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A graph G is said to have property P(m,n,k) if for any set of m + 

n distinct vertices of G there are at least k other vertices, each of 

which is adjacent to the first m vertices of the set but not adjacent to 

any of the latter n vertices. The problem that arises is that of 

characterizing graphs having property P(m,n,k). In this paper, we 

present properties of graphs satisfying the adjacency property. In 

addition, for small m and n we show that all sufficiently large Paley 

graphs satisfy P(m,n,k). 

1. INTRODUCTION 

For our purposes graphs are finite, loopless and have no multiple 

edges. For the most part our notation and terminology follows that of 

Bondy and Murty [5]. Thus G is a graph with vertex set V(G), edge set 

E(G), v(G) vertices, £(G) edges, minimum degree o(G) and maximum degree 

~(G). However, we denote the complement of G by G. 

A graph G is said to have property P(m,n,k) if for any set of m + 
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n distinct vertices there are at least k other vertices, each of which 

is adjacent to the first m vertices but not adjacent to any of the 

latter n vertices. The class of graphs having property P (m, n, k) is 

denoted by ~(m,n,k). Observe that if G E ~(m,n,k), then G E ~(n,m,k). 

The cycle C
v 

of length v is a member of ~(1.1,1) for every v ~ 5. The 

well known Petersen graph is a member of ~(1,2,1) and also of ~(1,1,2). 

In fact, as observed by Exoo [10], any graph with girth at least 5 and 

minimum degree at least k is in ~(l,n,k-n) for 1 s n s k - 1. Despite 

these relatively simple examples few members of ~(m.n,k) have been 

found. The problem that arises is that of characterizing the class 

~ (m, n, k) ; this problem is difficul t for m ~ 2 and n ~ 2. One 

particularly interesting problem that has attracted attention is that of 

determining the function 

pCm,n,k) = min{v(G) : G E ~(m,n,k)}. 

Exoo [10] established bounds on pen,n, 1). 

Blass and Harary [3] established, using probabilistic methods, 

that almost all graphs have property P(n,n,1). From this it is not too 

difficult to show that almost all graphs have property P(m,n,k). 

Despite this result few graphs have been constructed which exhibit the 

property PCm,n,k). Exoo and Harary [9] studied the class ~(1,n,1) and 

established a number of important properties including the connection 

wi th cages. In partl.cular, they established that for n ::5 6 the 

smallest order graphs of this class are the (n+1, 5) - cages. They 

conjectured that if G E ~(1,n,1) and G has girth at most 4, then v(G) ~ 

n
2 

+ 3n + 2. A particular case (n sufficiently large) of this 

conjecture was established by Caccetta and Vijayan [7]. 

An important graph in the study of the class ~ (m, n, k) is the 



so called Paley graph G defined as follows. 
p 

Let p == 1(mod 4) be a 

prime. The vertices of G are the elements of the Galois field GF(p) 
p 

and are labelled 0.1 •...• p-l. Two vertices i and j are joined by an edge 

if and only if their difference is a quadratic residue modulo P. that is 

i-j == y2(mod p) for some y e GF(p). 

Blass. Exoo and Harary [4] showed that G e §'(n,n,l) for p > 
p 

n224n. Caccetta, Vijayan and Wallis [8] established that G ~ §,(2,2,1) 
P 

for p < 61 and G e §,(2,2,1) for 61 s p s 173. They conjectured that G 
p P 

e §' (2, 2,1) for every p 2: 61. We shall confirm this conjecture in 

Section 3. In addition, we prove that: G e §'(2,2,k) 
p 

for every p > 

(5 + G e §'(n,n,1) for every p > «2n - 3)2n-l+ 4)2; and G 
p P 

e §'(1,2,k) for every p > (1 + 2v'2k)2. Computational results are 

presented which establish the smallest Paley graphs in §,(2,2,k) for 

small k. 

In the next section we present some properties of the class 

§'(m,n,k). We conclude this section by noting that a variation of this 

problem has recently been considered by Alspach, Chen and Heinrich [1]. 

2. PROPERTIES OF THE CLASS §'(m,n,k) 

For disjoint subsets A and B of V(G) we denote by N(A/B) the set 

of vertices of G not in A v B which are adjacent to each vertex of A and 

not adjacent to any vertex of B. 

