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Abstract

A graph G of order n is k-placeable if there exist k edge-disjoint copies of G in the
complete graph Kn. Previous work characterized all trees that are k-placeable for k ≤ 3.
This work extends those results by giving a complete characterization of all 4-placeable
trees.

1 Introduction

Only finite simple graphs are considered here and standard terminology and notation from [1] is
used unless otherwise indicated. For any graph G, let V (G) and E(G) denote the vertex and edge
sets of G, respectively. The degree of a vertex v ∈ V (G), denoted dG(v) (or d(v) when the context
is clear) is the number of edges incident with v. Furthermore, a vertex of degree 1 is called an
end vertex and the maximum (minimum) degree of G is denoted ∆(G) (δ(G)). Denote by Kn the
complete graph of order n and Pn the path of order n and length n− 1.

For graphs G and H, an embedding of G into H is an injective function φ : V (G) → V (H)
such that φ(a)φ(b) ∈ E(H) whenever ab ∈ E(G). It is notationally convenient to write φ: G→ H
as opposed to φ : V (G) → V (H) and to write φ(ab) for the edge φ(a)φ(b). Furthermore, when
V ′ ⊆ V (G) or E′ ⊆ E(G) let φ(V ′) = {φ(v) : v ∈ V ′} and φ(E′) = {φ(ab) : ab ∈ E′}. A packing
of k graphs G1, G2, ..., Gk into H is a k-tuple Φ = (φ1, φ2, ..., φk) such that, for i = 1, 2, . . . , k, φi is
an embedding of Gi into H and the k sets φi(E(Gi)) are mutually disjoint. If G is a graph of order
n, a packing where G = G1 = G2 = · · · = Gk and H = Kn is a k-placement of G.

A tree T is a connected acyclic graph. Besides the trees in Figure 1 and Figure 2 (which will be
frequently referenced) several other trees of order n ≥ 8 are important. A star Sn is a tree of order
n where every edge is incident with a single vertex (e.g. S8

∼= T1). Denote by Sk
n the tree of order

n obtained by replacing a single edge of Sn−k+1 with a path of length k (e.g. S2
8
∼= T2, S3

8
∼= T5,

and S4
8
∼= T12). Let S2,2

n be the tree of order n obtained by replacing two edges of Sn−2 with paths
of length 2 (e.g. S2,2

8
∼= T4). Similarly let S2+

n be the tree of order n obtained from S2
n−1 by joining

a new end vertex to the vertex of degree 2 (e.g. S2+
8
∼= T3). Finally, define the tree Yn obtained

from S2
n−2 by joining two end vertices to the end vertex of the length 2 path (e.g. Y8

∼= T11).

Finally, let W be the set of trees consisting of T9, T13, and all trees Yn and S4
n where n ≥ 8.

The main result of this work is Theorem 1.1, which characterizes all trees that are 4-placeable.

Theorem 1.1. A tree T of order n ≥ 8 has a 4-placement if and only if ∆(T ) ≤ n−4 and T /∈W .

It is generally accepted that H. J. Straight first observed that each non-star tree of order n has
a 2-placement [4, 11]. This result was first generalized in [4] and led to a great amount of work on
packings of two graphs [2, 3, 5, 7, 8, 13]. The main inspiration for this work comes from H. Wang
and N. Sauer who proved an analogous result for k = 3 in [9]. A good deal of work on packings of
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T1 T2 T3 T4 T5

T6 T7 T8 T9 T10 T11

T12 T13 T14 T15 T16 T17

T18 T19 T20 T21 T22 T23

Figure 1: The 23 trees of order 8.

3 graphs has also been done [6, 10, 12, 13]. There have been some results for arbitrary k [14], but
the amount of work is rare by comparison. We present the following conjecture for arbitrary k.

Conjecture 1.2. Let k ≥ 1 be an integer and let T be a tree of order n with n > 2k. If ∆(T ) < n−k
then there is a k-placement of T .

The proof of Theorem 1.1 is based mainly on the induction argument of Lemma 2.5. Several
other supporting lemmas are given in Section 2. A “base case” for Lemma 2.5 involving trees of
order 8, 9, 10, and 11 is addressed separately in Section 3. A special case where Lemma 2.5 cannot
be used is addressed in Section 4. Finally, the proof of Theorem 1.1 is given in Section 5.

