# Forbidden families of configurations 

R.P. Anstee ${ }^{*}$ Christina L. Koch ${ }^{\dagger}$<br>Mathematics Department<br>The University of British Columbia<br>Vancouver, B.C. V6T 1Z2<br>Canada<br>anstee@math.ubc.ca clkoch@math.ubc.ca


#### Abstract

A simple matrix is a $(0,1)$-matrix with no repeated columns. For a $(0,1)$ matrix $F$, we say that a $(0,1)$-matrix $A$ has $F$ as a configuration if there is a submatrix of $A$ which is a row and column permutation of $F$ (trace is the set system version of a configuration). Let $\|A\|$ denote the number of columns of $A$. Let $\mathcal{F}$ be a family of matrices. We define the extremal function forb $(m, \mathcal{F})=\max \{\|A\|: A$ is $m$-rowed simple matrix and has no configuration $F \in \mathcal{F}\}$. We consider some families $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{t}\right\}$ such that individually each forb $\left(m, F_{i}\right)$ has greater asymptotic growth than $\operatorname{forb}(m, \mathcal{F})$.


## 1 Introduction

We are initiating an exploration of families of forbidden configurations in this paper, as recommended in [13]. Some notation is needed. Define a matrix to be simple if it is a $(0,1)$-matrix with no repeated columns. Such a matrix can be viewed as an elementset incidence matrix. Given two $(0,1)$-matrices $F, A$, if there is a submatrix of $A$ which is a row and column permutation of $F$ then we say $A$ has $F$ as a configuration and write $F \prec A$. In set terminology the notation trace would be appropriate. For a subset of rows $S$, define $\left.A\right|_{S}$ as the submatrix of $A$ consisting of rows $S$ of $A$. Define $[n]=\{1,2, \ldots, n\}$. If $F$ has $k$ rows and $A$ has $m$ rows and $F \prec A$, then there is a $k$-subset $S \subseteq[m]$ such that $\left.F \prec A\right|_{S}$. For two $m$-rowed matrices $A, B$, use $[A \mid B]$ to denote the concatenation of $A, B$ yielding a larger $m$-rowed matrix. Define $t \cdot A$ to be the matrix obtained from concatenating $t$ copies of $A$. These two operations need not yield simple matrices. Let $A^{c}$ denote the ( 0,1 )-complement of $A$.

[^0]Define $\|A\|$ to be the number of columns of $A$. For a set of matrices $\mathcal{F}$, define our extremal problem as follows:

$$
\begin{aligned}
& \operatorname{Avoid}(m, \mathcal{F})=\{A: A \text { is } m \text {-rowed, simple, } F \nprec A \text { for all } F \in \mathcal{F}\}, \\
& \operatorname{forb}(m, \mathcal{F})=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, \mathcal{F})\}
\end{aligned}
$$

When $|\mathcal{F}|=1$ and $\mathcal{F}=\{F\}$, we write $\operatorname{Avoid}(m, F)$ and forb $(m, F)$. A conjecture of Anstee and Sali [3] for a single configuration sometimes makes the correct predictions for the asymptotic growth of forb $(m, \mathcal{F})$. Let $I_{k}$ denote the $k \times k$ identity matrix and let $T_{k}$ denote the $k \times k$ triangular simple matrix with a 1 in position $(i, j)$ if and only if $i \leq j$. For an $m_{1} \times n_{1}$ simple matrix $A$ and a $m_{2} \times n_{2}$ simple matrix $B$, we define the 2 -fold product $A \times B$ to be the $\left(m_{1}+m_{2}\right) \times n_{1} n_{2}$ simple matrix whose columns are obtained from placing a column of $A$ on top of a column of $B$ in all possible ways. This generalizes to $p$-fold products. For a configuration $F$, define $X(F)$ as the smallest value of $p$ such that $F \prec A_{1} \times A_{2} \times \cdots \times A_{p}$ for every $p$-fold product where $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$.

Conjecture 1.1 [3] The extremal function forb $(m, F)$ is $\Theta\left(m^{X(F)-1}\right)$.
This conjecture will help in guessing asymptotic bounds for $\operatorname{forb}(m, \mathcal{F})$. Define $X(\mathcal{F})$ as the smallest value of $p$ such that for every every $p$-fold product $A_{1} \times A_{2} \times \cdots \times$ $A_{p}$ where $A_{i} \in\left\{I_{m / p}, I_{m / p}^{c}, T_{m / p}\right\}$ there is some $F \in \mathcal{F}$ with $F \prec A_{1} \times A_{2} \times \cdots \times A_{p}$. We might expect that forb $(m, \mathcal{F})$ is $\Theta\left(m^{X(\mathcal{F})-1}\right)$ but Theorem 1.7 and Theorem 1.8 are quick counterexamples.

Two easy remarks are the following. The definition of $A^{c}$ is above.
Remark 1.2 We have forb $\left(m,\left\{F_{1}, F_{2}, \ldots, F_{t}\right\}\right)=\operatorname{forb}\left(m,\left\{F_{1}^{c}, F_{2}^{c}, \ldots, F_{t}^{c}\right\}\right)$.
Remark 1.3 Let $\mathcal{F} \subseteq \mathcal{G}$. Then $\operatorname{forb}(m, \mathcal{G}) \leq \operatorname{forb}(m, \mathcal{F})$.
Remark 1.4 Let $\mathcal{F}$ be given with $F \in \mathcal{F}$. Let $F^{\prime}$ be given with $F \prec F^{\prime}$, Then $\operatorname{forb}\left(m, \mathcal{F} \cup\left\{F^{\prime}\right\}\right)=\operatorname{forb}(m, \mathcal{F})$.

In view of Remark 1.4, define $\mathcal{F}$ to be minimal if there are no pairs $F, F^{\prime} \in \mathcal{F}$ with $F \prec F^{\prime}$.

Some examples are in order. Balanced and totally balanced matrices are classes of matrices which can each be defined using an infinite family of forbidden configurations. Let $C_{k}$ denote the vertex-edge incidence matrix of the cycle of length $k$. Thus

$$
\text { e.g. } \quad C_{3}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], C_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

A matrix $A$ is balanced if has no configuration $C_{k}$ for $k$ odd and a matrix is totally balanced if it has no configuration $C_{k}$ for all $k \geq 3$. These are important classes of matrices. While the definitions do not require the matrices to be simple, it is still of interest how many different columns can there be in a balanced (resp. totally balanced) matrix on $m$ rows. We obtain an upper bound using Remark 1.3 and the lower bound follows from the result that any $m \times \operatorname{forb}\left(m, C_{3}\right)$ matrix $A \in \operatorname{Avoid}\left(m, C_{3}\right)$ is necessarily totally balanced.

Theorem 1.5 [1] We have:

$$
\operatorname{forb}\left(m, C_{3}\right)=\operatorname{forb}\left(m,\left\{C_{3}, C_{4}, C_{5}, C_{6}, \ldots\right\}\right)=\operatorname{forb}\left(m,\left\{C_{3}, C_{5}, C_{7}, C_{9}, \ldots\right\}\right) .
$$

The result forb $\left(m, C_{3}\right)=\binom{m}{2}+\binom{m}{1}+\binom{m}{0}$ is due to Ryser [14]. Note that $X\left(\left\{C_{3}, C_{4}, C_{5}, C_{6}, \ldots\right\}\right)=X\left(\left\{C_{3}, C_{5}, C_{7}, C_{9}, \ldots\right\}\right)=3$ where the construction $T_{m / 2} \times$ $T_{m / 2}$ avoids $C_{k}$ for all $k \geq 3$. From another point of view, the result suggests that the bound for a forbidden family might arise from the most restrictive configuration in the family (i.e. forb $(m, \mathcal{F})=\min _{F \in \mathcal{F}}$ forb $(m, F)$ or its asymptotic equivalent) but this is generally not true. The following examples suggest that forbidden families can behave quite differently. Consider the fundamental extremal function ex $(m, H)$ which denotes the maximum number of edges in a (simple) graph on $m$ vertices that has no subgraph $H$. Let $\mathbf{1}_{k}$ denote the $k \times 1$ column of 1 's. There is a connection to forbidden families as follows. Note that each $A \in \operatorname{Avoid}\left(m, \mathbf{1}_{3}\right)$ consists of columns of column sum $0,1,2$. There are at most $m+1$ columns of column sum 0 or 1 on $m$ rows. The columns of sum 2 in $A$ can be interpreted as a vertex-edge incidence matrix of a graph. For a graph $H$, let $\operatorname{Inc}(H)$ denote its vertex-edge incidence matrix.

Lemma 1.6 We have forb $\left(m,\left\{\mathbf{1}_{3}, \operatorname{Inc}(H)\right\}\right)=e x(m, H)+m+1$.
Two sample results concerning $\operatorname{ex}(m, H)$ yield the following where the vertex-edge incidence matrix of the cycle of length $k$ is $C_{k}$.

Theorem 1.7 [11] We have forb $\left(m,\left\{\mathbf{1}_{3}, C_{4}\right\}\right)$ is $\Theta\left(m^{3 / 2}\right)$.
Theorem 1.8 [8] We have forb $\left(m,\left\{\mathbf{1}_{3}, C_{6}\right\}\right)$ is $\Theta\left(m^{4 / 3}\right)$.
Simonovits refers to an unpublished upper bound of Erdős as the 'Even Circuit Theorem' so the origins of the results are partly folklore. The analogue of Conjecture 1.1 for forbidden families is failing spectacularly on these examples ( $X\left(\left\{\mathbf{1}_{3}, C_{4}\right\}\right)$ $\left.=X\left(\left\{\mathbf{1}_{3}, C_{6}\right\}\right)=2\right)$ and also on the following example. You might note that $I_{2} \times I_{2}$ is the same as $C_{4}$ after a row and column permutation.