{b
1 

,b2 •... ,bn } we sometimes write for convenience N (AlB) as 

N(a
1

,a
2 
.... ,am/b

1
,b

2
, ... ,bnL Further, we extend our notation so that 

for X ~ V(G), N(XI ) ( N( IX) denotes the set of vertices of G - X 

which are adjacent (non-adjacent) to every vertex of X. Note that X can 

be a single element. Where appropriate, lower case letters will denote 



the cardinali ty of the set defined by the corresponding upper case 

letters. Thus, for example, n(a/b) = IN(a/b)l. 

In the following lemmas we establish a number of properties of the 

class ~(m,n,k). We often make use of the following simple fact. If G E 

~(m,n,k), then n(X/V) ~ k for any disjoint set of vertices X and V 

with IXI ~ m and IVI ~ n. 

Lemma 2.1: If G E ~(m,n,k), then 8(G) ~ m + n + k-l. 

Proof: Suppose to the contrary that d
G 

(u) = d ~ m + n + k-2. Let 

V
1

,V
2
"" ,vd denote the neighbours of u. Observe that d - (m + n-l) ~ 

k-l and hence k-l, a 

contradiction. This proves the lemma. o 

Lemma 2.2: Let {u
1
,u

2
"" ,um' v

1
,v

2
"" ,vn } be a set of m + n vertices 

in a graph G E ~(m,n,k). Then 

and 

Proof: We prove only Ca) as the proof of (b) is similar. Suppose to 

the contrary that 

nCu
1
,u

2
, ... ,u

t
/ ) = d ~ m + n + k-t-l. 

Let x
1
,x

2
' ... ,x

d 
denote the vertices of N(U

1
,u

2
, •.• ,ut /). We have 

~ d - (m + n-t) ~ k - 1, 

a contradiction. This proves (a). 
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An immediate Corollary of Lemma 2.2(b) is the following. 

Corollary: For 1 ~ l ~ n, ~(m,n,k) ~ ~(m,n-l,k+l). Cl 

The next few lemmas establish the properties of ~(m,n,k) in terms 

of vertex degrees. 

Lemma 2.3: Let Go be a graph in ~(m,n,k) having minimum order. Then 

for any G E ~(m,n+1,k) 

v(G) ~ v(G ) + ~(G) + 1. 
o 

Proof: Let w be any vertex of G. Clearly 

G
w 

= G - w - N(w/ ) E ~(m,n.k) 

and hence 

v(G ) 
w 

This proves the lemma. 

v(G) - 1 - dG(w) 

~ v(G
o

) . 

Cl 

Observe that for m ~ 2 every vertex of a graph G E ~(m,n,k) is 

contained in a triangle. In fact, every edge of G is in some triangle. 

For m = 1 we have the following result. 

Lemma 2.4: Let G E ~(l,n,k). If dGCu) 

of length less than 5. 

n + k, then u is on no cycle 

Proof: Let v
1
,v

2
"" ,vn+k be the neighbours of u. Suppose Cis the 

smallest cycle of G containing u. We may suppose without any loss of 



generality that vi' V
2 

E C. If C has length 3 then vi v
2 

E E(G). Since 

dG(u) = n + k, we have 

This contradicts the fact that G E ~(l,n,k). So C cannot have length 3. 

Suppose it has length 4 and let u, v
i

,V
2 

and w be the vertices of C. 

Then, since dG(u) = n + k, we have 

again a contradiction. This completes the proof. o 

Lemma 2.5: Let G E ~(1,n.k). If G has girth at least 5, then G 

E ~(l,n+f,k-f) for 1 ~ f ~ k-l. 

Proof: Let u,v
1
,v

2
'" .,vn+f be any n + f + 1 vertices of G. Let 

Then d 2:: k. Since G has girth at least 5, we have for each i, 

and hence G E ~(l,n+f,k-fl as required. 

As a corollary we have 

V. E 
1 

o 

Corollary: If G E ~(l,n,kl is (n+kl-regular, then G E ~(l,n+f,k-f) for 

1 ~ f ~ k-1. o 

3. MAIN RESULTS 

In this section we will establish some adjacency properties of the 

Paley graph G of prime order p defined in Section 1. We begin with 
p 
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some number theoretic results which we make use of in our proofs. 