2 Preliminaries

Let G be a graph, V ′ ⊂ V (G), and E′ ⊂ E(G). A vertex adjacent to an end vertex is a node. Let
G−E′ be the graph with vertex set V (G) and edge set E(G) \E′. Denote by G−V ′ the subgraph
of G induced by V (G) \ V ′ and if V ′ = {x} then the notation of G − {x} is relaxed to G − x. If
V ′ consists entirely of end vertices of G then G − V ′ is called a shrub of G. For example, P2 is a
shrub of P2, P3, and P4 but not P5. The neighborhood of a vertex x in G, denoted here as NG(x)
is the set of vertices adjacent to x in G and NG(V ′) =

⋃
{NG(x) : x ∈ V ′} (N(x) or N(V ′) when

G is clear).

Let Φ be a k-placement of G. A vertex v of G is k-placed by Φ if for each i, j ∈ {1, 2, . . . k} with
i 6= j, φi(v) 6= φj(v). Moreover if every vertex of G is k-placed then Φ is dispersed. An edge ab is
k-placed by Φ if the set of edges {φi(ab) : i = 1, 2, ..., k} are independent.

Lemma 2.1. Let V be a set of end vertices in a graph G of order n. If G− V has a 4-placement
with each vertex in NG(V ) 4-placed, then G has a 4-placement.

Proof: Suppose |V | = r and let V = {v1, v2, . . . , vr}. Let H ∼= Kn and let X ⊂ V (H) where
X = {x1, x2, . . . , xr}. Let NG(V ) = {u1, u2, . . . , ur} where uivi ∈ E(G) for i = 1, 2, . . . , r and note
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F1 F2 F3 F4 F5

Figure 2: Special trees.

that the ui’s may not be distinct. By assumption there is a 4-placement Φ = (φ1, φ2, φ3, φ4) of G−V
into H−X such that each vertex in NG(V ) is 4-placed. For j = 1, 2, 3, 4, define γj : G→ H so that
γj |G−V = φj and γj(vi) = xi for each i ∈ {1, 2, . . . , r}. It is straightforward that Γ = (γ1, γ2, γ3, γ4)
is a 4-placement of G. �

Lemma 2.2. Let G be a graph of order n with ab ∈ E(G). Let G′ be the graph with V (G′) =
V (G) ∪ {w} (for some w /∈ V (G)) and E(G′) = E(G) − ab + aw + bw. If Φ is 4-placement of G
such that ab is 4-placed, then G′ has a 4-placement.

Proof: Let H ′ ∼= Kn+1 and let x ∈ V (H ′). Let Φ = (φ1, φ2, φ3, φ4) be a 4-placement of G into
H ′ − x that 4-places ab. For i = 1, 2, 3, 4, define γi : G′ → H ′ by γi|G = φi and γi(w) = x. Let
Γ = (γ1, γ2, γ3, γ4).

Suppose to contradict that Γ is not a 4-placement of G′. Then there are two edges e and f of G′

such that γi(e) = γj(f) for some distinct i, j ∈ {1, 2, 3, 4}. Clearly γi(e) and γj(f) are not in H ′−x,
since then φi(e) = φj(f). Thus γi(e) and γj(f) are incident with x. Thus e = rw and f = sw
where r, s ∈ {a, b}. Since γi(e) = γj(f) then γi(r) = γj(s). But then φi(r) = φj(s) contradicting
the assumption that ab is 4-placed by Φ. Thus Γ is 4-placement of G′. �

In Lemma 2.2 vertices and edges that are 4-placed by Φ are also 4-placed by Γ, with the
exception of the ab edge. Thus Lemma 2.2 can be applied once to each 4-placed edge to produce
new 4-placements of larger graphs. This is done in Section 4.

The following well-known observation is given here for completeness.

Lemma 2.3. There exists a dispersed 4-placement of Pn if n ≥ 8.

Proof: Let V (Kn) = {v1, v2, . . . , vn} and let a be an end vertex of T = Pn. Suppose first that
n = 2t for a positive integer t. For i = 1, 2, 3, 4, define the path P i = vivi+1vi−1 · · · vi−t+1vi+t,
where the subscripts of the vj ’s are taken modulo n in {1, 2, ..., n}. It is easy to see the set of
P 1, P 2, P 3, P 4 are edge disjoint paths of order n in Kn. For i = 1, 2, 3, 4, define φi(T ) = P i with
φi(a) = vi. Thus Φ = (φ1, φ2, φ3, φ4) is a dispersed 4-placement of T (see the 4-placement of T23 in
Figure 3).