Theorem 1.9 [4] We have forb $\left(m,\left\{I_{2} \times I_{2}, T_{2} \times T_{2}\right\}\right)$ is $\Theta\left(m^{3 / 2}\right)$.
Balogh and Bollobás proved the following useful bound which is consistent with Conjecture 1.1. For fixed $k, X\left(\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)=1$ since all 1-fold products contain some element of $\left\{I_{k}, I_{k}^{c}, T_{k}\right\}$.

Theorem 1.10 [7] Let $k$ be given. Then there is a constant $c_{k}$ so that forb( $m$, $\left.\left\{I_{k}, I_{k}^{c}, T_{k}\right\}\right)=c_{k}$.

The following lemma is straightforward and quite useful.
Lemma 1.11 Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$ and $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{\ell}\right\}$. Assume that for every $G_{i}$, there is some $F_{j}$ with $F_{j} \prec G_{i}$. Then forb $(m, \mathcal{F}) \leq \operatorname{forb}(m, \mathcal{G})$.

Proof: Assume $\|A\|>\operatorname{forb}(m, \mathcal{G})$. Then for some $i \in[t], G_{i} \prec A$. But by hypothesis there is some $F_{j} \in \mathcal{F}$ with $F_{j} \prec G_{i}$. But then $F_{i} \prec A$, verifying that forb $(m, \mathcal{F}) \leq$ forb $(m, \mathcal{G})$.

Now combining with Theorem 1.10, we obtain a surprising classification.
Theorem 1.12 Let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{t}\right\}$ be given. There are two possibilities. Either forb $(m, \mathcal{F})$ is $\Omega(m)$ or there exist $\ell, i, j, k$ with $F_{i} \prec I_{\ell}$, with $F_{j} \prec I_{\ell}^{c}$ and with $F_{k} \prec T_{\ell}$ in which case there is a constant $c$ with forb $(m, \mathcal{F})=c$.

Proof: Let $F_{i}$ be $a_{i} \times b_{i}$ and let $\ell=\max _{i \in[t]}\left(a_{i}+b_{i}\right)$. Let $\mathcal{G}=\left\{I_{\ell}, I_{\ell}^{c}, T_{\ell}\right\}$. Then $F_{j} \nprec I_{\ell}$ implies $F_{j} \nprec I_{m}$ for any $m \geq \ell$. Thus if $F_{j} \nprec I_{\ell}$ for $j=1,2, \ldots t$, then forb $(m, \mathcal{F})$ is $\Omega(m)$ using the construction $I_{m}$. The same holds for $I^{c}$ and $T$.

This paper considers all pairs of forbidden configurations drawn from Table 1. The listed nine configurations are minimal quadratic configurations, namely those $Q$ for which forb $(m, Q)$ is $\Theta\left(m^{2}\right)$ yet for any submatrix $Q^{\prime}$ of $Q$, where $Q^{\prime} \neq Q$, has forb $\left(m, Q^{\prime}\right)$ being $O(m)$. The results which yield this list are in [5]. Configurations $Q_{1}, Q_{2}, Q_{4}, Q_{5}$ reduce the list dramatically. All other minimal quadratic configurations on 3 or more rows must be simple and cannot have 5 rows. The minimal quadratic configurations of Table 1 have the virtue of having few possible 2-fold constructions avoiding them and so avoiding the configurations in pairs (or larger families) results in interesting interactions. Table 1 lists all the 2-fold (quadratic) product constructions (of $I, I^{c}, T$ ) that yield the quadratic lower bounds. There are no 3 -fold products to consider since for all $i, X\left(Q_{i}\right)=3$. This allows you to compute $X\left(\left\{Q_{i}, Q_{j}\right\}\right)$ for pairs $Q_{i}, Q_{j}$ in the table. The asymptotic growth rates of forb $\left(m,\left\{Q_{i}, Q_{j}\right\}\right)$ are collected together in Table 2 and the complete analysis for any non-empty $\mathcal{F} \subset\left\{Q_{1}, Q_{2}, \ldots, Q_{9}\right\}$ is in Theorem 5.7. Section 2 handles those pairs with $X\left(\left\{Q_{i}, Q_{j}\right\}\right)=3$ for which it is immediate that forb $\left(m,\left\{Q_{i}, Q_{j}\right\}\right)$ is $\Theta\left(m^{2}\right)$. The section also consider those cases where Lemma 1.11 when applied with Theorem 1.10 yield that forb $\left(m,\left\{Q_{i}, Q_{j}\right\}\right)$ is $O(1)$. Section 3 considers how to apply Lemma 1.6 more generally to help with forb $\left(m,\left\{Q_{5}, Q_{j}\right\}\right)$. Section 4 provides a new standard induction introduced in [6] that is useful in this context and helps with forb $\left(m,\left\{Q_{8}, Q_{j}\right\}\right)$ and $\operatorname{forb}\left(m,\left\{Q_{3}, Q_{j}\right\}\right)$. Section 5 considers the structures that arise from forbidding $Q_{9}$ and then uses this to obtain results on forb $\left(m,\left\{Q_{9}, Q_{j}\right\}\right)$.

|  | Configuration $Q_{i}$ | forb $\left(m, Q_{i}\right)$ | Construction(s) | Reference |
| :---: | :---: | :---: | :---: | :---: |
| $Q_{1}$ | $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ | $\binom{m}{2}+\binom{m}{1}+\binom{m}{0}$ | $I^{c} \times I^{c}$ | [9] |
| $Q_{2}$ | $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ | $\binom{m}{2}+\binom{m}{1}+\binom{m}{0}$ | $I \times I$ | [9] |
| $Q_{3}$ | $\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1\end{array}\right]$ | $\left\lfloor\frac{m^{2}}{4}\right\rfloor+m+1$ | $I \times I^{c}$ | [2] |
| $Q_{4}$ | $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ | $\binom{m}{2}+\binom{m}{1}+\binom{m}{0}$ | $I^{c} \times I^{c}$ | $[15,16,17]$ |
| $Q_{5}$ | $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ | $\binom{m}{2}+\binom{m}{1}+\binom{m}{0}$ | $I \times I$ | [15, 16, 17] |
| $Q_{6}$ | $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ | $\binom{m}{2}+\binom{m}{1}+\binom{m}{0}$ | $\begin{aligned} & I^{c} \times I^{c} \\ & I^{c} \times T \\ & T \times T \end{aligned}$ | [14] |
| $Q_{7}$ | $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ | $\binom{m}{2}+\binom{m}{1}+\binom{m}{0}$ | $\begin{aligned} & I \times I \\ & I \times T \\ & T \times T \end{aligned}$ | [14] |
| $Q_{8}$ | $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ | $\left\lfloor\frac{m^{2}}{4}\right\rfloor+m+1$ | $T \times T$ | [5] |
| $Q_{9}$ | $\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right]$ | $\binom{m}{2}+2 m-1$ | $\begin{aligned} & I \times T \\ & I^{c} \times T \end{aligned}$ | [12] |

Table 1: Minimal Quadratic Configurations

|  | $Q_{2}$ | $Q_{3}$ | $Q_{4}$ | $Q_{5}$ | $Q_{6}$ | $Q_{7}$ | $Q_{8}$ | $Q_{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Q_{1}$ | $\Theta(1)$ | $\Theta(m)$ | $\Theta\left(m^{2}\right)$ | $\Theta(1)$ | $\Theta\left(m^{2}\right)$ | $\Theta(1)$ | $\Theta(m)$ | $\Theta(m)$ |
|  | Th 2.6 | Cor 4.8 | Th 2.1 | Th 2.6 | Th 2.1 | Th 2.6 | Cor 4.2 | Cor 5.3 |
| $Q_{2}$ |  | $\Theta(m)$ | $\Theta(1)$ | $\Theta\left(m^{2}\right)$ | $\Theta(1)$ | $\Theta\left(m^{2}\right)$ | $\Theta(m)$ | $\Theta(m)$ |
|  |  | Cor 4.8 | Th 2.6 | Th 2.1 | Th 2.6 | Th 2.1 | Cor 4.2 | Cor 5.3 |
| $Q_{3}$ |  |  | $\Theta(m)$ | $\Theta(m)$ | $\Theta(m)$ | $\Theta(m)$ | $\Theta(m)$ | $\Theta(m)$ |
|  |  |  | Th 3.6 | Th 3.6 | Cor 4.8 | Cor 4.8 | Cor 4.4 | Cor 5.3 |
| $Q_{4}$ |  |  |  | $\Theta(1)$ | $\Theta\left(m^{2}\right)$ | $\Theta(1)$ | $\Theta(m)$ | $\Theta(m)$ |
|  |  |  |  | Th 2.6 | Th 2.1 | Th 2.6 | Th 3.6 | Th 3.6 |
| $Q_{5}$ |  |  |  |  | $\Theta(1)$ | $\Theta\left(m^{2}\right)$ | $\Theta(m)$ | $\Theta(m)$ |
|  |  |  |  |  | Th 2.6 | Th 2.1 | Th 3.6 | Th 3.6 |
| $Q_{6}$ |  |  |  |  |  | $\Theta\left(m^{2}\right)$ | $\Theta\left(m^{2}\right)$ | $\Theta\left(m^{2}\right)$ |
|  |  |  |  |  |  | Th 2.2 | Th 2.2 | Th 2.3 |
| $Q_{7}$ |  |  |  |  |  |  | $\Theta\left(m^{2}\right)$ | $\Theta\left(m^{2}\right)$ |
|  |  |  |  |  |  |  | Th 2.2 | Th 2.3 |
| $Q_{8}$ |  |  |  |  |  |  |  | $\Theta(m)$ |
|  |  |  |  |  |  |  |  | Th 5.5 |

Table 2: Asymptotic growth rates of forb $\left(m,\left\{Q_{i}, Q_{j}\right\}\right)$.