For odd prime p the Le~endre symbol ( P
a ) is defined as : 

{ 

1 , 

-~ . 
if a is a quadratic residue modulo P. 

if pia, 

otherwise. 

It is well known (see [2]) that 

( ~ ) = ( *) , if a = b (mod p) , 

and 
p-l 

L (:) o . 
x=O 

It follows from (3.3) that 

p-l 

L (x~a o . 
x=O 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

In our next two lemmas we make use of the following standard 

terminology. We wrIte" L " whenever the summation is taken over a 

x(modp) 

complete residue system modulo p. More specifically. if x ,x , ... ,x is 
1 2 P 

any complete residue system modulo p and C. 
J 

p-l P 

L 
j=O 

= L 
x(mod p) 

C 
x 

Cx. whenever j = xi(mod 
1 



Lemma 3.1: (Burgess [6]) Let p be an odd prime and let a
1
,a

2
,·· .,a

s 

be distinct residues modulo p. Then 

(s - 1) vP D 

Lemma 3.2: Let p be an odd prime and let a
1

, a
2

, ... , as be distinct 

residues modulo p. Then for even s 

p-l 

( 

(x-at)(x-a2) (x-as) 
L --p--

x=O 

-1 ± L [ (y+b,)(y+b,l p'" (y+bs _,) 1 
y(mod p) 

for some set {b
l
,b

2
, ... ,b

S
-

1
} of distinct residues modulo p. 

Proof: We write 

p-l (x-a )(x-a ) (x-as) 1 
L ( 1 2 

P 
x=O 

L ( 
(x-a

1
) (x-a) ... (x-as) 1 

p 
x(mod p) 

( 
x(x+a -a )(x+a -a ) ... (x+a -a ) 

) . L 1 2 1 3 1 s 
(3.5) 

p 
x(mod p) 

Note the latter equality is valid, since x and hence x + a
1 

assume all 

values in a complete residue system modulo p. Now since a
1
,a

2
, ... ,as 

are distinct (mod p), then ~i = a
1 

- a i +
l 
~ O(mod p) for 1 ~ i ~ s-l. 

If x ~ O(mod p), then there exists an y such that xy = l(mod 
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pl. Furthermore, (~S) = 1. since s is even. If x = O(mod p), then 

( ~ ) = O. Thus we can write (3.5) as 

x(mod p) 
xilO(mod p) 

1 2 S-1 
(

X (X+A ) (X+A ) ..• (X+A ») 

E ( ( )( X(X+\)(X+"2~ ... (X+As_,) 1 
x(mod p) 

x~O(mod p) 

L 1 2 S-l 
( 

xyeXY+A y) (XY+A y) ,.. (XY+A Y») 

x(mod p) 
x~O(mod p) 

E ( (l+\y) (!+A2Y~ ... (1+"s_,Y) 1 
x(mod p) 

x~O(mod p) 

Since, for each i, Ai ~ O(mod p) there exists Ai ' such that AiAi 

1. Furthermore, 

[ _A_1 A_; _A_2_A_; __ p __ A_S ___ 1_A_~ __ , ) = 
1. 

Now using the same idea as above we can write 

E ((!+\Y) (1+"2Y~ ... (!+AS_'Y) 1 
x(mod p) 

xilO(mod p) 

( _( A_1_A_2_' ._. _A_S ___ 1_)_(_A_; +_~_)_(_A_;_+_y_) ___ ( A_~ ___ l_+y_) 1 
x(mod p) 

x~O(mod p) 
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Let A = \A
2 

A
S

-
1 

and A' = \ A; ... A~_l Since Ai;S 

O(mod p) for each i, we have A ;S O(mod p) and so ( ~) ± 1. As x 

assumes all values in a reduced residue system modulo P. so does y. 

Hence we can write (3.6) as : 

L [ ~ )[ (Y+A; )(Y+A;; .. , (Y+A~_l) 1 
y(mod p) 

y;sO(mod p) 

L ( ~ ) ( -( y_+_A_~ _)(_Y_+A_;_;_' -' '-( y_+_A_~ __ l_) 1 - [ ~ )[ n 
y(mod p ) 

( 
A 

) ( 

(Y+A'l) (Y+A
2
') .•• (Y+A' )) 

p L P S-l - 1 

y(mod p) 

, I I 

-1 ± L ( 
(y+\ ) (Y+A

2
) (Y+As -

1
) ) . p 

y(mod p) 

This completes the proof of the lemma. [J 

Using (3.4) and Lemma 3.1 we have the following corollaries to 

Lemma 3.2. 

