Some Infinite Classes of Williamson Matrices and Weighing Matrices

Ming-yuan Xia
Department of Mathematics
Huazhong Normal University
Wuhan, Hubei 430070, China

ABSTRACT

Williamson type matrices A, B, C, D will be called nice if $A B^{T}+C D^{T}=$ 0 , perfect if $A B^{T}+C D^{T}=A C^{T}+B D^{T}=0$, special if $A B^{T}+C D^{T}=$ $A C^{T}+B D^{T}=\dot{A} D^{T}+B C^{T}=0$.
Type $1(1,-1)$-matrices A, B, C, D of order n will be called tight Williamson-like matrices if $A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 n I_{n}$ and $A B^{T}+B A^{T}+C D^{T}+D C^{T}=0$.
Write $N=3^{2 r} \cdot p_{1}^{4 r_{1}} \ldots p_{n}^{4 r_{n}}$, where $p_{j} \equiv 3(\bmod 4), p_{j}>3, j=1, \ldots, n$ and r, r_{1}, \ldots, r_{n} are non-negative integers. In this paper we prove:
(i) if there exist special Williamson type matrices of order n then there exist two disjoint amicable $W(2 n, n)$, whose sum and difference are $(1,-1)$-matrices, and four disjoint and amicable $W(4 n, n)$, whose sum is a $(1,-1)$-matrix;
(ii) there exists an Hadamard matrix of order $4 m n$, where m is the order of tight Williamson-like matrices and n is the order of nice Williamson type matrices.

Definition 1 Williamson type matrices A, B, C, D will be called nice if $A B^{T}+$ $C D^{T}=0$, perfect if $A B^{T}+C D^{T}=A C^{T}+B D^{T}=0$, special if $A B^{T}+C D^{T}=$ $A C^{T}+B D^{T}=A D^{T}+B C^{T}=0$ (see Definition 4, [2]).

Definition 2 Type $1(1,-1)$-matrices A, B, C, D of order n will be called tight Williamson-like matrices if $A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 n I_{n}$ and $A B^{T}+B A^{T}+$ $C D^{T}+D C^{T}=0($ see Definition 5, [2]).

Notation 1 Write $N=3^{2 r} \cdot p_{1}^{4 r_{1}} \ldots p_{n}^{4 r_{n}}$, where $p_{j} \equiv 3(\bmod 4), p_{j}>3, j=1, \ldots, n$ and r, r_{1}, \ldots, r_{n} are non-negative integers.

Theorem 1 If there exist special Williamson type matrices of order n then there exist two disjoint amicable $W(2 n, n)$, whose sum and difference are $(1,-1)$-matrices.

Proof. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the Williamson type matrices of order n. Set

$$
\begin{aligned}
P & =\frac{1}{2}\left[\begin{array}{ll}
A_{1}+A_{2} & A_{3}+A_{4} \\
A_{3}+A_{4} & A_{1}+A_{2}
\end{array}\right], \\
Q & =\frac{1}{2}\left[\begin{array}{ll}
A_{1}-A_{2} & A_{3}-A_{4} \\
A_{3}-A_{4} & A_{1}-A_{2}
\end{array}\right] .
\end{aligned}
$$

Then P and Q are the required two $W(2 n, n)$.
Remark. $W(2 n, n)$, n odd, exist only if n is the sum of two squares (see Corollary 2.11 [1]).

Corollary 1 There exist two disjoint and amicable $W(2 N, N)$, whose sum and difference are (1,-1)-matrices.

Proof. From Theorem 5 [3] there exist special Williamson type matrices of order N.

Theorem 2 If there exist special Williamson type matrices of order n then there exist four disjoint and amicable $W(4 n, n)$, whose sum is a $(1,-1)$-matrix.

Proof. Set $E=\left[\begin{array}{cc}P & 0 \\ 0 & P\end{array}\right], F=\left[\begin{array}{cc}Q & 0 \\ 0 & Q\end{array}\right], G=\left[\begin{array}{cc}0 & P \\ P & 0\end{array}\right], H=\left[\begin{array}{cc}0 & Q \\ Q & 0\end{array}\right]$, where P, Q were given in the proof of Theorem 1. Then E, F, G, H are the required weighing matrices.

Corollary 2 There exist four disjoint and amicable $W(4 N, N)$, whose sum is a (1,-1)-matrix.

