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Abstract

An equitable coloring of a graph G is a proper coloring of the vertices of G
such that color classes differ in size by at most one. In this note, we verify
the equitable coloring conjecture [W. Meyer, Amer. Math. Monthly 80
(1973), 920–922] for some classes of graphs which are defined by forbidden
induced subgraphs using known results.

1 Introduction

All of our graphs are simple, finite and undirected, and we follow West [19] for stan-
dard notations and terminology. Let G(V, E) be a graph. Let Pt, Ct, Kt respectively
denote the path, cycle, complete graph on t vertices. If F is a family of graphs, a
graph G is said to be F-free if it contains no induced subgraph isomorphic to any
graph in F . If S is a vertex subset of V (G), then [S] denotes the subgraph induced
by S. If H is an induced subgraph of G, we write H � G. For a graph G, we denote
a partition of V (G) into k (≥ 1) sets by (V1, V2, . . . , Vk).

A vertex coloring (or simply coloring) of a graph G is an assignment of colors to
the vertices of G such that no two adjacent vertices receive the same color. Vertex
coloring of graphs has generated a vast literature, and several variations of vertex
coloring have been introduced and studied by many researchers; see [10]. Among
them, equitable coloring of graphs received much attention.

In a vertex coloring of G, the set of vertices with the same color is called a color
class. A graph G is said to be equitably k-colorable if the vertex set V (G) can be
partitioned into k non-empty independent sets V1, V2, . . . , Vk such that ||Vi|−|Vj|| ≤ 1
for every i and j. The smallest integer k for which G is equitably k-colorable is
called the equitable chromatic number of G, and is denoted by χe(G). This notion
was introduced by W. Meyer [15]. For a survey of results on equitable coloring of
graphs; see [6, 13]. The degree of a vertex in G is the number of vertices adjacent to
it. The maximum degree over all vertices in G is denoted by Δ(G). In 1973, Meyer
[15] proposed the following conjecture on equitable coloring.
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Conjecture A [15] (Equitable Coloring Conjecture (ECC)) Let G be a con-
nected graph. If G is different from Kn and C2n+1 (n ≥ 1), then χe(G) ≤ Δ(G). �

The ECC is still open, and has been verified for bipartite graphs [14], complete
r-partite graphs (r > 1) [20], and claw-free graphs [5]. A graph could be equitably
k-colorable without being equitably k + 1-colorable. An earlier work of Hajnal and
Szemerédi [8] show that a graph G is equitably k-colorable if k > Δ(G), and see
Kierstead and Kostochka [11] for a simpler proof. Further, Kierstead et al. [12]
showed that such an equitable coloring using k colors can be obtained in O(kn2)
time, where n is the number of vertices.

In 1994, Chen, Lih and Wu [4] proposed the following.

Conjecture B [4] (Equitable Δ-Coloring Conjecture (EΔCC)) Let G be a
connected graph. If G is different from Kn, C2n+1, and K2n+1,2n+1 (n ≥ 1), then G
is equitably Δ(G)-colorable. �

EΔCC implies the ECC. Conversely, if the ECC holds, so does the EΔCC for
non-regular graphs. EΔCC has been verified for bipartite graphs [14], outer planar
graphs [21], planar graphs with Δ ≥ 13 [22], split graphs (that is, (2K2, C4, C5)-free

graphs) [3], graphs G with Δ(G) ≥ |V (G)|
2

[4] and others.

In this paper, we are interested in verifying the ECC for some classes of graphs
which are defined by forbidden induced subgraphs by making use of the following
known results.

(R1) Liu and Wu [14]: If G is a connected bipartite graph different from K2, then
χe(G) ≤ Δ(G).

(R2) Wang and Zhang [18] : If G is a complete multipartite graph different from
Km (m ≥ 1), then χe(G) ≤ Δ(G).

(R3) Chen et al. [4]: If G is a connected graph with Δ(G) ≥ |V (G)|
2

and different
from Km (m ≥ 1), then χe(G) ≤ Δ(G).

(R4) Yap and Zhang [20]: If G is a connected graph different from Km and C2m+1

(m ≥ 1) with |V (G)|
2

> Δ(G) ≥ |V (G)|
3

+ 1, then χe(G) ≤ Δ(G).