Corollary 1: If p is an odd prime, then for a ;s b(mod p) 

p-1 
L (x-a~ (x-b) -1. [J 

x=O 

Corollary 2: Let p be an odd prime and let be distinct 
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residues modulo p. Then for even s 

p-1 

[ 
(x-a ) (x-a ) 

1 2 

p 
x=O 

(x-a ) 
s 1 I ~ 1 + (s-Z)vp . o 

Recall that for prime p = 1(mod 4), G denotes the Paley graph of 
p 

order P. that is the graph with V(G ) = {0,1, ... ,p-l} and E(G) {(i,j) 
p p 

: i-j - (mod p) for some y E GF(p)}. Observe that if a, b E V(G ), 
p 

then 

{ 
1 if a is adjacent to b, 

0 if a = b, 

-1 . otherwise . 

Further, since p - 1 (mop 4) then -1 is a quadratic residue modulo p. 

Consequently 

( a~b ) = ( b~a ). 

We now illustrate the application of Lemma 3.2 by proving a result 

that was proved, using the theory of strongly regular graphs, by Exoo 

[10]. 

Theorem 3.1: Let p 

:S t. 

4t + 1 be a prime. Then G E ~(l.l.k) for every k p 

Proof: Let a and b be any two distinct vertices of G. Then n(a/b) ~ k 
P 

if any only if 
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f 

p-l 

L 
x=o 

x*a,b 

We now show that f ~ 4k for t ~ k. We can write 

p-l 

g L ( 1 + ( x~a )) ( 1 _ ( X~b )) 

x=o 

p-l p-1 p-l p-l 

L 1 + L ( x~a ) _ L ( X~b ) _ L ( x~a ) ( X~b ) 

x=o x=O x=O x=O 

p-l 

P - L (x~a) ( X~b ) (by (3.4)) 

x=O 

= p + 1 . (by Corollary 1 of Lemma 3.2) 

Hence f g - 2 = P - 1 4t ~ 4k for t ~ k as required. o 

Remark 1: When t < k 

~(1.1.k). 

the above proof yields f < 4k, and hence G ~ 
P 

We noted in the introduction that Exoo and Harary [9] proved that 

the Petersen graph is the smallest member of ~(1. 2,1). In [10] Exoo 

proved that if G E W(1,2,1) A W(2,1,1), then v(G) ~ 17 and furthermore 

G
17 

E W(1,2,1) A W(2,1,l). 

~ (1 , 2 , k ) and W (2, 1 , k) . 

Our next result concerns the classes 

Theorem 3.2: Let p = 1(mod 4) be a prime and k a positive integer. If 

p > (1 + 2Y2k)2 , then G E ~(1,2,k) A ~(2,1,k). 
P 
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Proof: Since G is a self-complementary graph it is sufficient to prove 
p 

that Gp E ~(1.2,k). Let S = {a,b,c} be any set of distinct vertices of 

G. Then n(a/b,c) ~ k if and only if 
p 

p-l 

f = L (1 + ( x~a )) ( 1 - ( ~~b )) ( 1 _ ( x~c )) 

x=o 
xeS 

~ 8k 

To show that f ~ 8k it is clearly sufficient to establish that f 

> 8(k-l). 

We can write 

p-l p-l 

L 1 + L {( x~a ) _ ( X~b ) _ ( x~c )} 

x=o x=o 

p-l 

+ L (x~a) ( X~b ) ( X~c ) 

x=O 

(by (3.4) and Corollary 1 of Lemma 3.2) 

Thus 



Hence 

p-1 

Ig-p- 1 1 L 
x=O 

g - f 

( x~a ) ( 
x-b 

p 

+ ( 1 + ( c~a )) ( 1 _ ( C~b )) 

:S 8 , 

(by Lemma 3.1) (3.7) 

b-a 
p ) ) ( 1 _ ( b~C )) 

since either ab E E(G ) or ab e E(G ) 
P P 

Consequently 

f ~ g - 8 

~ p + - 2Vp- 8 . 