## 2 Quadratic and Constant Bounds

First we are interested in pairs with $X\left(\left\{Q_{i}, Q_{j}\right\}\right)=3$ for which it follows that forb $\left(m,\left\{Q_{i}, Q_{j}\right\}\right)$ is $\Theta\left(m^{2}\right)$ (the upper bound follows from Remark 1.3 using the fact that forb $\left(m,\left\{Q_{i}\right\}\right)$ is $O\left(m^{2}\right)$ for all $\left.i \in[9]\right)$.

Theorem 2.1 We have forb $\left(m,\left\{Q_{1}, Q_{4}, Q_{6}\right\}\right)=$ forb $\left(m,\left\{Q_{2}, Q_{5}, Q_{7}\right\}\right)$ is $\Theta\left(m^{2}\right)$.
Proof: Use the construction $I_{m / 2}^{c} \times I_{m / 2}^{c} \in \operatorname{Avoid}\left(m,\left\{Q_{1}, Q_{4}, Q_{6}\right\}\right)$ to deduce that $X\left(\left\{Q_{1}, Q_{4}, Q_{6}\right\}\right)=3$ and $I_{m / 2} \times I_{m / 2} \in \operatorname{Avoid}\left(m,\left\{Q_{2}, Q_{5}, Q_{7}\right\}\right)$ to show that $X\left(\left\{Q_{2}, Q_{5}, Q_{7}\right\}\right)=3$.

Theorem 2.2 We have forb $\left(m,\left\{Q_{6}, Q_{7}, Q_{8}\right\}\right)$ is $\Theta\left(m^{2}\right)$.
Proof: The construction $T_{m / 2} \times T_{m / 2} \in \operatorname{Avoid}\left(m,\left\{Q_{6}, Q_{7}, Q_{8}\right\}\right)$ shows that $X\left(\left\{Q_{6}, Q_{7}, Q_{8}\right\}\right)=3$.

Theorem 2.3 We have forb $\left(m,\left\{Q_{6}, Q_{9}\right\}\right)$ and forb $\left(m,\left\{Q_{7}, Q_{9}\right\}\right)$ are $\Theta\left(m^{2}\right)$.
Proof: Use the construction $I_{m / 2}^{c} \times T_{m / 2} \in \operatorname{Avoid}\left(m,\left\{Q_{6}, Q_{9}\right\}\right)$ to deduce that $X\left(\left\{Q_{6}, Q_{9}\right\}\right)=3$ and $I_{m / 2} \times T_{m / 2} \in \operatorname{Avoid}\left(m,\left\{Q_{7}, Q_{9}\right\}\right)$ yields $X\left(\left\{Q_{7}, Q_{9}\right\}\right)=3$.

Families $\mathcal{F}$ for which forb $(m, \mathcal{F})$ is $O(1)$ must arise from applying Lemma 1.11 and Theorem 1.10 in view of Theorem 1.12. There are no 2 -fold or 1 -fold product
constructions in common for $Q_{1}, Q_{2}$ so that $X\left(\left\{Q_{1}, Q_{2}\right\}\right)=1$. Using Theorem 1.10 and Lemma 1.11 yields a constant bound but perhaps recording a general result is in order. Let $0_{a, b}$ denote the $a \times b$ matrix of 0 's and let $J_{a, b}$ denote the $a \times b$ matrix of 1 's.

Theorem 2.4 Let $k, \ell, p, q$ be given. Then there exists some constant $c_{k \ell_{p q}}$ such that for $m \geq c_{k \ell p q}$, forb $\left(m,\left\{0_{k, \ell}, J_{p, q}\right\}\right)=\ell+q-2$.

Proof: Let $d=\max \{k, \ell, p, q\}$. Then $0_{k, \ell} \prec T_{2 d}, 0_{k, \ell} \prec I_{2 d}$ and $J_{p, q} \prec I_{2 d}^{c}$. Thus by Theorem 1.12, forb $\left(m,\left\{0_{k, \ell}, J_{p, q}\right\}\right)$ is $O(1)$. The claim is that forb $\left(m,\left\{0_{k, \ell}, J_{p, q}\right\}\right)=$ $\ell+q-2$. Let $B \in \operatorname{Avoid}\left(m,\left\{0_{k, \ell}, J_{p, q}\right\}\right)$ with $n=\|B\|>\ell+q-2$. Delete columns from $B$ if necessary to obtain a matrix $A \in \operatorname{Avoid}\left(m,\left\{0_{k, \ell}, J_{p, q}\right\}\right)$ with $n=\|A\|=\ell+q-1$. From Lemma 2.5, the right side of (1) is constant based on $n, k, \ell, p$ and $q$. The right hand side of the inequality in (1) is at least $m$ since the summands of the left side will be at least 1 unless $a_{r}<\ell$ and $b_{r}<q$ which is impossible because $a_{r}+b_{r}=\ell+q-1$. So for sufficiently large $m$, this is a contradiction. Hence there exists a constant $c_{k \ell p q}$ so that for $m \geq c_{k \ell_{p q}}$, forb $\left(m,\left\{0_{k, \ell}, J_{p, q}\right\}\right) \leq \ell+q-2$.

It remains to give a construction $A \in \operatorname{Avoid}\left(m,\left\{0_{k, \ell}, J_{p, q}\right\}\right)$ with $\|A\|=\ell+q-2$. Assume $m=\binom{\ell+q-2}{q-1}+t$ for some $t \geq 0$. Let the first $\binom{\ell+q-2}{q-1}$ rows of $A$ consist of all possible rows of $\ell+q-2$ entries with exactly $q-1$ 1's. For the remaining rows of $A$ simply repeat the row of $q-1$ 1's followed by $\ell-10$ 's $m-\binom{\ell+q-2}{q-1}$ times. The matrix is seen to be simple and cannot have $0_{k, \ell}$ since each row has $\ell-1$ 's and cannot have $J_{p, q}$ since each row has $q-1$ 1's. Thus forb $\left(m,\left\{0_{k, \ell}, J_{p, q}\right\}\right) \geq q+\ell-2$. This yields the result.

Lemma 2.5 Let $k, \ell, p, q$ be given. Let $A \in \operatorname{Avoid}\left(m,\left\{0_{k, \ell}, J_{p, q}\right\}\right)$, with $\|A\|=n$. Also let $a_{r}$ denote the number of 0 's in row $r$ of $A$, and $b_{r}$ the number of 1's in row $r$ so that $a_{r}+b_{r}=n$. Then:

$$
\begin{equation*}
\sum_{r=1}^{m}\left(\binom{a_{r}}{\ell}+\binom{b_{r}}{q}\right) \leq(k-1)\binom{n}{\ell}+(p-1)\binom{n}{q} \tag{1}
\end{equation*}
$$

Proof: Consider the columns of $A$. Take all $\ell$-subsets of the columns and call them 0 -buckets. Similarly, we take all $q$-subsets of the columns as 1 -buckets. There are $\binom{n}{\ell}$ 0-buckets and $\binom{n}{q}$ 1-buckets. Process the rows of $A$ one by one, considering all possible $\ell$-subsets and $q$-subsets of columns on that row. If one of these subsets contains all 0 's or all 1's, it makes a contribution to the appropriate 0 -bucket or 1 -bucket. Thus if there are $a 0$ 's in a row, and $b$ 1's (where $a+b=n$ ), then the row will make contributions to $\binom{a}{\ell}$-buckets and $\binom{b}{q}$ 1-buckets. The left side of (1) is thus the total number of contributions over the rows of $A$. Each of our $\binom{n}{\ell} 0$-buckets can have a maximum of $k-1$ contributions, and similarly, our $\binom{n}{q} 1$-buckets can have a maximum of $p-1$ contributions, which produces the right side of the inequality.

Theorem 2.6 We have forb $\left(m,\left\{Q_{1}, Q_{2}\right\}\right)$, forb $\left(m,\left\{Q_{1}, Q_{5}\right\}\right)$, forb $\left(m,\left\{Q_{1}, Q_{7}\right\}\right)$, forb $\left(m,\left\{Q_{2}, Q_{4}\right\}\right)$, forb $\left(m,\left\{Q_{2}, Q_{6}\right\}\right)$, forb $\left(m,\left\{Q_{4}, Q_{5}\right\}\right)$, forb $\left(m,\left\{Q_{4}, Q_{7}\right\}\right)$ and forb $\left(m,\left\{Q_{5}, Q_{6}\right\}\right)$ are all bounded by $O(1)$.

Proof: Apply Lemma 1.11 with $\mathcal{G}=\left\{I_{4}, I_{4}^{c}, T_{4}\right\}$ and also Theorem 1.10. Two examples are the following. For the family $\left\{Q_{1}, Q_{5}\right\}$, note that $Q_{1} \prec I_{4}, Q_{5} \prec I_{4}^{c}$ and $Q_{1} \prec T_{4}$. For the family $\left\{Q_{5}, Q_{6}\right\}$, note that $Q_{6} \prec I_{4}, Q_{5} \prec I_{4}^{c}$ and $Q_{5} \prec T_{4}$.

The exact values for $\operatorname{forb}\left(m,\left\{Q_{1}, Q_{2}\right\}\right)$ are recorded below. The function forb $\left(m,\left\{Q_{1}, Q_{2}\right\}\right)$ has a surprising non-monotonicity in $m$.