The case when n = 2t− 1 is similar and is therefore omitted. �

Before presenting the main induction lemma a technical result is needed. Define a subset V of
V (G) as nondeficient if |N(S)| ≥ |S| for every subset S of V . The proof of Lemma 2.4 uses Hall’s
Theorem which states (paraphrased) that in a bipartite graph, one partite set B can be matched
into the other partite set A if and only if B is nondeficient (see Theorems 1.2.3 and 2.1.1 of [1]).

Lemma 2.4. Let H = K4,m where m ≥ 4 and let A and B be the partite sets of H with sizes 4
and m, respectively. If B1, B2, B3, B4 are arbitrary subsets of B each with order 4, then there exist
disjoint matchings M1,M2,M3,M4 such that Mi matches Bi into A, for i = 1, 2, 3, 4.

Proof: Let A = {a1, a2, a3, a4} and let z = |B∗| where B∗ =
⋂4

i=1Bi = {b1, b2, . . . , bz}. Suppose
first that z ≥ 3. For i = 1, 2, 3, 4, let M ′i = {aib1, ai+1b2, ai+2b3} where the subscripts are taken
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modulo 4 in {1, 2, 3, 4}. In this case, each M ′i can easily be extended to satisfy the lemma. Suppose
next that z = 2. For i = 1, 2, 3, 4, let M ′′i = {aib1, ai+1b2} where the subscripts are taken modulo
4 in {1, 2, 3, 4}. Again, each M ′′i can be extended, in turn, to satisfy the lemma.

Thus suppose z ≤ 1 and assume to contradict that B1, B2, B3, B4 cannot be matched into A
by disjoint matchings. Let c be the maximum number of the Bi’s that can be matched into A and
note that trivially 1 ≤ c < 4. Assume without loss of generality that Mi is a matching of Bi into A
for all i = 1, 2, . . . , c such that the Mi’s are disjoint. Let C =

⋃c
i=1Mi and D = H − C. Since c is

maximal by Hall’s Theorem Bc+1 is not nondeficient in D. That is, there exists S ⊂ Bc+1 such that
|ND(S)| < |S|. Let R = ND(S). Note all the edges from S to A\R are in C so c ≥ min{|S|, |A\R|}.
Thus 1 ≤ |R| < |S| ≤ 3. If |R| = 1, then |A \R| = 3 implying c = 3. But then S ⊂ B∗ and |S| ≥ 2,
contradicting z ≤ 1. Therefore |R| 6= 1, implying |R| = 2, |S| = 3, and c = 3.

Let B4 = {s1, s2, s3, s} and A = {r1, r2, r1, r2} where S = {s1, s2, s3} and R = {r1, r2}. Without
loss of generality, M1 ⊃ {s2r1, s3r2}, M2 ⊃ {s1r2, s3r1}, and M3 ⊃ {s1r1, s2r2}. If si ∈ Bi for some
i = 1, 2, 3, then si ∈ B∗. It may be assumed without loss of generality that s1 /∈ B1 and s2 /∈ B2.
There exists p ∈ B2 \ S such that pr1 ∈ M2. Let M ′2 = (M2 \ {pr1, s1r2}) ∪ {pr2, s1r1} and note
that M1,M

′
2, and M3 are mutually disjoint. Since s2 /∈ B2, then there exists a matching M∗ of

{s2, s3} into {r1, r2} in D. Let M4 = M∗ ∪ {s1r2, sr1}. Then M1,M
′
2,M3, and M4 are mutually

disjoint and c = 4. �

Lemma 2.5. Let T be a tree of order n ≥ 12. Suppose that there are 4 end vertices v1, v2, v3, v4
of G adjacent to distinct nodes u1, u2, u3, u4, respectively. If there is a 4-placement of G′ = G −
{v1, v2, v3, v4} then there is a 4-placement of G.

Proof: Let H ∼= Kn and let A ⊂ V (H) with A = {a1, a2, a3, a4}. By assumption there exists a
4-placement Φ = (φ1, φ2, φ3, φ4) of G′ into H − A. For i = 1, 2, 3, 4, let Bi = {φi(uj) : 1 ≤ j ≤ 4}
and let B =

⋃4
i=1Bi. Let D be the complete bipartite subgraph of H with partite sets A and B.

