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ABSTRACT. We study the achromatic number of the Cartesian product of graphs 
G 1 and G 2 and obtain the following results: 

(i) maXl<t<rn min{l mn J, t(m + n - 1) - t2 + I} - - t 
~ w(Krn X Kn} 

>{m+n-~ 
- 2n - f--l if n > m > 2. 

m 1 

if n > m = 2 or m n> 2 ; and 

Moreover, for m 2,3, the bounds give the exact achromatic numbers W(Krn X 

Kn} if not both m and n are equal to 2. 
(ii) W(G1 X G2) ~ W(Krn X Kn} if w(Gt) m and w(G2 ) n. 

(iii) WePt X Krn) ::; (m(m
2 
+ 1) )1/2(W(Pt} + 3) + 1 and 

W(Cl X Krn} ::; (m(m
2 
+ 1) )1/2 (w(Cd + 3) + 1 

where Pk , C k and Kk are the path, the cycle and the complete graph of order k 
respectively. 

1. Introduction 

Let G = (V, E) be a simple graph. A of G is a surjection from V to 
the set {I, 2, ... , k} (which represents colors) so that any two adjacent vertices in 
V receive different colors. Moreover, if for each pair of colors CI and C2 there are 
adjacent vertices VI and V2 so that Vi is colored with Ci, i = 1,2, then the coloring 
is The k such that there exists a complete k-coloring of G is 
the aChrOITlatic number w(G) of G. 

Let Gi = (Vi, i 1,2, be simple graphs. The Cartesian product G1 x G2 

is the graph with X V2 as vertex set, and the two vertices V = (VI, V2) and 
W = (WI, W2) are adjacent in GI X G2 whenever 'VI = WI and V2 is adjacent to W2 

in G2 or symmetrically if V2 = W2 and VI is adjacent to WI in G I . 

Suppose that G (V,E) is a graph where V = {VI,V2, ••. ,vp}. Let r(m) 
{ar,s : 1 ~ l' < 8 ::; m} be a set of (2) permutations aT,S on the set {I, 2, ... ,p}. 
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Then the multipermutation Pr(rn) ( G), is defined to be the graph con
sisting of m disjoint copies of G, say GI, G2

, ••• , Grn, together with p' ('2) additional 
edges e;'s, t 1,2, ... ,p, where e;'s joins the vertex Vt of Gr with the vertex VaT,sCt) 

of GS. It is clear that PrCrn)(G) is isomorphic to G x Krn if all the ar,s are the iden
tity permutation on {1,2, ... p}. If there is a W(G)-coloring of G such that vaT,sCi) 

and Vi are in the same color class, i = 1,2, ... ,p, for each pair of T and s, then we 
say the multipermutation graph PrCrn)(G) is class-invariant. For example, if each 
ar,s is the identity permutation on {1,2, ... ,p} then PrCrn)(G) is a class-invariant 
multipermutation graph. 

In [1,3,4]' Bhave, Geller and Kronk, Harary and Hedetniemi gave some excel
lent results for the achromatic number of general graphs, but to determine the 
exact achromatic number, even for simple structures such as trees, is quite diffi
cult.[2,5] Milazoo and Vacirca studied, in [6,7], the achromatic numbers of permu
tation graphs and G x Krn and obtained some results. In this paper, we study the 
achromatic number of the Cartesian product of graphs GI and G2 and obtain the 
following results: 

(i) maXl~t~rn min{ l ~n J, t(m + n - 1) - t 2 + I} 

2 W(Km x Kn) 

{ 

m+n 1 
> n 
- 2n - f--l if n > m > 2. 

m 1 

if n > m = 2 or m = n > 2 ; and 

Moreover, for m 2,3, the bounds give the exact achromatic numbers W(Krn x 
Kn) if not both m and n are equal to 2. 
(ii) 'li(GI x G2 ) 2 W(Krn x Kn) if W(Gd = m and W(G 2 ) = n. 