It is known that:
(i) if there exist nice Williamson type matrices of order m and special Williamson type matrices of order n then there exist nice Williamson type matrices of order $m n$ (see Theorem 5 [2]);
(ii) if there exist tight Williamson-like matrices of order m and special Williamson type matrices of order n then there exist tight Williamson type matrices of order $m n$ (see Theorem 1 [4]).

Theorem 3 If there exist tight Williamson-like matrices of order m and nice
Williamson type matrices of order n then there exists an Hadamard matrix of order $4 m n$.

Proof. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the tight Williamson-like matrices of order m on a additive abelian group $G=\left\{g_{1}, \cdots, g_{m}\right\}$ and $B_{1}, B_{2}, B_{3}, B_{4}$ be nice Williamson type matrices of order n. Set

$$
\begin{aligned}
C_{1} & =\frac{1}{2}\left(A_{1}+A_{2}\right) \times B_{1}+\frac{1}{2}\left(A_{1}-A_{2}\right) \times B_{2} \\
C_{2} & =\frac{1}{2}\left(A_{1}+A_{2}\right) \times B_{3}+\frac{1}{2}\left(A_{1}-A_{2}\right) \times B_{4} \\
C_{3} & =\frac{1}{2}\left(A_{3}+A_{4}\right) \times B_{1}+\frac{1}{2}\left(A_{3}-A_{4}\right) \times B_{2} \\
C_{4} & =\frac{1}{2}\left(A_{3}+A_{4}\right) \times B_{3}+\frac{1}{2}\left(A_{3}-A_{4}\right) \times B_{4}
\end{aligned}
$$

We have

$$
\sum_{i=1}^{4} C_{j} C_{j}^{T}=\frac{1}{4}\left(\sum_{j=1}^{4} A_{j} A_{j}^{T}\right) \times\left(\sum_{j=1}^{4} B_{j} B_{j}^{T}\right)=4 m n I_{m n}
$$

Let $R_{1}=\left(r_{i j}\right)$ be the permutation matrix of order m, defined on G by

$$
r_{i j}= \begin{cases}1 & \text { if } g_{i}+g_{j}=0 \\ 0 & \text { otherwise }\end{cases}
$$

Write $R=R_{1} \times I_{n}$ and set

$$
H=\left[\begin{array}{cccc}
C_{1} & C_{2} R & C_{3} R & C_{4} R \\
-C_{2} R & C_{1} & -\tilde{C}_{4} R & \tilde{C}_{3} R \\
-C_{3} R & \tilde{C}_{4} R & C_{1} & -\tilde{C}_{2} R \\
-C_{4} R & -\tilde{C}_{3} R & \tilde{C}_{2} R & C_{1}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \tilde{C}_{2}=\frac{1}{2}\left(A_{1}+A_{2}\right)^{T} \times B_{3}+\frac{1}{2}\left(A_{1}-A_{2}\right)^{T} \times B_{4} \\
& \tilde{C}_{3}=\frac{1}{2}\left(A_{3}+A_{4}\right)^{T} \times B_{1}+\frac{1}{2}\left(A_{3}-A_{4}\right)^{T} \times B_{2} \\
& \tilde{C}_{4}=\frac{1}{2}\left(A_{3}+A_{4}\right)^{T} \times B_{3}+\frac{1}{2}\left(A_{3}-A_{4}\right)^{T} \times B_{4}
\end{aligned}
$$

We see that $\tilde{C}_{i} \tilde{C}_{i}^{T}=C_{i} C_{i}^{T}, i=2,3,4$, and $C_{i} C_{j}^{T}=\tilde{C}_{j} \tilde{C}_{i}^{T}, C_{i} \tilde{C}_{j}^{T}=C_{j} \tilde{C}_{i}^{T}$, for $i \neq j$. Finally, it is easy to check that

$$
H H^{T}=4 m n I_{m n}
$$

Acknowledgement: The author wishes to thank Professor J. Seberry for her helpful discussions.

References

[1] A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York-Basel, 1979.
[2] Xian-Mo Zhang Semi-regular sets of matrices and applications, submitted to Australas. J. Combin., 1991.
[3] Ming Yuan Xia, Some Infinite Classes of Special Williamson Matrices and Difference Sets, Journal of Combinatorial Theory (Ser. A), to appear.
[4] Ming Yuan Xia, Hadamard Matrices, in Combinatorial Designs and Applications, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York-Basel, 126, 179-181, 1990.