By Lemma 2.4, there exist disjoint matchings M1,M2,M3, and M4 such that Mi matches Bi into
A within the subgraph D. It is straightforward that each φi can be extended to γi : G→ H using
Mi. Furthermore, since the Mi’s are disjoint Γ = (γ1, γ2, γ3, γ4) is a 4-placement of G. �

This section concludes with a lemma showing the necessity condition of Theorem 1.1. The
phrase degree considerations will refer to the fact that in a k-placement Φ of a tree T with order
n, the sum of the degrees of vertices placed by Φ on a single vertex cannot exceed n − 1. Also, a
k-placement of a tree is tight if all edges of Kn are required, i.e. when n = 2k.

Lemma 2.6. Let T be a tree of order n ≥ 8. T has no 4-placement if ∆(T ) > n− 4 or if T ∈W .

Proof: Any tree with ∆(T ) > n − 4 has no 4-placement by degree considerations. Similarly, any
4-placement of T13 must place two vertices of degree three on a single vertex which is not possible by
degree considerations. Thus let T ∈ W \ {T13} and suppose to contradict that Φ = (φ1, φ2, φ3, φ4)
is a 4-placement of T . Let a be the vertex of T with degree n− 4 and let A = {vi : vi = φi(a), i =
1, 2, 3, 4}. By degree considerations the set of elements in A are distinct, and moreover, any vertex
other than a that is placed on an element of A must be an end vertex.

Case 1: Let T = T9. Let b be the end vertex adjacent to a. Note that {φi(ab) : i = 1, 2, 3, 4} are
the only edges placed by Φ in the subgraph induced by A, a contradiction since Φ must be tight.

Case 2: Let T = S4
n. Let c be the end vertex not adjacent to a and let z1, z2, ..., zn−5 be the other

end vertices of T . Note that, for each embedding, at least 2 of the zi’s must be placed in A. This
means that Φ must place at least 8 distinct edges in the subgraph induced by A, a contradiction.

Case 3 : Let T = Yn. Let x1 and x2 be the end vertices not adjacent to a and y1, y2, . . . , yn−5 be
the other end vertices of T . Furthermore, for i = 1, 2, 3, 4, let ri = |A∩{φi(yj) : j = 1, 2, . . . , n−5}|
and note that since each φi must place three end vertices in A so that ri ≥ 1. Assume without loss
of generality that r1 ≥ r2 ≥ r3 ≥ r4. Finally, let c be the node adjacent to x1 and for i = 1, 2, 3, 4
let φi(c) = wi.
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Case 3a: Suppose r1 = 1. It may be assumed that φ1(y1) = v2 and φ2(y1) = v3. It must be
the case that φ1({x1, x2}) = {v3, v4} and φ2({x1, x2}) = {v1, v4}. Thus w1 6= w2. But then
φ1(NT (a)) ∩ {v1, v3, v4, w1, w2} = ∅, a contradiction since d(a) = n− 4.

Case 3b: Suppose r1 = 3. It may be assumed that φ1({y1, y2, y3}) = {v2, v3, v4}, φ2(y1) = v3,
φ3(y1) = v4, and φ4(y1) = v2. Thus φ2({x1, x2}) = {v1, v4} and φ3({x1, x2}) = {v1, v2}. Thus
w2 6= w3 and so φ2(NT (a)) ∩ {v1, v2, v4, w2, w3} = ∅, a contradiction since d(a) = n− 4.

Case 3c: Suppose r = 2. It may be assumed that φ1({y1, y2}) = {v2, v3}. It may further be assumed
that φ2(x1) = φ3(x1) = v1 and in particular w2 6= w3. If Φ places no edge on v2v3, then φ3(x2) = v2,
a contradiction since then φ2(NT (a))∩{v1, v2, v3, w2, w3} = ∅. Thus assume that φ2(y1) = v3. Note
that v1v4, v1w2, v1w3 /∈ φ1(E(T )). Thus w1 ∈ {w2, w3} and φ1({x1, x2}) ⊂ {v4, w2, w3}, so it must
be the case that w2w3 ∈ φ1(E(T )). Similarly, v2v1, v2w2, v2w3 /∈ φ2(E(T )), and thus φ2(x2) = w3,
a contradiction since w2w3 ∈ φ1(E(T )). �

3 Small Order Trees

This section provides 4-placements for each tree that meets the criteria of Theorem 1.1 and has order
8, 9, 10, or 11 as well as F4 and F5. It is convenient to label the vertices Tt as at, bt, ct, dt, et, ft, gt, and
ht starting from the top (as pictured in Figure 1) and proceeding left to right, then top to bottom.
Under this scheme, for example, E(T7) = {a7b7, a7c7, a7d7, a7e7, b7f7, b7g7, c7h7}. Furthermore, let
T = {T6, T7, T8, T10, T14, T15, T16, T17, T18, T20, T21, T23}.
Lemma 3.1. The following statements are true:

a) Each tree T ∈ T has a dispersed 4-placement.
b) T19 has a 4-placement where each vertex is 4-placed except b19.
c) T22 has a 4-placement where each vertex is 4-placed except f22.
d) F1, F2, F4, and F5 have dispersed 4-placements.
e) F3 has a 4-placement such that each vertex of degree 4 is 4-placed.

Proof: Let V (Kn) = {v1, v2, . . . , vn}. Four embeddings for each of the trees in a through d are
shown in Figure 3. Each embedding assumes the vi’s are placed on a circle with the subscripts
strictly increasing as the angle increases from 0 to 2π. Occasionally, all the images of a particular
vertex are colored to distinguish it from other vertices it may be mapped to in an automorphism.
For example, the images of b6 are colored red, the images of c6 are colored green, etc. It is
straightforward to verify that these embeddings produce the 4-placements required. The only
vertices not 4-placed are b19 (the images of which are colored red) and f22 (the images of which are
also colored red).

A 4-placement of F3 satisfying e can be obtained from the 4-placement of T6 and applying
Lemma 2.2 to the a6b6 edge. �

Corollary 3.2. Let T be a tree of order n ∈ {9, 10, 11} not in W and let U be a shrub of T with
order 8. If ∆(U) ≤ 4 then there is a 4-placement of T .

Proof: First, it may be assumed by Lemmas 2.1 and 3.1 that U /∈ T and furthermore that T
contains no shrub in T∪ {F1, F2}. This leaves six possibilities for U . Let V = V (T ) \ V (U) and let
N = NT (V ).

Case 1 : Suppose U = T19. By Lemmas 2.1 and 3.1 it may be assumed b19 ∈ N . If d19 ∈ N , then
T17 is a shrub of T and if not T20 is a shrub of T , both contradictions.

Case 2 : Suppose U = T22. By Lemmas 2.1 and 3.1 it may be assumed that f22 ∈ N . If N =
{c22, d22, f22} then T21 is a shrub of T and if not then T20 is a shrub of T . Again, these are both
contradictions.

Case 3 : Suppose U = T9. If a9 ∈ N (or e9 ∈ N) then F1 (F2) is a shrub of T , a contradiction.
Thus suppose N ∩ {a9, e9} = ∅. If {b9, c9, d9} ∩ N 6= ∅ then T14 is a shrub of T , a contradiction.
However, if {f9, g9, h9} ∩N 6= ∅ then T17 is a shrub of T , also a contradiction.
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φ1(T6) φ2(T6) φ3(T6) φ4(T6) φ1(T7) φ2(T7) φ3(T7) φ4(T7)

φ1(T8) φ2(T8) φ3(T8) φ4(T8) φ1(T10) φ2(T10) φ3(T10) φ4(T10)

φ1(T14) φ2(T14) φ3(T14) φ4(T14) φ1(T15) φ2(T15) φ3(T15) φ4(T15)

φ1(T16) φ2(T16) φ3(T16) φ4(T16) φ1(T17) φ2(T17) φ3(T17) φ4(T17)

φ1(T18) φ2(T18) φ3(T18) φ4(T18) φ1(T19) φ2(T19) φ3(T19) φ4(T19)

φ1(T20) φ2(T20) φ3(T20) φ4(T20) φ1(T21) φ2(T21) φ3(T21) φ4(T21)

φ1(T22) φ2(T22) φ3(T22) φ4(T22) φ1(T23) φ2(T23) φ3(T23) φ4(T23)

φ1(F1) φ2(F1) φ3(F1) φ4(F1) φ1(F2) φ2(F2) φ3(F2) φ4(F2)

φ1(F4) φ2(F4) φ3(F4) φ4(F4) φ1(F5) φ2(F5) φ3(F5) φ4(F5)

Figure 3: 4-placements for certain trees of small order. Similarly colored vertices in a packing are
images of single vertex. These colors are used to make distinctions in trees with symmetry.
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Case 4 : Suppose U = T12. If h12 ∈ N then T22 is a shrub of T and this is handled by Case 2. Thus
assume h12 /∈ N . Note that {c12, d12, e12} ∩N = ∅ since otherwise T10 is a shrub of T . Similarly,
if b12, f12, or g12 are in N then T8, T18, or T21 are shrubs of T , respectively, all contradictions. But
then N = {a} and T = S4

n, a contradiction. Thus T must have a 4-placement.