Theorem 2.7 [10] We have

$$
\text { forb }\left(m,\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\}\right)= \begin{cases}2 & \text { if } m=1 \text { or } m \geq 7 \\
4 & \text { if } m=2,5,6 \\
6 & \text { if } m=3,4\end{cases}
$$

## 3 Graph Theory

Consider a family $\mathcal{F}=\left\{\mathbf{1}_{3}, F\right\}$ for some $F$. Note that $Q_{5}=\mathbf{1}_{3}$. Now forb $\left(m,\left\{\mathbf{1}_{3}, F\right\}\right)$ is $O\left(m^{2}\right)$ since forb $\left(m, \mathbf{1}_{3}\right)$ is $O\left(m^{2}\right)$. In this section we consider those $F$ which are $(0,1)$-matrices with column sums 0,1 or 2 . If $F$ has a repeated column of sum 2 then $2 \cdot \mathbf{1}_{2} \prec F$ and then $\operatorname{forb}\left(m,\left\{\mathbf{1}_{3}, F\right\}\right)$ is $\Theta\left(m^{2}\right)$ (the construction $I_{m / 2} \times I_{m / 2}$ yields the lower bound). So assume $F$ has no repeated columns of sum 2 and so these columns can be viewed as the incidence matrix of some graph. Lemma 1.6 is readily extended to those $F$ with columns having sum 0,1 or 2 . The following remark describes a useful construction.

Remark 3.1 Let $F$ be a $k \times \ell(0,1)$-matrix with column sums $\in\{0,1,2\}$. Assume $2 \cdot \mathbf{1}_{2} \nprec F$. Let $a_{i}$ be the number of columns of $F$ of sum 1 with a 1 in row $i$, and let $b$ be the number of columns of $F$ of all 0 's. Form a graph $G$ with $V(G)=$ $\left[k+\sum_{i \in[k]} a_{i}+b+1\right]$ as follows. For $i, j \in[k], i, j \in E(G)$ if and only if there is a column of $F$ with 1's in rows $i, j$. Also, for each $i \in[k]$, add $a_{i}$ edges to $G$ joining $i \in[k]$ to $a_{i}$ vertices chosen from $\left[k+\sum_{i \in[k]} a_{i}+b+1\right] \backslash[k]$ (each of which has degree 1). Finally on the remaining $b+1$ vertices add $b$ edges in the form of a tree. Then $F \prec \operatorname{Inc}(G)$.

Proof: By construction, $\left.F \prec \operatorname{Inc}(G)\right|_{[k]}$.
The remark demonstrates some of the differences between a 'subgraph' and a 'configuration'. The following lemma is certainly folklore.

Lemma 3.2 Let $T$ be a graph on $k$ vertices and assume $T$ has no cycles (i.e., $T$ is a forest). Then ex $(m, T)$ is $O(m)$.

Proof: Folklore says if a graph $G$ on $m$ vertices has at least $k m$ edges then $T$ is a subgraph of $G$. Assume $G$ has at least $k m$ edges. First obtain a subgraph $G^{\prime}$ of $G$ with minimum degree $k$ which is obtained by removing vertices whose degree is at most $k-1$. Each vertex deleted removes at most $k-1$ edges. Thus the process must stop with a non-empty subgraph $G^{\prime}$ of $G$ with minimum degree $k$. Since $T$ has no cycles, there is an ordering of the vertices $v_{1}, v_{2}, \ldots, v_{k}$ of $T$ so that for each $v_{i}$ there is at most one $v_{j}$ with $j<i$ such that $\left(v_{j}, v_{i}\right)$ is an edge of $T$. Assume we have found in $G^{\prime}$ a subgraph $T$, namely vertices $x_{1}, x_{2}, \ldots, x_{p} \in V\left(G^{\prime}\right)$ such that $\left(x_{i}, x_{j}\right) \in E\left(G^{\prime}\right)$ if $\left(v_{i}, v_{j}\right) \in E(T)$ where $1 \leq i<j \leq p$. If $p=k$, we are done. If $p<k$, then consider $v_{p+1}$. If $v_{p+1}$ is not joined in $T$ to anything in $v_{1}, v_{2}, \ldots, v_{p}$ then select $x_{p+1}$ as any vertex in $G^{\prime}$ (say adjacent to $x_{p}$ ) which has not already been selected. If $v_{p+1}$ is joined to $v_{i}$ with $i \leq p$, then choose $x_{p+1}$ as any vertex adjacent $x_{i}$ which has not already been selected. Use that minimum degree in $G^{\prime}$ is at least $k>p$. Continue until $p=k$. This yields ex $(m, T)<k m$.

The above lemma applies to certain configurations.
Theorem 3.3 Let $F$ be a given $k \times \ell(0,1)$-matrix such that every column has at most 2 1's. Assume that $2 \cdot \mathbf{1}_{2} \nprec F$ and assume $C_{t} \nprec F$ for any $t \geq 3$. Then forb $\left(m,\left\{\mathbf{1}_{3}, F\right\}\right)$ is $O(m)$.

Proof: Use Remark 3.1 to obtain a graph $G$ from $F$. The graph $G$ has no cycles and hence by Lemma 3.2, ex $(m, G)$ is $O(m)$. We note that $F \prec \operatorname{Inc}(G)$. Now applying Lemma 1.6 yields forb $\left(m,\left\{\mathbf{1}_{3}, \operatorname{Inc}(G)\right\}\right)$ is $O(m)$ and so, by Lemma 1.11, forb $\left(m,\left\{\mathbf{1}_{3}, F\right\}\right)$ is $O(m)$.

The following is a weak version of the extremal graph results of Erdős, Stone and Simonovits since it only considers asymptotic growth rates.

Theorem 3.4 Let $F$ be a given $k \times \ell(0,1)$-matrix such that every column has at most two 1's. Let $t$ be given. Assume $2 \cdot \mathbf{1}_{2} \prec F$ or there is some $t \geq 1$ with $C_{2 t+1} \prec F$. Then forb $\left(m,\left\{\mathbf{1}_{3}, F\right\}\right)$ is $\Theta\left(m^{2}\right)$.

Proof: The upper bound $O\left(m^{2}\right)$ is easy. The construction $I_{m / 2} \times I_{m / 2}$ yields the matching lower bound.

Let $H$ be a bipartite graph. Then $\operatorname{ex}(m, H)$ is $o\left(m^{2}\right)$. The following result extends this to configurations.

Theorem 3.5 Let $F$ be a given $k \times \ell(0,1)$-matrix such that every column has at most 2 1's. Let $F$ be given with and also with the property that $2 \cdot \mathbf{1}_{2} \nprec F$ and for all $t \geq 1, C_{2 t+1} \nprec F$. Then forb $\left(m,\left\{\mathbf{1}_{3}, F\right\}\right)$ is o $\left(m^{2}\right)$.

Proof: Form a graph $G$ as described in Remark 3.1. Since for all $t \geq 1, C_{2 t+1} \nprec F$, the resulting graph $G$ will be a bipartite graph. Then for some $s, t, G$ is a subgraph
of the complete bipartite graph $K_{s, t}$. Now $\operatorname{ex}\left(m, K_{s, t}\right)$ is $o\left(m^{2}\right)$. Thus ex $(m, G)$ is $o\left(m^{2}\right)$. Now $F \prec \operatorname{Inc}(G)$ and so by Lemma 1.6, forb $\left(m,\left\{\mathbf{1}_{3}, F\right\}\right)$ is $o\left(m^{2}\right)$.

One could imagine trying to obtain similar results for forb $\left(m,\left\{\mathbf{1}_{k}, F\right\}\right)$ where $F$ has columns sums at most $k-1$. It is still very much an open problem to determine the exact asymptotic growth ex $\left(m, C_{2 t}\right)$ for various $t \geq 2$ with two results noted Theorem 1.7, Theorem 1.8. Theorem 3.3 combined with Remark 1.2, yields the following.

Theorem 3.6 We have forb $\left(m,\left\{Q_{5}, Q_{3}\right\}\right)$, forb $\left(m,\left\{Q_{5}, Q_{8}\right\}\right)$, forb $\left(m,\left\{Q_{5}, Q_{9}\right\}\right)$, forb $\left(m,\left\{Q_{4}, Q_{3}\right\}\right)$, forb $\left(m,\left\{Q_{4}, Q_{8}\right\}\right)$, forb $\left(m,\left\{Q_{4}, Q_{9}\right\}\right)$ are all $O(m)$.

Theorem 3.4 yields that $\operatorname{forb}\left(m,\left\{Q_{5}, Q_{7}\right\}\right)$ is $\Omega\left(m^{2}\right)$, a fact which has already been noted.

