k-s>k|s| -4 for Kk > 4,
a contradiction.

None of Cy; and C, has order larger than five.

(3.3.2.1) suppose |V(Cy)| = |v(cp)| = .

There are at least 5k-20 edges from each of C, and Cy to S.

N> 2(5k-20) + k(|S]|- 4) = k[s|+ 6k - 40. When Kk > 7, N > k|s]|- 4,
a contradiction.

Suppose there is a singleton component Cj. [S[ = 5. As Cz is only
adjacent to vertices of S, k < 5. By Lemma 1, the only two possible
(18.k,ot.8)-graphs for 4 <k <5 are (16,5,0,2) and (16,5.2.1).

Suppose the graph is a (16,5,0,2)-graph. As Cz is adjacent to all
vertices of S and S contains two independent edges, there is a

triangle containing Cj, contradicting o = O.

Suppose the graph is a (16,5,2,1)-graph. As B 31:(; and k > 4, B> 2.

A (16,5,2,1)-graph doesn't satisfy the assumption of the theorem.

Now no singleton exists. ISI = 4. We can verify by Lemma 2 that
there are no (14,k,«, B)-graphs for 4 < k < B.

(3.3.2.2) Suppose IV(C1)] =5 and IV(C2)| = 3,

There are at least —g—k edges from C; to S and there are at least
3k - 6 edges from C, to . Nz%k ¢ 3k -6+ k(|S|-4) =k]|s]| »
2

Sk -8>k[s| -4 for k2> 4 a contradiction.
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(3.3.2.3) suppose |V(C)]| = |v(c)| = 3.
There are at least 3k - 6 edges from each of C; and C, to S. N>
2(3k-6) « k(|s|- 4) = k|s| + 2k -12. N>k|s| -4 for k25 a

contradiction.

If k = 4, suppose there is a singleton component Cj. lSI = 5. We can
verify by Lemma 1 that there is no (12,4« 8)-graph.

Now no singleton exists and {SI = 4, We can verify by Lemma 1 that
there is no (10,4,o8)-graph.

(3.4) Suppose there is exactly one odd component C; with order at
least three.

Now ]S[ = 4 and there is a singleton component C,.

(3.4.1) Suppose there is an even component C of G - S.

If C has order at least four, there are at least %k edges from C to S.

It |V(C)| > 5. there are at least %k edges from C; to S.

Nz%k'e%k+k=4k>4k~4.contradicting N<k|s|] -4 1f

tH

|V(C))| = 3. there are at least 3k - 6 edges from C; to S.

Nz—;—k+3k‘6+k>4k-4 for k > 4, contradicting N < k|s| - 4.

If C has order two, there are 2k - 2 edges from C to S. By Claim

1, there are at least *:-k edges from C; to S. N> 2k - 2+ %k + k =
4k + —';» 2 > 4K - 4, a contradiction.

(3.4.2) No even component exists.

(3.4.2.1) suppose |V(Ci)}| > 9.
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There are at least %k edges from Cy to S. N > —g—k + K = 4k > 4k - 4,

contradicting N < k|s| - 4.
(3.4.2.2) Suppose 3 < |v(Cy)| < 7.

Now ISi = 4. C, is only adjacent to vertices of S. So k = 4. We
can verify by Lemma 1 that there are no (v,4,o,8)-graphs with

-‘é—gﬁik—lfor v =8,10 or 12. 0

Theorem 5: Every strongly regular graph of even order with B =k
and k > 4 is 2-extendable, except the (8,4,2,4)-graph.

Proof: Let G be a strongly regular graph (v.k,«8) with even order,
=k and k > 4.

If ««=0, G is Kk k- Hence G is 2-extendable. So assume o z O.

Let w be a vertex of G and wy.wj, ... Wy be the vertices adjacent
to w. As B =k every vertex of V(6) - {W.W.Wy, ..., Wi} is
adjacent to  wj, Wy, ..., Wx. As o > 0, there is an edge e = WiW .
All the vertices of V(G) - {wy.wp, ... Wy} are common neighbours of
wi and wj. SO0 o« > v - k. Since w and Wi have o common
neighbours, there are o edges from wi to {wq, ..., wgl. So k >
2(v-k). Therefore k > % v.

When v > 12, k >

é‘l + 2,50 by Lemma 2, G is 2-extendable.