(iii) 'li(Pe x Km) ::; (m(m
2 
+ 1))I/2(W(Pe) + 3) + 1 and 

'li(Ge x Krn) :s; (m(m
2 
+ 1) )1/2('li(Ge) + 3) + 1 

where Pk, G\ and Kk are the path, the cycle and the complete graph of order k 
respectively. These results improve the works of Milazoo and Vacirca appeared in 
[6,7]. 

2. The main results 

Throughout this section, we assume that m ::; n and the vertex set of Krn X Kn 
is {( i, j) : 1 :s; i :s; m and 1 ::; j :s; 

Lemma 2.1. W(Krn x Kn) ::; 

max min{lmn J, t(m + n -1) t2 + 1} 
l~t~rn t 

Proof. Consider any complete W(Krn x Kn)-coloring of Km X Kn. Suppose that 
the number of vertices in the color class S with the least number of vertices is t. 
Since the independence number of Krn X Kn is m, we have 1 ::; t :s; m. Every vertex 
in S is adjacent to m + n - 2 vertices not in S and each pair of vertices in Shave 
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exactly two adjacent vertices in common. Hence the number of vertices in Km x Kn 
not in S but adjacent to a vertex in Sis t(m + n - 2) 2 . (~) = t(m + n -1) - t2

• 

It follows that 'l!(Km X Kn) ::; t(m + n - 1) - t2 + 1. 

On the other hand, since each color class consists of at least t vertices, we have 
mn . mn 

'l!(Km x Kn) ::; l-t-J. Thus 'l!(Km X Kn) ::; Mm {l-t-J , t(m + n -1) - t2 + I} 

and hence 
. mn 

'l!(Km X Kn) ::; max19~m mm{l-t-J ,t(m + n 1) - t2 + I} 

To see that the upper bound in Lemma 2.1 is best possible, let us consider the 
achromatic number of Km X Kn for m = 2,3. By Lemma 2.1, it is easy to see that 

{ 

5 if n = 3 ; and 
'l!(K2 X Kn) ::; n + 1 if n ~ 3 and 'l!(Ks X Kn) ::; l3

2

n
J if n > 3. 

Theorem 2.1. 

(i) 'l!(K2 X Kn) = n + 1 if n ~ 3; and 

{ 

5 if n = 3 j and 
(ii) 'l!(Ks x Kn) = 3n . 

. l2" J If n > 3. 

Proof. For the proof, we need only give a complete (n + 1 )-coloring and a 

complete l3; J -coloring of Km x Kn for m = 2,3, respectively. 

(i) Suppose m = 2. Let 

(i .)={i ifi=1,2andj=ljand 
I') 2+k ifi=I,2andj=2,3, ... ,n. 

where k == i + j - 2 (mod (n -1)) and 1 ::; k ::; n - 1. By the definition of f, it is 
a routine matter to check that f is a complete (n + I)-coloring of K2 X Kn. 

(ii) Suppose m = 3. 

If n = 3, then let f be defined by 

1(1,1) = 1, f(2,1) = 2, f(3,1) = 3, 

1(1,2) = 4, f(2,2) = 3, f(3,2) = 5, 

1(1,3) 5, f(2,3) = 4, f(3,3) = 2. 
It is clear that f is a complete 5-coloring. 

For n > 3, we give a complete l3n J -coloring for each of the following two cases. 
2 

(a) If n is even, say n = 2r, then 

.. { i + 38 if i = 1, 2, 3 and j = 28 + 1, 8 0, 1, .. 0' r - 1 j and 
f(1"J)= k 3 Of· 123 d· 2 2 01 1 + 8 1 1, = , , an J = 8 + ,8 " .. 0' r - . 
where k i + 1 (mod 3) and 1 ::; k ::; 3. 