Case 5 : Suppose U = T11. Since T17 is not a shrub of T , then g11 and h11 cannot both be in N .
If exactly one of g11 or h11 is in N , then T12 is a shrub of T and this reduces to Case 4. Thus it
can be assumed that {g11, h11} ∩ N = ∅. Similarly, {c11, d11, e11} ∩ N = ∅ since otherwise T10 is
a shrub of T . Furthermore, b11 /∈ N , since then T8 would be a shrub of T . Thus N ⊂ {a11, f11}.
Note that f11 ∈ N since otherwise N ⊂ {a11} and then T = Yn, a contradiction. Therefore F3 is a
shrub of T and Lemma 2.1 and Lemma 3.1 e provide a 4-placement of T .

Case 6 : Suppose U = T13. Note that a13 and d13 are not in N since then T7 or T14 would be a
shrub of T , respectively. If {e13, f13, g13, h13} ∩ N 6= ∅ then T18 is a shrub of T , a contradiction.
Thus N ⊂ {b13, c13} and so T8 is a shrub of T , a contradiction.

This completes the proof. �

Lemma 3.3. Let T be a tree of order n ∈ {9, 10, 11}. If ∆(T ) ≤ n− 4 and T /∈W , then there is a
4-placement of T .

Proof: Suppose the Lemma is false and let T be a counterexample. By Corollary 3.2 T does
not contain a shrub U of order 8 with ∆(U) ≤ 4. Let u be a vertex of T with maximum degree.
By Lemma 2.3 it may be assumed that T 6= P11, and so T contains shrubs of order 8; therefore
d(u) > 4. If n = 9, then there exists an end vertex in N(u) and deleting this end vertex creates a
shrub of order 8 with maximum degree 4, a contradiction.

Suppose n = 10. If d(u) = 6, then there exists two end vertices in N(u) and removing them
gives a shrub of order 8 and maximum degree 4, a contradiction. Thus d(u) = 5. There exists an
end vertex v1 ∈ N(u). If ∆(T − v1) = 4 then removing any additional end vertex of T produces
a shrub of order 8 and maximum degree at most 4, a contradiction. Thus ∆(T − v1) = 5 and T
contains two vertices of degree 5 and is thus uniquely determined. But then T6 is a shrub of T , a
contradiction.

Therefore n = 11. If d(u) = 7, then there exists three end vertices in N(u) and removing them
gives a shrub of maximum degree 4, a contradiction. If d(u) = 6, there are end vertices v2 and v3
in N(u). If ∆(T − {v2, v3}) ≥ 5 then T6 is a shrub of T , a contradiction. Thus T − {v2, v3} has
maximum degree less than 4 and removing any other end vertex produces a shrub of order 8 and
maximum degree at most 4, a contradiction. Thus d(u) = 5. If N(u) contains no end vertex then
T is uniquely determined and contains F1 as a shrub. But by Lemmas 3.1 and Lemma 2.1 there is
a 4-placement of T , a contradiction. Thus N(u) contains an end vertex v4. Again, ∆(T − v4) ≥ 5
otherwise removing any two additional end vertices produces a contradiction. But then T must
contain either T6 or T11 as a shrub, both contradictions.

Therefore no such T exists and the Lemma is true. �

4 Tri-path trees

If T is a tree with exactly three distinct nodes then Lemma 2.5 cannot be applied. Fortunately, trees
with three distinct nodes have a common structure, that is they each have a shrub consisting of
three paths meeting at a single vertex. Define Q(n1, n2, n3) as the tree of order n = n1 +n2 +n3 +1
consisting of a single vertex a that begins three disjoint (except for a) paths of length n1, n2, and
n3, respectively, (see Figure 5). This section will show that each of these tri-path trees has a
4-placement such that each of the end points is 4-placed. It will be assumed that 1 ≤ n1 ≤ n2 ≤ n3.