Hence f > 8(k-1) for p > (1 + 2V2k)2 as required. As S is arbitrary 

this completes the proof. o 

Remark 2: We have verified, by computer, that if p == 1(mod 4) is a 

prime number less that or equal to 1009 and k is a positive integer with 

p :s (1 + 2V2k)2, then G e §' (1,2, k). We conjecture that this is true 
p 

for all p. We can choose a, band c in the proof of Theorem 3.2 so that 

g - f = 8 and hence 

f g - 8 

:S P + + 1 8. (by (3.7)) 

Consequently f < 8k for p < (-1 + So the problem is to 
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We now turn our attention to the class ~(2,2.k). This class has 

been studied for k ::: 1 by Blass et al [4] and Caccetta et al [8]. 

Theorem 3.3: Let p = 1 (mod 4) be a prime and k a positive integer. If 

p > (5 + 2~)2 • then G E ~(2,2,k). 
P 

Proof: The method of proof is similar to that of Theorem 3.2. Here we 

take S ::: {a,b,c,d} to be any set of four distinct vertices of G and 
p 

observe that n(a,b/c,d) ~ k if and only if 

f 

p-l 

L 
x=o 
x~S 

> 16(k-l) 

x-b 
P )) ( - ( x-c 

p )) ( 1 _ ( X~d )) 

Simple algebra together with (3.4) and Corollary 1 of Lemma 3.2 yields 

g 

Now by 

p-l 

L 
x=o 

P + 2 + 

p-l 

x-b 
P )) ( 1 - ( 

x-c 
p 

L {( x~a ) ( x~c ) ( 
x-d 

) + ( X~b ) ( 
P 

x=O 

( x~a ) ( X~b ) ( x~c ) _ ( 
x-a 

) ( X~b ) ( 
x-d 

P P 

p-1 

+ L ( x~a ) ( X~b ) ( x~c ) ( 
x-d ) . 

P 
x=o 

Lemma 3.1 and Corollary 2 of Lemma 3.2 we have 

+ 

)) ( 1 - ( 

x-c 
) ( X~d ) 

P 

)} 



and hence 

Now 

g - f 

g ~ p + 1 - 10vp . 

( 1 + ( a~b )) ( 1 _ ( a~c )) ( 1 _ ( a~d )) 

+ ( 1 + ( d~a )) ( 1 + ( d~b )) ( 1 _ ( d~C )) 

+ ( 1 + ( c~a )) ( 1 + ( C~b )) ( 1 _ ( C~d )) 

+ ( 1 + ( b~a )) ( 1 _ ( b~C )) ( 1 _ ( b~d )) . 

Observing that at least one of the first two terms and at least one of 

the last two terms on the right hand side of the above expression is 

zero, we conclude that g - f s 16. Consequently 

f ~ g - 16 

~ P + 1 - 10vp - 16 . 

Hence f > 16(k-1) for p > (5 + 2v'4k+6)2 as required. 

arbitrary this completes the proof. 

Since S is 

o 

Remark 3: Blass et al [4] proved that G E ~(n,n.1) for p = l(mod 4) p 

and p > n224n. For the particular case n = 2. this result asserts that 

G E ~(2,2.1) for prime p ~ 1033. When k = 1 Theorem 3.3 asserts that 
p 

G E §,(2,2,l) for all prime p ~ 137. We have verified, using the 
p 

computer that G E §'(2,2,1), only for prime p ~ 61. Thus Theorem 3.3 is 
p 

not sharp. In fact, computer analysis shows that the bound on p given 

in Theorem 3.3 is fairly close to best possible. Table 3.1 gives the 

maximum k for which G E ~(2,2,k); we give only some of the 
p 

computational results. 
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Maximum k Order p 

0 :s 53 

1 61, 73 

2 89, 97, 101, 109, 113 

3 137 

4 149. 157, 173 

5 181 

6 193, 197, 233 

7 229 

8 241, 257 

9 269, 277, 281 

10 293, 313, 317 

11 337 

12 349, 353 

14 373 

15 389, 397, 401 

16 409, 421, 433 

17 449 

18 457, 461 

20 521 

21 509 

46 997 

Table 3.1 Maximum k For Which G E ~(2.2.k) . 
p 
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Our next result concerns the class ~(n,n,l). 