## 4 New Standard Induction

Our standard induction argument proceeds as follows. Let $A \in \operatorname{Avoid}(m, \mathcal{F})$ with $\|A\|=\operatorname{forb}(m, \mathcal{F})$. Choose $r \in[m]$ and delete row $r$ from $A$. The result may have repeated columns in pairs and matrix $C_{r}$ contains one copy of each pair. After permuting rows and columns, the following decomposition is obtained:

$$
A=\text { row } r\left[\begin{array}{ccc}
00 \cdots 0 & 11 \cdots 1  \tag{2}\\
B_{r} C_{r} & & C_{r} \\
D_{r}
\end{array}\right] .
$$

Both $\left[B_{r} C_{r} D_{r}\right]$ and $C_{r}$ are simple. Thus $\left[B_{r} C_{r} D_{r}\right] \in \operatorname{Avoid}(m-1, \mathcal{F})$ suggesting an induction. Now $[01] \times C_{r}$ is in $A$. Define $\mathcal{G}$ as a minimal set of configurations $F^{\prime}$ such that $F \prec[01] \times F^{\prime}$ for some $F \in \mathcal{F}$ (definition of minimal appears after Remark 1.4). Thus $C_{r} \in \operatorname{Avoid}(m-1, \mathcal{G})$. This yields the following induction formula

$$
\begin{equation*}
\operatorname{forb}(m, \mathcal{F})=\|A\|=\left\|\left[B_{r} C_{r} D_{r}\right]\right\|+\left\|C_{r}\right\| \leq \operatorname{forb}(m-1, \mathcal{F})+\operatorname{forb}(m-1, \mathcal{G}) \tag{3}
\end{equation*}
$$

This means any upper bound on $\left\|C_{r}\right\|$ (as a function of $m$ ) automatically yields an upper bound on $A$ by induction. Thus to show forb $(m, \mathcal{F})$ is $O(m)$ it suffices to show $\left\|C_{r}\right\|$ is bounded by a constant. A new standard induction has been discovered by Anstee and Lu [6] that, by extending the argument to matrices with multiple columns, yields a more powerful induction formula (4). Let $A$ be an $m$-rowed ( 0,1 )matrix (not necessarily simple) and $\alpha$ be an $m \times 1$ column. Let $\mu(\alpha, A)$ denote the multiplicity of column $\alpha$ in $A$. Define $A$ to be s-simple if every column $\alpha$ of $A$ has $\mu(\alpha, A) \leq s$. Let $\operatorname{Avoid}(m, \mathcal{F}, s)$ denote the $m$-rowed $s$-simple matrices with no $F \in \mathcal{F}$. Define

$$
\operatorname{forb}(m, \mathcal{F}, s)=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, \mathcal{F}, s)\}
$$

Note that $\operatorname{forb}(m, \mathcal{F}) \leq \operatorname{forb}(m, \mathcal{F}, s) \leq s \cdot \operatorname{forb}(m, \mathcal{F})$ and so the asymptotic growth rate of $\operatorname{forb}(m, \mathcal{F})$ and $\operatorname{forb}(m, \mathcal{F}, s)$ are the same (for fixed $s$ ). Associate with $A$ the
simple matrix $\operatorname{supp}(A)$ where $\mu(\alpha, \operatorname{supp}(A))=1$ if and only if $\mu(\alpha, A) \geq 1$. Given $\mathcal{F}$, let $t$ be the maximum multiplicity of a column in $F$ over all $F \in \mathcal{F}$, i.e. each $F \in \mathcal{F}$ is $t$-simple but some $F \in \mathcal{F}$ is not $(t-1)$-simple. Assume for (4) that some $F \in \mathcal{F}$ is not simple and so $t \geq 2$. Define $s=t-1$. Assume $A \in \operatorname{Avoid}(m, \mathcal{F}, s)$. First decompose $A$ using row $r$ as follows:

$$
A=\operatorname{row} r\left[\begin{array}{cc}
00 \cdots 0 & 11 \cdots 1 \\
G & H
\end{array}\right]
$$

Then $\mu(\alpha, G) \leq s$ and $\mu(\alpha, H) \leq s$. The following decomposition of $A$ belongs to $\operatorname{Avoid}(m, \mathcal{F}, s)$ based on deleting row $r$ and rearranging by selecting certain columns for $C_{r}$ so that if $\mu(\alpha, G)+\mu(\alpha, H) \geq s+1$, then $\mu\left(\alpha, C_{r}\right)=\min \{\mu(\alpha, G), \mu(\alpha, H)\}$. We again obtain (2) with the property that $\left[B_{r} C_{r} D_{r}\right]$ and $C_{r}$ are both $s$-simple. Thus $\left\|\left[B_{r} C_{r} D_{r}\right]\right\| \leq \operatorname{forb}(m, \mathcal{F}, s)$. Since each column in $C_{r}$ appears at least $s+1$ times in $\left[B_{r} C_{r} C_{r} D_{r}\right]$, then $C_{r}$ has no configuration in $\mathcal{F}^{\prime}=\{\operatorname{supp}(F): F \in \mathcal{F}\}$. In the case that each $F \in \mathcal{F}$ is simple then $\mathcal{F}^{\prime}=\mathcal{F}$. This yields the following useful inductive formula:
$\operatorname{forb}(m, F, s)=\|A\|=\left\|\left[B_{r} C_{r} D_{r}\right]\right\|+\left\|C_{r}\right\| \leq s \cdot\left(\operatorname{forb}(m-1, \mathcal{F})+\operatorname{forb}\left(m-1, \mathcal{F}^{\prime} \cup \mathcal{G}\right)\right)$.
The extra value here, as compared with (3), is in forbidding in $C_{r}$ the configurations $\operatorname{supp}(F)$ for each $F \in \mathcal{F}$.

Theorem 4.1 Let $k, \ell$ be given. Then forb $\left(m,\left\{Q_{8},[01] \times 0_{k, \ell}\right\}\right)$ is $O(m)$.
Proof: Let $A \in \operatorname{Avoid}\left(m,\left\{Q_{8},[01] \times 0_{k, \ell}\right\}\right)$. Applying the decomposition of (2), deduce that $C_{r} \in \operatorname{Avoid}\left(m-1,\left\{I_{2}, 0_{k, \ell}\right\}\right)$. We note that $Q_{8}=[01] \times I_{2}$ and deduce that $\mathcal{G}=\left\{I_{2}, 0_{k, \ell}\right\}$. With $I_{2} \nprec C_{r}$, this yields $C_{r} \prec\left[\mathbf{0}_{m-1} \mid T_{m-1}\right]$ (i.e. $C_{r}$ is a selection of columns from the triangular matrix). Then, if $\left\|C_{r}\right\| \geq k+\ell, 0_{k, \ell} \prec C_{r}$. Hence $\left\|C_{r}\right\| \leq k+\ell-1$ and then induction on $m$ (using (3)) yields forb ( $m,\left\{Q_{8},[01] \times 0_{k, \ell}\right\}$ ) is $O(m)$.

Corollary 4.2 We have forb $\left(m,\left\{Q_{1}, Q_{8}\right\}\right)$, forb $\left(m,\left\{Q_{2}, Q_{8}\right\}\right)$, forb $\left(m,\left\{Q_{4}, Q_{8}\right\}\right)$ and forb ( $m,\left\{Q_{5}, Q_{8}\right\}$ ) are $O(m)$.

Proof: Note that $Q_{1} \prec[01] \times 0_{1,2}$ and $Q_{4} \prec[01] \times 0_{2,1}$. Also $Q_{8}^{c}$ is the same configuration as $Q_{8}$ and $Q_{1}^{c}=Q_{2}, Q_{4}^{c}=Q_{5}$, so apply Remark 1.2.

Theorem 4.3 Let $t \geq 2$ be given. Then forb $\left(m,\left\{Q_{8}, t \cdot([01] \times[01])\right\}\right)$ is $O(m)$.
Proof: Let $A \in \operatorname{Avoid}\left(m,\left\{Q_{8}, t \cdot([01] \times[01])\right\}\right)$. Apply the decomposition obtained as (2) and deduce that $C_{r} \in \operatorname{Avoid}\left(m-1,\left\{I_{2}, t \cdot[01]\right\}\right.$. Note that $Q_{8}=[01] \times I_{2}$ and
 $\left\|C_{r}\right\| \geq 2 t$, this forces $t \cdot[01] \prec C_{r}$. This is a contradiction and so $\left\|C_{r}\right\| \leq 2 t-1$. Induction on $m$ (using (3)) yields forb $\left(m,\left\{Q_{8}, t \cdot([01] \times[01])\right\}\right)$ is $O(m)$.

Note that $Q_{3} \prec 2 \cdot\left(\left[\begin{array}{ll}0 & 1\end{array}\right] \times\left[\begin{array}{ll}1\end{array}\right]\right)$ to obtain the following.

Corollary 4.4 We have forb $\left(m,\left\{Q_{3}, Q_{8}\right\}\right)$ is $O(m)$.
Note that $Q_{3} \nprec I \times I^{c}$ and $Q_{3}$ is a configuration in the other five 2-fold products. Also $Q_{6} \nprec I^{c} \times I^{c}, Q_{6} \nprec I^{c} \times T$ and $Q_{6} \nprec T \times T$ and $Q_{6}$ is a configuration in the other three 2-fold products. Note that both $T$ and $I^{c}$ are 1-fold products avoiding $Q_{3}$ and $Q_{6}$. Let

$$
F_{2}(1, t, t, 1)=\left[\begin{array}{c}
0 \overbrace{11 \cdots 1}^{t} \overbrace{00 \cdots 0}^{t} \\
0 \\
0
\end{array} 0_{\cdots 011 \cdots 11}^{t}\right] .
$$

This notation is from [5]. Thus $Q_{3}=F_{2}(1,2,2,1)$. We have $F_{2}(1, t, t, 1) \nprec I \times I^{c}$ and $F_{2}(1, t, t, 1)$ is a configuration in the other five 2-fold products. Similarly to $Q_{6}=I_{3}$, the configuration $t \cdot I_{k}$ is not in the $(k-1)$-fold products consisting solely of the terms $I^{c}$ and $T$ but is in every 2 -fold product using $I$. Thus we might guess (using the forbidden family analog of Conjecture 1.1) that forbidding $F_{2}(1, t, t, 1)$ and $t \cdot I_{k}$ results in a linear bound. This is true and is proven using two lemmas. The following idea has been used before.