Lemma 4.1. Let T be the tree Q(n1, n2, n3) with order n. If n ≥ 10 and n1 ≤ n− 9, then there is
4-placement of T such that each end point of T is 4-placed.
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Proof: Let z1, z2, and z3 be the end vertices of the n1, n2, and n3 length paths in T , respectively.
Let G be the graph of order n obtained from T by adding the edge z2z3. Finally, let H ∼= Kn and
let V (H) = {v1, v2, ..., vn}.

Here, a 4-placement of G is constructed by a method similar to one used in Lemma 2.3. First,
suppose that n − 1 = 2t for some positive integer t. For each i = 1, 2, 3, 4, define the path
P i = vivi+1vi−1 · · · vi−t+1vi+t, where the subscripts of the vj ’s are taken modulo n−1 in {1, 2, ..., n−
1}. Again for i = 1, 2, 3, 4, let bi = vi, ci = vi+t, and ai be such that the distance between ai and
bi along path P i is n1. It is straightforward to see that the elements of {ai, ci : i = 1, 2, 3, 4} are
distinct since n1 ≤ n− 9. For i = 1, 2, 3, 4, let Ei = E(P i) ∪ {aivn, civn}. Since the set of ai’s and
ci’s are distinct, then Ei ∩ Ej = ∅ when i 6= j and the subgraph induced by each Ei is isomorphic
to G (see Figure 4).

For i = 1, 2, 3, 4, let γi be an embedding of G into H such that γi(E(G)) = Ei and let Γ =
(γ1, γ2, γ3, γ4). Note that it can be assumed that all vertices of G are 4-placed by Γ except a single
vertex x that is placed on vn. Moreover, it may be assumed that x /∈ {z1, z2, z3}. Clearly, Γ is also
a 4-placement of T with each end vertex 4-placed.

A similar argument can be used if n = 2t for some positive integer t. �

Lemma 4.2. Let T be the tree Q(n1, n2, n3) with order n. If n ≥ 8 then there is a 4-placement of
T such that each end vertex of T is 4-placed.

Proof: By Lemma 3.1, it may be assumed that n ≥ 9. There are exactly nine tri-path trees with
n > 8 that do not satisfy the conditions for Lemma 4.1: Q(1, 1, 6), Q(1, 2, 5), Q(1, 3, 4), Q(2, 2, 4),
and Q(2, 3, 3) for n = 9; Q(2, 2, 5), Q(2, 3, 4), and Q(3, 3, 3) for n = 10; and Q(3, 3, 4) for n = 11.

In the 4-placement of T17
∼= Q(2, 2, 3) given in Lemma 3.1 the edges b17c17, a17e17, and a17g17 are

4-placed (see Figure 3). Using this and Lemma 2.2 there are 4-placements of Q(2, 3, 3), Q(2, 2, 4),
Q(3, 3, 3), Q(2, 3, 4), and Q(3, 3, 4) with each end vertex 4-placed. An embedding of each remaining
tree is shown in Figure 5 and these embeddings can be used to generate a dispersed 4-placements
by rotating each embedding clockwise by one, two, and three vertices. �

5 Proof of Theorem 1

The necessity of Theorem 1.1 is shown by Lemma 2.6. Assume to contradict the theorem is not true
and let T be a counterexample of minimum order n. By Lemmas 3.1 and 3.3 it may be assumed
that n ≥ 12. Clearly, T has more than one distinct node and by Lemmas 2.1 and 3.1 T contains
no shrub in T ∪ {F1, F2, F4, F5}.

Case 1: T has exactly 2 distinct nodes u1 and u2. Let U be the shrub of T obtained by removing
all end vertices. Clearly, U ∼= Ps for some s ≥ 2 and by Lemmas 2.1 and 2.3 s ≤ 5. Note s 6= 2 since
∆(T ) ≤ n− 4 and T6 is not a shrub of T . Similarly s 6= 4 since T21 is not a shrub of T and T 6∼= S4

n.
Suppose that s = 5. Then T22 is a shrub of T and {u1, u2} = {a22, g22} and there is 4-placement of

a1

b1

c1

v13

a2

b2

c2

v13

a3
b3

c3

v13

a4

b4

c4

v13

γ1(G) γ2(G) γ3(G) γ4(G)

Figure 4: The 4-placement of G in Lemma 4.1 with n = 13 and n1 = 3
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Q(1, 1, 6) Q(1, 2, 5) Q(1, 3, 4) Q(2, 2, 5)

Figure 5: Embeddings that produce dispersed 4-packings by rotation.