(b) If n is odd, say n = 2r + 1, then l3; J = 3r + 1. Let 
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k + 3s if i = 1,2,3 and = 28 + 2,8 = 0,1, ... , T - 1, and 

=I (3,2); 

i+3s ifi=1,2,3andj=2s+1,s O,l, ... ,T 1,and 

f(i,j) = 
3T + 1 

2 

1 

(i,j) =I (2,1); 

if (i, j) = (2, 1), (3, 2) or (1, n); 

if (i,j) = (2,n); and 

if (i, j) = (3, n) . 

where k == i + 1 (mod 3) and 1 ::; k ::; 3. 

Since in both cases (a) and (b), each color class consists of at least two indepen
dent vertices (i.e. vertices not in the same row and not in the same column), it is 

clear that f is a complete l3; J -coloring. 

For m 2:: 4, we can also get a lower bound for w(Km x Kn). 

Theorenl 2.2. Let m 2:: 4. Then 

{

m+n-l 

\IT{Km X Kn) 2:: 2n _ r--n-l otherwise. 
m-l 

if m = nj and 

Proof. We give complete colorings corresponding to the two cases. 

(i) Suppose m = n. Let 

if i = 1, 2, ... , m and j = 1; 

m+k if i = 1,2, ... ,m - 1 and j 2,3, ... ,n except 

j = n - i + 1; 
f(i,j) 

m if i = 2, 3, ... , m - 1 and j n i + 1; 

m + n -1 if i = m and j = 2; and 

m - j + 2 if i = m and j = 3,4, ... , n. 

where k i + j - 2 {mod (n - 1)) and 1 ::; k ::; n - 1. By the definition of f, we 
can check that the given coloring is a complete (m + n - 1 )-coloring. 

(ii) m =I n. 

(a) If {m -l)ln, say n = q' (m - then 

ifi = 1 andj = 1,2,.,.,n; 

if i = 2 and j = 1,2, ,." q 

if 

l' , 



f(i,j) 

j 

j+l 
1 

(i-2)(q+l)+j 

(i 2)q+1'+j-l 

if i = 1 and j = 1,2, ... , n; 

if i = 2 and j = 1,2, ... , q; 

if (i,j) = (2,q + 1); 

ifi=3, ... ,r+landj 1, ... ,q+l; 

if i = l' + 2, ... , m and j 1, ... , q + 1; and 

n + k if i = 2, ... ,m and j = q + 2, .. "n. 

where k == i + j q - 2 (mod (n - q)) and 1 ~ k ~ n q. 
n 

In both cases (a) and (b), f is a complete (2n - ,--1 )-coloring. 
m-l 

Theorem 2.3. If w( C1 ) = m and w( C2) = n, then w( C 1 x C2) 2:: W(Km x Kn). 

Proof. Consider a complete m-coloring and a complete n-coloring of C 1 and 
C2 respectively, Let the color classes of C1 and C2 be 2:1 = {SI, S2, ... , Sm} and 
2:2 = {Si, S~, ... , S~} respectively. Then the vertex set of C 1 x C 2 is partitioned 
into independent sets Sl X Si, ... , Sl X S~, ... , Sm x Si, .. " Sm X S~. 

Consider a complete w(Km x Kn)-coloring f of Km x Kn. If we color all the 
vertices in Si X Sj with the color f(i,j), 1 ~ i ~ m and 1 ~ j ~ n, then we get a 
complete w(Km x Kn)-coloring of C 1 X C2. This concludes the proof. 

By Theorem 2.2 and Theorem 2.3, we can easily get the following 

Corollary 2.1. If W(C1 ) = m and w(C2 ) = n, then 

{ 

m + n 1 if m = n > 2 or n > m = 2; and 
w( C1 X C 2 ) 2:: 2n _ r __ n_1 

I ifn>m>2. 
m-l 

In [7], Milazzo and Vacirca got a lower bound for the achromatic number of 
CxKm . 

Theorem 2.4. For every graph G and for every m ~ 2, 
m 

, W( C) 1 . W( C) ~ W( C X Km), 

where the bound is best possible.~i.e. When C K2 and m is odd, w( G X Km) 
attains the bound.) 