Lemma 4.5 Let $A$ be a simple matrix with $\ell$ rows $a_{1}, a_{2}, \ldots, a_{\ell}$ such that there are at most $t$ columns containing $\begin{gathered}a_{i} \\ a_{i+1}\end{gathered}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ for each $i=1,2, \ldots, \ell-1$ and also there are at most $t$ columns containing $\begin{aligned} & a_{e} \\ & a_{1}\end{aligned}\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Then there are at most $\ell t$ columns from $A$ (as described) and $\ell-1$ rows $a_{1}, a_{2}, \ldots, a_{\ell-1}$ such that deleting these columns and rows from $A$ yields a simple matrix.

Proof: Consider the matrix $A^{\prime}$ obtained from $A$ by deleting the special columns described of which there are at most $\ell t$. Then we deduce that $\left.A^{\prime}\right|_{\left\{a_{1}, a_{2}, \ldots, a_{\ell}\right\}}$ consists of columns of all 0 's and columns of all 1's. Now deleting from $A$ the special columns and the $\ell-1$ rows $a_{1}, a_{2}, \ldots, a_{\ell-1}$ will result in a simple matrix.

Lemma 4.6 Let $C$ be a matrix having row sums at most $t-1$. Assume each column sum is at least 1. Assume $\|C\| \geq(t-1) k$, Then $I_{k} \prec C$.

Proof: We could phrase this with sets corresponding to the rows. For row $r$ we form a subset $S_{r} \subseteq\{1,2, \ldots,\|C\|\}$ with $q \in S_{r}$ if and only if there is a 1 in row $r$ and column $q$. Our induction is on $k$ with the result being trivial for $k=1$. We can greedily select sets $S_{1}, S_{2}, \ldots S_{p}$ so that $S_{j} \backslash\left(\cup_{i=1}^{j-1} S_{i}\right) \neq \emptyset$ for $j \in[p]$ and so that $\cup_{i=1}^{p} S_{i} \geq(t-1) k$. Begin by choosing an element $a_{k} \in S_{p} \backslash\left(\cup_{i=1}^{p-1} S_{i}\right) \neq \emptyset$. Delete, from our $p$ sets, the elements of $S_{p}$ (there are at most $t-1$ such elements) and then delete any sets which are now $\emptyset$. We now have sets $S_{1}^{\prime}, S_{2}^{\prime}, \ldots S_{q}^{\prime}$ so that $S_{i}^{\prime} \backslash \cup_{i=1}^{j-1} S_{i}^{\prime} \neq \emptyset$ and so that $\cup_{i=1}^{q} S_{i} \geq(t-1)(k-1)$ and $\left|S_{i}\right| \leq t-1$. If we form a set-element incidence matrix $C^{\prime}$ from these $q$ sets, we find that each row sum of $C^{\prime}$ is at most $t-1\left(\left|S_{i}^{\prime}\right| \leq\left|S_{i}\right| \leq t-1\right)$. Moreover each column sum is at least 1 (we deleted columns corresponding to elements of $S_{p}$ ) and $\|C\| \geq(t-1)(k-1)$ (we only deleted the elements of $S_{p}$ and $\left|S_{p}\right| \leq t-1$ ). By induction on $k, I_{k-1} \prec C^{\prime}$. Now the $p$ th row of $C$ is 0 's on columns not in $S_{p}$ and in column $a_{k}$ has 0's on all rows except row $p$ for which it is 1 . Now we find $I_{k} \prec C$.

The following result applies the lemmas.
Theorem 4.7 Let $k, t \geq 2$ be given. Then forb $\left(m,\left\{t \cdot I_{k}, F_{2}(1, t, t, 1)\right\}\right)$ is $\Theta(m)$.
Proof: Use induction on $m$. Let $A \in \operatorname{Avoid}\left(m,\left\{t \cdot I_{k}, F_{2}(1, t, t, 1)\right\}, t-1\right)$. Use $s=t-1$ and then for any row $r \in[m]$, obtain the decomposition (2). Use (4). With $\mathcal{F}=\left\{t \cdot I_{k}, F_{2}(1, t, t, 1)\right\}$ and $s=t-1$, then $\mathcal{F}^{\prime}=\left\{I_{k}, F_{2}(1,1,1,1)\right\}$ (since $\left.F_{2}(1, t, t, 1) \prec t \cdot F_{2}(1,1,1,1)\right)$ and $\mathcal{G}=\left\{t \cdot[10], t \cdot\left[\mathbf{0}_{k-1} \mid I_{k-1}\right]\right\}\left(\right.$ since $F_{2}(1, t, t, 1) \prec$ $[01] \times(t \cdot[01]))$. Thus $C_{r} \in \operatorname{Avoid}\left(m,\left\{I_{k}, F_{2}(1,1,1,1), t \cdot[10], t \cdot\left[\mathbf{0}_{k-1} \mid I_{k-1}\right]\right\}, t-1\right)$. The second configuration $\left(F_{2}(1,1,1,1)\right)$ and the fourth configuration $\left(t \cdot\left[\mathbf{0}_{k-1} \mid I_{k-1}\right]\right)$ do not get used in the proof. Form a digraph on $[m]$ by setting $r \rightarrow q$ if there are at most $t-1$ columns of $A$ with ${\underset{q}{r}}_{q}\left[\begin{array}{l}1 \\ 0\end{array}\right]$. If there is a row $q$ of $C_{r}$ with one 0 and at least $t$ 1's then, by considering the forbidden configuration $F_{2}(1, t, t, 1)$, it can be deduced that $r \rightarrow q$ (else $\left.\left.F_{2}(1, t, t, 1) \prec A\right|_{\{r, s\}}\right)$. Given a row $r$, assume no such row $q$ exists. Then all rows of $C_{r}$ have either at most $t-1$ 1's or are all 1's.

Assume $\left\|C_{r}\right\| \geq t k$. Now remove from $C_{r}$ any rows of all 1's to obtain a simple matrix $C^{\prime}$ and obtain a simple matrix $C$ from $C^{\prime}$ by deleting a column of 0 's if it exists. Deduce that each row of $C$ has at most $t-1$ 1's and each column of $C$ has at least one 1. Also $\|C\| \geq t k-1 \geq(t-1) k$. Then by Lemma 4.6, $C_{r}$ has $I_{k}$, a contradiction. So a row $s$ exists. Since for each row $r \in[m]$ there is some row $q \in[m]$ with $r \rightarrow q$, deduce that there is a directed cycle. Now apply Lemma 4.5 to show that $\|A\|$ is $O(m)$.

Corollary 4.8 We have forb $\left(m,\left\{Q_{1}, Q_{3}\right\}\right)$, forb $\left(m,\left\{Q_{2}, Q_{3}\right\}\right)$, forb $\left(m,\left\{Q_{3}, Q_{6}\right\}\right)$ and forb $\left(m,\left\{Q_{3}, Q_{7}\right\}\right)$ are $O(m)$.

Proof: We use Lemma 1.11 with $\mathcal{G}=\left\{F(1, t, t, 1), t \cdot I_{k}\right\}$. For example $Q_{1} \prec t \cdot I_{k}$ and $Q_{3} \prec F(1, t, t, 1)$ and also $Q_{6} \prec t \cdot I_{k}$. We also use Remark 1.2 noting that $\left\{Q_{1}^{c}, Q_{3}^{c}\right\}$ and $\left\{Q_{2}, Q_{3}\right\}$ are the same as sets of configurations and $\left\{Q_{3}^{c}, Q_{6}^{c}\right\}$ and $\left\{Q_{3}, Q_{7}\right\}$ are the same as sets of configurations.

## 5 Structure that arises from forbidding $Q_{9}$

The following result gives some of the structure of matrices $A \in \operatorname{Avoid}\left(m, Q_{9}\right)$. Let $A_{k}$ denote the columns of $A$ of column sum $k$. Then $A_{k}$ is of one of the following two types. Define $A_{k}$ to be of type 1 if there is a partition of the rows $[m]=X_{k} \cup Y_{k} \cup Z_{k}$ such that all columns in $A_{k}$ are 1's on rows $X_{k}, 0$ 's on rows $Z_{k}$ and each column of $A_{k}$ has exactly one 1 in rows $Y_{k}$ Thus $\left.A_{k}\right|_{Y_{k}}$ is $I_{|Y(k)|}$. In that case, by examining column sums, $\left|X_{k}\right|+1=k$. Define $A_{k}$ to be of type 2 if there is a partition of the rows $[m]=X_{k} \cup Y_{k} \cup Z_{k}$ such that all columns in $A_{k}$ are 1's on rows $X_{k}, 0$ 's on rows $Z_{k}$ and each column of $A$ has exactly one 0 in rows $Y_{k}$ Thus $\left.A_{k}\right|_{Y_{k}}$ is $I_{|Y(k)|}^{c}$. In that case, by examining column sums, $\left|X_{k}\right|+\left|Y_{k}\right|-1=k$. In either type, when $\left\|A_{k}\right\|>2$ we have $\left\|A_{k}\right\|=\left|Y_{k}\right|$.

Lemma 5.1 [12] Let $A \in \operatorname{Avoid}\left(m, Q_{9}\right)$. Let $A_{k}$ denote the columns of column sum $k$. Then $A_{k}$ is of type 1 or type 2.

For $\left\|A_{k}\right\| \leq 2$, then $A_{k}$ is of type 1 and of type 2 .
Consider the following $(t+1) \times(2 t+2)$ matrix $F(t)$ whose first two rows coincide with $F_{2}(1, t, t, 1)$ :

Lemma 5.2 Let $t \geq 1$ be given. Then forb $\left(m,\left\{Q_{9}, F(t)\right\}\right)$ is $O(m)$.
Proof: Let $A \in \operatorname{Avoid}\left(m,\left\{Q_{9}, F(t)\right\}\right)$. We will show that $\|A\| \leq(7 t+1) m$. let $A_{k}$ denote the columns of column sum $k$. For $j=1,2$, let $W(j)=\{k$ : $A_{k}$ is of type $\left.j,\left\|A_{k}\right\| \geq t+2\right\}$ and let $V(j)$ be the concatenation of $A_{k}$ for $k \in W(j)$ so that $\|V(j)\|=\sum_{k \in W(j)}\left\|A_{k}\right\|$.