For v 10,8 =k >4 and o > 0, the only parameters which satisfy
Lemma 1 are given below

(10,9,8,9) this graph is Kyy and is 2-extendable
(10,8,6,8) k > % + 2, so these graphs are 2-extendable
(10.7.4.7) see below
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(10,6,2,8) see below

(8,7,8,7) this graph is Kg and is 2-extendable
(8.6,4,6) k > 12’- + 2, so these graphs are 2-extendable
(8,5.2,5) see below

(6,5.4,5) this graph is Kg and is 2-extendable
(6,4,2,4) see below '

In the (10,7.4,7)-graphs, let w be adjacent to the set W = {w;, wa ...,
wql. Then GIW] is a (7,4,1,4)-graph. However, the neighbours N of wj
in G[W] are adjacent to three vertices. Since not all members of N are
adjacent, the value of o in GIW] is at least 3, a contradiction.

Consider the graphs (10,6,2,6). By previous arguments all the vertices
of V(G) - {w, wq, Wy, ... Wg} are adjacent to all the vertices
{wqi.Wa.....wghl. Since there must be an edge between w; and w; for

some i, j, this means that w; and w; have at least 4 common
neighbours, so o > 4, a contradiction.

A similar argument with (8,5,2,5) shows that « > 3, a contradiction.

In Figure 1 we show the (6.4,2,4)-graph. The edges uqv;, usvy cannot

be extended to a perfect matching. Q
Uy Vi
Uz Vo
Figure 1
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Corollary 2: A strongly regular graph with even order and k > 3 is
2-extendable when § > -g except the Petersen graph and the (6,4,2.4)-

graph.

Corollary 3: A strongly regular graph with k = 3, 4, 5, 6 is 2-
extendable unless it is the Petersen graph or the (6.4,2,4)-graph.

Proof. For k = 4,56 if 8 > %k implies B > 2. So we only need test

the 2-extendability of (v, k, o, 1)-graphs with k = 4,5,6. There are no
such graphs. a

We conjecture that all but a few strongly regular graphs are 2-
extendable.
5. A family of strongly regular graphs and their n-

extendability

Given any n, we now construct a family of strongly regular graphs, each
of which is n-extendable.

Let G be a graph and S be a vertex set and SN V(G) =@. G+ S
is defined by V(G + S) = V(G) U S and each vertex of S is joined to
all vertices of G.

We define a family of graphs S; (i = 0,1, .. ) by

(1) Sy = Cq. @ 4-cycle.

(2) Assume S is defined. S,,; = S + {ug,q. vgoq b where up, .
Vk+1 3 V(Sk).

Theorem 6 The family S; (i = 0,1, ... ) is a family of strongly
regular graphs. Each S; is a (4+2i, 2+2i, 2i, 2+2i)-graph (i = 0,1, ... ).
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Proof It is easy to verify that S; is a (4,2,0,2)-graph. Assume S;
is a (4+2i, 2+2i, 2i, 2+2i)-graph. By definition, S;,; = S; + {uj,;.vi,1}.
Hence V(Si,q) = 4+2i+2 = 4 + 2(i+1). As uj,; and v;,; are joined to
all vertices of §;, d(uj,y) = d(vj,y) = 4 « 2i = 2 + 2(i+1). For each
vertex u in V(S;). as u is joined to u;,; and v,
dlu) = 2 + 2i + 2 = 2 + 2(i+1). So S;,; is [2 + 2(i+1)]-regular.

Let u and v be a pair of non-adjacent vertices. If u = u;,, and

V = Vi,q. all the vertices of S; are common neighbours of u and V.

So u and Vv have 4 + 2i = 2 + 2(i+1) common neighbours. if u,v
eV(S;) by the induction hypothesis, u and v have 2 + 21 common
neighbours in S;j. u;,; and v;,; are also common neighbours of u and

V. So u and v have 2 + 2i + 2 = 2 + 2(i+1) common neighbours.
Hence B(S;,1) = 2 + 2(i+1).

Let u and v be a pair of adjacent vertices. If u = u or v and

i+1 i+1
v isin V(S;). as S; is 2« 2i regular, u and v have exactly
2 + 2i = 2(i+1) common neighbours. If u and v are in V(S;), by the
induction hypothesis, u and v have 2i common neighbours in S;. But
uj,; and vi,, are also common neighbours of u and v. So u and v
have 2i + 2 = 2(i+1) common neighbours. Hence o(S; ) = 2(i+1). Sj 4

is therefore a (4 + 2(i+1), 2 + 2(i+1), 2(i+1), 2 + 2(i+1))-graph. O
Theorem 7  S; is i-extendable (i = 0.1, ...).

Proof As the degree k =2 + 2i =2 + i+ 12> X2+, §5; is i-extendable
2

by Lemma 2. Q
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