Comparing it with our result, we find that our bound improves their bound 
except when w( C) = 2 and m is odd or w( C) = 3 and m = 4, in which cases the 
bounds are equal. 

As for a class-invariant multipermutation graph Pr(m)( C), since the edges be
tween different copies CT and CB do not join the vertices in different color classes, 
the coloring given above is still a proper and complete coloring. So we have the 
following 

Coronary 2.2. Let G be any graph with W( C) 
PrCm)(G) is class invariant, then 
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n ~ 2 and m 2:: 2. If 



m+n-1 if m = n > 2 or either m or n is 

equal to 2 but not both; 
n 

2n - f--1 if n > m > 2; and 
m-1 

2 r m 1 if m > n > 2. m- n-1 

As was indicated by Milazoo and Vacirca in [6,7], there are some graphs G for 
which even for fixed m 2: 2 there does not exist a positive real number r such that 
W(G X Km) ~ r . W(G). However, they gave such number for G = Pl and Cl(Pl 
and Cl are a path and a cycle of order I. respectively). 

Theorem 2.5. For m ~ 2, we have 
(i) W(Pl X Km) ~ m' W(Pl), and 
(ii) W( Cl X Km) ~ m . W( Cl). 
Moreover, these bounds are attainable. 

In [3] and [6], Geller and Kronk and Milazoo and Vacirca determined w(Pl ) and 
w( Cl) independently. 

n-1 
Theorem 2.6. Let M = max{n : r-2-1n ~ I.}. Then 

(i) For I. 2: 2, W(Pl) = { MM - 1 if M is odd and I. = rM;- 11M; 

otherwise. 

{ 
M 1 if M is odd and I. = rM2-11M + 1; 

(ii) For 1.2: 3, W(Cl) = M-
otherwise. 

In [1], Bhave gave an upper bound for the achromatic number. 

Theorem 2.7. Let G be a graph of order p with maximum degree .6.( G). Then 
W(G) -1 

f .6.(G) l·W(G)~p. 

Now, we are ready to state and prove our other results. 

m(m + 1) / 
Theorem 2.8. W(Pl X Km) ~ ( 2 )1 2(W(Pl) + 3) + 1 for I. ~ 3. 

Proof. It is clear that Pl X Krn is a graph of order ml. with maximum degree 
m + 1. If k((m + l)(k - 1) + 2) ~ ml < (k + l)((m + l)k + 2), then 

r((m + l)k + 2) -ll((m + l)k + 2) = (k + l)((m + l)k + 2) > ml. 
m+1 

Hence by Theorem 2.2., W(Pl X Km) ~ (m + l)k + 1, 

B 
. h' k((m+1)(k-1)+2) n (k+l)((m+1)k+2) 

ut In t IS case, ~ .(. < . So, 
m m 

I. > (2(m + 1)/m)1/2k((2(m + 1)/m)1/2(k -1) + 2(2/m(m + 1))1/2) 
- 2 

(2(m + 1)/m)1/2k((2(m + 1)/m)1/2k - (2/m(m + 1))1/2(m -1)) 
2 

1 1 6 



Since (2/m(m + 1))1/2(m - 1) = «2m2 - 4m + 2)/(m2 + m))1/2 < 2, 
o (l(2(m + 1)/m)1/2kJ -1)(L(2(m + 1)/m)1/2kJ - 2) 
~> 2 . 

Hence W(Pl) ~ L(2(m + 1)/m)1/2kJ - 2 ~ (2(m + 1)/rn)1/2k - 3 and 
W(Pl X Km) ~ (m + l)k + 1 ~ «m + 1)m/2)1/2(1JI(Pl ) + 3) + 1. 

For the same reason, we have 

Theorem 2.9. W(Ol X Km) ~ «m + 1)m/2)1/2(W(Ct ) + 3) + 1. 

The best upper bounds that we knew before for Pl X Km and OR. X Km are 
the bounds in Theorem 2.5. Comparing them with ours, we find that our bounds 

improve them asymptotically over ~;:a . lJI(G) for l ~ 50. 
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