Theorem 3.4: Let p - 1 (mod 4) be a prime. If p > ((2n - 3)22n
-l+ 4)2, 

then G E ~(n,n,l). 
p 

Proof: Let S = {a
1
,a

2
, ••• ,an ,b

1
,b

2
, ... ,bn } be any set of 2n distinct 

vertices of Gp ' Then n(a
1
,a

2
, ... ,an/b

1
,b

2
, ... ,b

n
) ~ 1 if any only if 

p-l n 
f L IT 

x=O i==l 

x~S 

Now 

p-l 
n 

r 1 + r x=a i 11 ( 1 - r E IT g 
i=l \. \. p )) \. 

x=O 

p-l p-l n 

L 1 + L L {( x:a i ) _ ( 

x=O x=O i=l 

p-l 

+ L 
x=O 

n n 

)( X:bj 1 n-l x-a. 
- L L 1 

\~l P 
i=l j=l 

p-l n 
( x:a i ) ( 

x-b. 

L IT 
1 

+ ... + 
i=l P 

x=O 

x-b. 
1 

P 

x-b. 
1 

P 

p ) 

n 

x-b. 
1 

p 

11 
)) 

)} 

)) > 0 . 

j~i+l [ X:b i H X:bJ l] 

) 

Observe that the first term in the above expression is equal to p and 

the second term is O. 

Using Corollary 1 of Lemma 3.2 the third term of the above 
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expression is equal to n
2 

- (~) - (~) = n. Hence 

Ig - p - nl ~ 1 p-1 2n-2 2n-1 2n ( X:C i ) ( XP-C j ) ( Xp-Ck ) 1 

x~o i~l j=~+l k~j+1 
p-1 2n-3 2n-2 2n-1 2n 

( X:C i ) ( ) + L L L L L p 
x=O i=l j=i+1 k=j+1 t=k+1 

( x:ck 1 ( x:c e 11 
+ I:t: 2n 

( x:c i 11' + ... n 
i=l 

(3.8) 

s. Now Lemma 3.1 and Corollary 2 of Lemma 3.2 

together imply 

i<i< ... <i 

( x-;1t 1 (X-;i21 ... (X-;iS 1 1 

1 2 s 

{ 

( ;n ) (s-1)/p 

( ;n ) (1 + (s-2)vp) 

, if s is odd, 

, otherwise. 

Making use of (3.9) we get from (3.8) 

n-l 

I g - p - n I ,. t~l [( Z~~l 1 (Zt lvp 1 + ( z~~zl [ 1 + Ztvp lJ 

n-1 

+ L (2~~2) 
t=l 

17< 

n-1 

L {( 
t=l 

2n 
2t+1 

(3.9) 



2n-l 2n-l 2 vp{(2n - 3)2 + 2} + 2 - 2n + n - 1 . 

Hence 

g ~ p + n - 22n- 1 + 2n2 - n + 1 - vp{(2n - 3)22n- 1 + 2} 

(3.10 ) 

Now 

n 
( 1 + ( 

x-a, 
)) ( 1 - ( 

x-b. 
)) . g - f L IT 

1 1 

i=l P P 
xeS 

(3.11) 

If g - f "* 0, then for some x. the product 
J 

n 

( + ( )) ( - ( )) "* 0 , IT 1 
i=l P P 

(3.12) 

Without any loss of generality suppose Xj = a
k

, For (3.12) to hold we 

(
a k p- b i ) must have = -1 for all i. Hence the term in (3.11) with x = 

b. contributes zero to the sum. Hence we can write (3.11) as 
1 

since 

g - f 

n 
IT 

i=l 

a 
n 

L 
x=a

1 

n 
IT 

i=l 

x-a, 
1 

p 

x-a, 
1 

p 

)) ( 1 - ( 

)) ( 1 - ( 

for each x; note that each factor is at most 2 and at least one factor 

is 1. Hence 
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(using (3.10» 

50 if P > «2n - 3)22n- 1 + 4)2. then f > 0 as required. 5ince 5 is 

arbitrary. this completes the proof of the theorem. o 
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