First note that for $a<b$ that $\left|X_{a} \backslash X_{b}\right| \leq 1$. This is because if $\left|X_{a} \backslash X_{b}\right| \geq 2$ and $r, s \in X_{a} \backslash X_{b}$ then any column $\alpha$ from $A_{a}$ has 1's on rows $r, s$. We can choose a column $\beta$ from $A_{b}$ with 0 's on rows $r, s$ using $r, s \in Y_{b} \cup Z_{b}$ and the fact that $\left\|A_{b}\right\| \geq t+2$. But $\beta$ has more 1's than $\alpha$ and so $Q_{9} \prec[\alpha \mid \beta]$.

Assume $\|V(1)\| \geq 3 t m+1$. Then there are $3 t$ indices $\{s(1), s(2), \ldots, s(3 t)\} \subseteq$ $W(1)$ where $s(1)<s(2)<\cdots<s(3 t)$ so that there is a row $r$ with $r \in \cap_{i=1}^{3 t} Y_{s(i)}$. Find a set of rows $S$ with $|S|=t$ such that $S \subseteq X_{s(3 t)} \cap\left(\cup_{i=1}^{t}\left(Y_{s(i)} \cup Z_{s(i)}\right)\right)$. We have $\left|X_{s(3 t)} \backslash X_{s(t)}\right| \geq 2 t$. Using $\left|X_{s(i)} \backslash X_{s(t)}\right| \leq 1$, we have $\left|X_{s(3 t)} \backslash\left(\cup_{i=1}^{t} X_{s(i)}\right)\right| \geq t$ and so we can find $S$ as claimed. Now we obtain $F(t)$ as follows. For each $i$ with $1 \leq i \leq t$, we have $r \in Y_{s(i)}$ and $S \subseteq Y_{s(i)} \cup Z_{s(i)}$. We choose one column from $A_{s(1)}$ with a 0 on row $r$ where we choose the column so it also has 0's on rows $S$ (which is possible since $\left|Y_{s(i)}\right|=\left\|A_{s(i)}\right\| \geq t+2$ yields $\left.r \cup S \subsetneq Y_{s(i)}\right)$. We choose one column from each $A_{s(i)}$ for $i \in[t]$, with a 1 on row $r$ and necessarily 0 's on rows $S$. All columns from $A_{s(3 t)}$ are 1's on rows $S \subseteq X_{s(3 t)}$. With $\left\|A_{s(i)}\right\| \geq t+2$, we can find $t+1$ columns in $A_{s(3 t)}$ of which $t$ are 0 on row $r$ and one is 1 on row $r$. This yields all of $F(t)$, a contradiction. Thus $\|V(1)\| \leq 3 t m$.

Noting that $Q_{9}^{c}, F(t)^{c}$ are the same as $Q_{9}, F(t)$ when considered as configurations, we deduce that $\|V(2)\| \leq 3 \mathrm{tm}$. Now $A$ consists of $V(1)$ and $V(2)$ plus at most $(t+1) m$ columns (to account for $\left\|A_{k}\right\|$ where $\left\|A_{k}\right\| \leq t+1$ ) and so $\|A\| \leq(7 t+1) m$.

Corollary 5.3 We have forb $\left(m,\left\{Q_{1}, Q_{9}\right\}\right)$, forb $\left(m,\left\{Q_{2}, Q_{9}\right\}\right)$, forb $\left(m,\left\{Q_{3}, Q_{9}\right\}\right)$, forb $\left(m,\left\{Q_{4}, Q_{9}\right\}\right)$ and forb ( $m,\left\{Q_{5}, Q_{9}\right\}$ ) are $O(m)$.

Proof: We note that $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$ are all configurations in $F(2)$.
The following lemma helps with forb $\left(m,\left\{Q_{8}, Q_{9}\right\}\right)$.

Lemma 5.4 Let I be an ordered set. Let $\mathcal{Y}=\left\{Y_{i}: i \in I\right\}$ be a system of distinct sets $Y_{i} \subseteq[m]$ and $\left|Y_{i}\right| \geq 2$ for $i \in I$. Assume $\left|Y_{i} \cap Y_{j}\right| \leq 1$ for $i, j \in I$. Assume for all triples $a, b, c \in I$ with $a<b<c$ with the property that $Y_{c} \cap Y_{b}=r$ and $Y_{c} \cap Y_{a}=s$, must have $r=s$. Then $\sum_{i \in I}\left|Y_{i}\right| \leq 2 m$.

Proof: Use induction on $m$ with the result being easy for $m=1,2$. Let $d$ be the maximum index in $I$.

Our first case is that $Y_{d} \cap Y_{i}=\emptyset$ for all $i \in I \backslash d$. Form a new set family $\mathcal{Y}^{\prime}=\mathcal{Y} \backslash Y_{d}$, whose sets are indexed by $I^{\prime}=I \backslash d$, and whose sets are contained in $[m] \backslash Y_{d}$. Thus $\sum_{i \in I \backslash d}\left|Y_{i}\right| \leq 2\left(m-\left|Y_{d}\right|\right)$ and so $\sum_{i \in I}\left|Y_{i}\right| \leq 2\left(m-\left|Y_{d}\right|\right)+\left|Y_{d}\right| \leq 2 m$.

Our second case assumes $Y_{d} \cap Y_{j}=\{q\}$ for some $j \in I \backslash d$. Our properties yield $Y_{d} \cap Y_{i}=\emptyset$ or $Y_{d} \cap Y_{i}=\{q\}$ for all $i \in I \backslash d$. Form a new set family $\mathcal{Y}^{\prime}=\mathcal{Y} \backslash Y_{d}$, whose sets are indexed by $I^{\prime}=I \backslash d$. We have $\left(Y_{d} \backslash q\right) \cap Y_{i}=\emptyset$ for $i \in I \backslash d$. Thus the sets of $\mathcal{Y}^{\prime}$ are contained in $[m] \backslash\left(Y_{d} \backslash q\right)$. It is easy to verify that $\mathcal{Y}^{\prime}$ satisfies the hypotheses of the lemma with $I$ replaced by $I^{\prime}$ and $[m]$ replaced by $[m] \backslash\left(Y_{d} \backslash q\right)$. The hypothesis $\left|Y_{d}\right| \geq 2$ yields $\left|[m] \backslash\left(Y_{d} \backslash q\right)\right|<m$. By induction $\sum_{i \in I \backslash d}\left|Y_{i}\right| \leq 2\left(m-\left|Y_{d}\right|+1\right)$ and so $\sum_{i \in I}\left|Y_{i}\right| \leq 2\left(m-\left|Y_{d}\right|+1\right)+\left|Y_{d}\right| \leq 2 m$.

Theorem 5.5 We have forb $\left(m,\left\{Q_{8}, Q_{9}\right\}\right)$ is $O(m)$.
Proof: Let $A \in \operatorname{Avoid}\left(m,\left\{Q_{8}, Q_{9}\right\}\right)$ and let $A_{k}$ denote the columns of column sum $k$. For $j=1,2$, let $W(j$, even $)=\left\{k: A_{k}\right.$ is of type $j,\left\|A_{k}\right\| \geq 3, j$ is even $\}$ and let $V(j$, even $)$ be the concatenation of $A_{k}$ for $k \in W(j$, even $)$. Define $W(j$, odd $)$ and $V(j$,odd $)$ similarly. This more complicated definition ensures that for $a, b \in$ $W(j$, even) (or $a, b \in W(j$, odd)) with $a<b$ that $a<a+1<b$ (column sums differ by at least 2 ).

We first claim $\| V(1$, even $) \| \leq 2 m$. A number of properties are established before using an interesting induction. Assume that for $i<j$ and $i, j \in W$ (1, even), that $\left|X_{i} \backslash X_{j}\right| \leq 1$ else there is a copy of $Q_{9}$ in $\left[A_{i} \mid A_{j}\right]$ as described in proof of Lemma 5.2.

Assume $\left|Y_{i} \cap Y_{j}\right| \leq 1$ for all pairs $i, j \in W$ (1, even). Otherwise assume $\left|Y_{i} \cap Y_{j}\right| \geq 2$ for some pair $i<j$ with $i, j \in W(1$, even $)$. Let $r, s \in Y_{i} \cap Y_{j}$. Now $\left|X_{i}\right|<\left|X_{j}\right|$ and so we can choose a third row $p \in X_{j} \backslash X_{i}$. There is a copy of $Q_{8}$ in $\left[A_{i} \mid A_{j}\right]$ in rows $p, r, s$, a contradiction

Now assume $\left|Y_{i} \cap Y_{j}\right|=1$ for some pair $i<j$. We claim $X_{i} \subset X_{j}$. Otherwise, choose $r \in X_{i} \backslash X_{j}$ and $p=Y_{i} \cap Y_{j}$. There is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in rows $p, r$ of some column of $A_{i}$ and $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ in rows $p, r$ of some column of $A_{j}$. Give $i<j$, this is $Q_{9}$ in $\left[A_{i} \mid A_{j}\right]$, a contradiction.