T using Lemmas 3.1 and 2.1. Now suppose that s = 3. Then F3 is a shrub of T since ∆(T ) ≤ n− 4
and T 6∼= Yn. Similarly, a 4-placement of T can be obtained from Lemmas 3.1 and 2.1.

Case 2: T has exactly 3 distinct nodes u1, u2, and u3. Let U be the shrub of T obtained by
removing all end-vertices of T and let s = |V (U)|. If s ≥ 8, then by Lemmas 4.2 and 2.1 there is a
4-placement of T , so s ≤ 7. Since T14, T17, and T20 are not shrubs of T , then U ∼= Ps. Furthermore,
since T23 is not a shrub of T then s ≤ 5. Assume without loss of generality that u2 is not an end
vertex of U . Suppose first s = 5. Then T19 is a shrub of T since T20 is not. However, by Lemmas
3.1 and 2.1 there is a 4-placement of T , a contradiction. Similarly, if s = 4 then either T10, T16, or
T18 is a shrub of T , all contradictions. Finally, suppose s = 3. Since T7 is not a shrub of T and
∆(T ) ≤ n − 4, then dT (u2) = 3. Moreover, since T 6∼= T13, without loss of generality dT (u1) ≥ 4.
But then T8 is a shrub of T , a contradiction.

Case 3: T has 4 distinct nodes u1, u2, u3, and u4. For i = 1, 2, 3, 4, let vi be an end vertex adjacent
to ui, V = {v1, v2, v3, v4}, and let U = T −V . Suppose first that ∆(U) > (n− 4)− 4, then U is one
of five trees: Sn−4, S2

n−4, S2+
n−4, S2,2

n−4, or S3
n−4. However this isn’t possible since then at least one

of T6, T7, T8, T10, F1, or F4 is a shrub of T , a contradiction. Thus ∆(U) ≤ (n− 4)− 4. Therefore
U ∈W since otherwise U has a 4-placement and by Lemma 2.5 so does T .

Case 3a: Suppose to contradict that U = T9. Since neither F1 nor F2 are shrubs of T , then
a9, e9 /∈ N(V ). But then N(V ) ∩ {f9, g9, h9} 6= ∅ and T17 is a shrub of T , a contradiction.

Case 3b: Suppose to contradict that U = T13. If d13 /∈ N(V ) then T18 is a shrub of T . If d13 ∈ N(V )
then T14 is a shrub of T , both contradictions.

Case 3c: Suppose U = S4
n−4. Label the P5 path in U as y1y2y3y4y5 with dU (y1) = n − 9 and let

R1 be the set of remaining (end) vertices and r1 = |N(V ) ∩ R1|. Suppose first y5 /∈ N(V ). Note
that r1 6= 0 since T21 is not a shrub of T . Similarly r1 /∈ {1, 2, 3} since T10 is not a shrub of T .
Thus r1 = 4. Let U ′ = T − {y5, v2, v3, v4}. Thus U ′ is a shrub of T not in W and so it has a
4-placement. But then T has a 4-placement by Lemma 2.5, a contradiction. Thus y5 ∈ N(V ) and
it may be assumed v1y5 ∈ E(T ). Again r1 6= 0 since otherwise N(V ) ∩ {y2, y4} 6= ∅ and T20 is a
shrub of T . Similarly r1 /∈ {1, 2} since T20 is not a shrub of T . Thus r1 = 3 and F5 is a shrub of
T , another contradiction.

Case 3d: Suppose to contradict that U = Yn−4. Label the shrub isomorphic to P3 in Yn−4 as
x1x2x3 where dU (x1) = n − 9. Let R2 (R3) be the set of end vertices adjacent to x1 (x3) and let
r2 = |N(V ) ∩R2| (r3 = |N(V ) ∩R3|). Suppose to contradict r3 = 2. If r2 > 0 then T18 is a shrub
of T and if r2 = 0 then T17 is a shrub of T , both contradictions. Thus r3 < 2. Note r2 6= 0 since
then x2 ∈ N(V ) and T8 is a shrub of T . Similarly r2 /∈ {1, 2, 3} since T10 is not a shrub of T . But
then r2 = 4 and F1 is a shrub of T , a contradiction.

This completes the proof. �
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