Finally assume indices $a, b, c \in W(1$, even $)$ with $a<b<c$ have $Y_{a} \cap Y_{c}=\{r\}$ and $Y_{b} \cap Y_{c}=\{s\}$. Then $r=s$. If not, recall that $X_{a} \subset X_{c}$ and $X_{b} \subset X_{c}$ and $a<a+1<b<b+1<c$. Now $\left|X_{c} \backslash X_{b}\right| \geq 2$ and $\left|X_{a} \backslash X_{b}\right| \leq 1$ so there is a $p \in X_{c} \backslash\left(X_{b} \cup X_{a}\right)$. Then $Q_{8}$ is in rows $p, r, s$ of $\left[A_{a}\left|A_{b}\right| A_{c}\right]$ by taking two columns of $A_{c}$ with $I_{2}$ on rows $r, s$ and 1's on row $p$ and then one column of $A_{b}$ with 1 on row $r$ and so 0 's on rows $s, p$ and one column of $A_{a}$ with a 1 on row $s$ and so 0's on rows $r, p$.

Now our claim $\| V(1$, even $) \| \leq 2 m$ is the same as asserting $\sum_{i \in W(1, \text { even })}\left|Y_{i}\right| \leq 2 m$. Consider the set system $\mathcal{Y}$ with sets $Y_{i}$ for $i \in W(1$, even $)$. Set $I=W(1$, even) and appeal to Lemma 5.4 to obtain $\sum_{i \in W(1, \text { even })}\left|Y_{i}\right| \leq 2 m$, establishing our claim $\mid V(1$, even $) \mid \leq 2 m$.

Similarly $\| V(1$, odd $) \| \leq 2 m$ since the argument never used the parity other than to ensure for $a, b \in W(j$, odd $)$ that $|a-b| \geq 2$. Also the same holds for $V(2$, even $)$, $V(2$, odd $)$ by taking $(0,1)$-complements. Thus $\| V(1$, odd $)\|\leq 2 m\| V,(2$, even $) \| \leq$ $2 m$ and $\| V(2$, odd $) \| \leq 2 m$. Now this has included all columns of $A$ with the exception of $A_{k}$ for which $\left\|A_{k}\right\| \leq 2$ and hence for at most 2 m columns. We now conclude that $A$ has at most 10 m columns.

The following result is needed to complete our knowledge of forb $(m, \mathcal{F})$ for $\mathcal{F} \subset$ $\left\{Q_{1}, Q_{2}, \ldots, Q_{9}\right\}$.

Theorem 5.6 We have forb $\left(m,\left\{Q_{6}, Q_{7}, Q_{9}\right\}\right)$ is $O(m)$.
Proof: Let $A \in \operatorname{Avoid}\left(m,\left\{Q_{6}, Q_{7}, Q_{9}\right\}\right)$. Proceed as above letting $A_{k}$ be the columns of sum $k$ and apply Lemma 5.1. If $A_{k}$ is of type 1 then $\left\|A_{k}\right\| \leq 2$ else $Q_{6} \prec A_{k}$. Similarly if $A_{k}$ is of type 2 then $\left\|A_{k}\right\| \leq 2$ else $Q_{7} \prec A_{k}$. Thus $\|A\| \leq 2 m-2$.

Theorem 5.7 Let $\mathcal{F} \subset\left\{Q_{1}, Q_{2}, \ldots, Q_{9}\right\}$ with $\mathcal{F} \neq \emptyset$. If $\mathcal{F} \subseteq\left\{Q_{1}, Q_{4}, Q_{6}\right\}$ or if $\mathcal{F} \subseteq\left\{Q_{2}, Q_{5}, Q_{7}\right\}$ or if $\mathcal{F} \subseteq\left\{Q_{6}, Q_{7}, Q_{8}\right\}$ or if $\mathcal{F} \subseteq\left\{Q_{6}, Q_{9}\right\}$ or if $\mathcal{F} \subseteq\left\{Q_{7}, Q_{9}\right\}$ or if $\mathcal{F}=Q_{3}$ then forb $(m, \mathcal{F})$ is $\Theta\left(m^{2}\right)$. In all other cases, forb $(m, \mathcal{F})$ is $O(m)$. In those cases forb $(m, \mathcal{F})$ is $\Theta(m)$ or $\Theta(1)$ and Theorem 1.12 will determine the asymptotic growth rate of forb $(m, \mathcal{F})$ as either $\Theta(m)$ or $\Theta(1)$ in those cases where forb $(m, \mathcal{F})$ is $O(m)$.

Proof: Given that forb $\left(m, Q_{i}\right)$ is $\Theta\left(m^{2}\right)$ for $i \in[9]$, it suffices to show forb $(m, \mathcal{F})$ is $O(m)$ in the other cases. The results in Table 2 identify all pairs $Q_{i}, Q_{j}$ with forb $\left(m,\left\{Q_{i}, Q_{j}\right\}\right)$ being $O(m)$. Consider this as yielding a graph on a vertex set [9]. Any subset $S \subset[9]$ which contains one of these pairs has forb $\left(m, \bigcup_{i \in S} Q_{i}\right)$ being $O(m)$ by Remark 1.3. For example, any superset of $\left\{Q_{1}, Q_{4}, Q_{6}\right\}$ contains a pair $Q_{i}, Q_{j}$ with forb $\left(m,\left\{Q_{i}, Q_{j}\right\}\right)$ being $O(m)$. In particular forb $\left(m,\left\{Q_{1}, Q_{2}\right\}\right)$, forb $\left(m,\left\{Q_{1}, Q_{3}\right\}\right)$, forb $\left(m,\left\{Q_{1}, Q_{5}\right\}\right)$, forb $\left(m,\left\{Q_{1}, Q_{7}\right\}\right)$, forb $\left(m,\left\{Q_{1}, Q_{8}\right\}\right)$, and forb $\left(m,\left\{Q_{1}, Q_{9}\right\}\right)$ are all $O(m)$. For example, any superset of $\left\{Q_{6}, Q_{9}\right\}$ either contains a pair $Q_{i}, Q_{j}$ with forb $\left(m,\left\{Q_{i}, Q_{j}\right\}\right)$ being $O(m)$ or is a triple $Q_{i}, Q_{j}, Q_{k}$ with forb $\left(m,\left\{Q_{i}, Q_{j}, Q_{k}\right\}\right)$ being $O(m)$. Thus forb $\left(m,\left\{Q_{1}, Q_{9}\right\}\right)$, forb $\left(m,\left\{Q_{2}, Q_{6}\right\}\right)$, forb $\left(m,\left\{Q_{3}, Q_{6}\right\}\right)$, forb $(m$, $\left.\left\{Q_{4}, Q_{9}\right\}\right)$, forb $\left(m,\left\{Q_{5}, Q_{6}\right\}\right)$, and forb $\left(m,\left\{Q_{8}, Q_{9}\right\}\right)$ are all $O(m)$. There are two exceptional pairs $\left\{Q_{6}, Q_{7}\right\}$ and $\left\{Q_{7}, Q_{9}\right\}$ but the triple $\left\{Q_{6}, Q_{7}, Q_{9}\right\}$ for which forb $\left(m,\left\{Q_{6}, Q_{7}, Q_{9}\right\}\right)$ is $O(m)$ (by Theorem 5.6) handles these two cases.

We may summarize our investigations by saying the Conjecture 1.1, when applied to a forbidden family, predicts the correct asymptotic growth for a number of elementary cases. Perhaps the cases where Conjecture 1.1 does not correctly predict the asymptotic growth, such as Theorem 1.9, are rare. It is premature to conjecture an analog of Conjecture 1.1 for forbidden families.

## References

[1] R.P. Anstee, Properties of (0,1)-matrices with no triangles, J. Combin. Theory Ser. A 29 (1980), 186-198.
[2] R.P. Anstee, R. Ferguson and A. Sali, Small forbidden configurations II, Elec. J. Combin. 8 (2001), R4, 25pp.
[3] R.P. Anstee and A. Sali, Small Forbidden Configurations IV, Combinatorica 25 (2005), 503-518.
[4] R.P. Anstee, C.L. Koch, M. Raggi and A. Sali, Forbidden Configurations and Product Constructions, (submitted).
[5] R.P. Anstee, A Survey of forbidden configurations results, Elec. J. Combin. 20 (2013), DS20, 56pp.
[6] R.P. Anstee and Linyuan Lu, Repeated columns and an old chestnut, Elec. J. Combin. 20 (2013), P2, 11pp.
[7] J. Balogh and B. Bollobás, Unavoidable Traces of Set Systems, Combinatorica 25 (2005), 633-643.
[8] J.A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combin. Theory Ser. B 16 (1974), 87-105.
[9] H.O.F. Gronau, An extremal set problem, Studia Sci.Math. Hungar. 15 (1980), 29-30.
[10] C. L. Koch, Forbidden Families of Configurations, M.Sc. Thesis, University of British Columbia, 2013.
[11] Kővari, V. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954), 50-57.
[12] P. Frankl, Z. Füredi and J. Pach, Bounding one-way differences, Graphs Combin. 3 (1987), 341-347.
[13] M. Raggi, Forbidden configurations, Ph.D. Thesis, University of British Columbia, 2011.
[14] H.J. Ryser, A fundamental matrix equation for finite sets, Proc. Amer. Math. Soc. 34 (1972), 332-336.
[15] N. Sauer, On the density of families of sets, J. Combin. Theory Ser. A 13 (1972), 145-147.
[16] S. Shelah, A combinatorial problem: Stability and order for models and theories in infinitary languages, Pacific J. Math. 4 (1972), 247-261.
[17] V.N. Vapnik and A.Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Applic. 25 (1971), 264-280.
(Received 26 June 2013; revised 18 Apr 2014)


[^0]:    * Research supported in part by NSERC
    $\dagger$ Research suppoorted in part by NSERC of first author