(R5) Chen et al. [3] : If G is a split graph different from Km (m ≥ 1), then
χe(G) ≤ Δ(G).

2 Validity of ECC in Certain Graph Classes

A well known and widely studied class of graphs is the class of P4-free graphs (or
cographs). Numerous computational problems in group-based cooperation, network-
ing, cluster analysis, scheduling, computational learning, and resource allocation sug-
gested the study of graphs having some local ‘density’ properties that are equated
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with the absence of P4’s (see [9] and the references therein). These applications mo-
tivated the study of P4-free graphs, and we refer to [2] for a survey on this class and
related ones.

If G is a connected P4-free graph, then by a result of Seinsche [17], it is easy to
see that G is a join of two graphs G1 and G2 (that is, every vertex of G1 is adjacent
to every vertex of G2). For, if G contains a cut vertex v, then v is adjacent to all
the vertices of G − v. Thus, G is a join of [{v}] and [V (G) \ {v}]. So, assume that
G is 2-connected. Let S be a minimal cut-set of G. Now, since every v ∈ S is a cut
vertex of G− (S \ {v}), v is adjacent to all the vertices of G− S. Hence, G is a join

of [S] and G − S. So, Δ(G) ≥ |V (G)|
2

, and hence by (R3), G satisfies EΔCC.

As a natural extension of P4-free graphs, the class of P5-free graphs and its
subclasses received attention; see [7]. While the ECC for P4-free graphs follows
easily from known results, the ECC is open for P5-free graphs. Also, ECC is open
even for triangle-free graphs. In this note, we verify the ECC for two subclasses of
P5-free graphs using known results, namely (2K2, C4)-free graphs and (P5, paw)-free
graphs, where ‘paw’ is a graph on four vertices a, b, c and d, with edges ab, ac, ad and
bc. Note that the class of split graphs is a subclass of (2K2, C4)-free graphs, and the
class of (P5, triangle)-free graphs is a subclass of (P5, paw)-free graphs.

Before we proceed further, we require the following: If G is a graph, and if S and
T are two vertex disjoint subsets of V (G), then [S, T ] denotes the set of edges with
one end in S and the other in T . The set [S, T ] is said to be complete if every vertex
in S is adjacent with every vertex in T .

Now, we verify the ECC for the class of (2K2, C4)-free graphs using the following
decomposition theorem by Blaszik et al. given in [1].

Theorem A [1] If G is (2K2, C4)-free, then G is either a split graph or V (G) admits
a partition (V1, V2, V3) such that (i) [V1] ∼= C5, (ii) [V2] is complete, (iii) [V3] is an
edgeless graph, (iv) [V1, V2] is complete, and (v) [V1, V3] = ∅. �

Theorem 1 If G is a connected (2K2, C4)-free graph different from C5 and Kt (t ≥
1), then χe(G) ≤ Δ(G).

Proof: We use the notation as in Theorem A. If G is C5-free, then G is a split graph,
and hence χe(G) ≤ Δ(G), by (R5). So, assume that G contains an induced C5, and
V (G) admits a partition as in Theorem A. Since G is connected and different from
C5, we have V2 �= ∅. Also, note that a maximum degree vertex of G occurs in V2.
Now, consider the graph G′ ∼= [V (G) \ V1]. It is easy to see that Δ(G′) = Δ(G) − 5,
and G′ is C5-free and hence G′ is a split graph. So, G′ can be equitably colored with
t = Δ(G) − 5 colors, by (R5). Let S1, S2, . . . , St denote the equitable color classes
of G′ arranged so that their sizes are in non-increasing order. Next, we equitably
color G as follows: We use a set of five distinct colors to color the vertices of V1, and
we follow the cyclic order S1, S2, . . . , St, S1, S2, . . . to take out one vertex from each
Si ∩V3 sequentially, and combine with the singleton color classes of [V1] sequentially.
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This yields an equitable coloring of G which uses 5 + Δ(G) − 5 colors. Hence,
χe(G) ≤ Δ(G). �

Next, we verify the ECC for the class of (P5, paw)-free graphs. To do this, we first
derive a structure theorem for the class of (P5, paw)-free graphs using the following
characterization of paw-free graphs by Olariu [16].

Theorem B [16] Let G be a connected graph. Then G is paw-free if and only if G
is triangle-free or complete multipartite. �

Let G be a graph on n vertices v1, v2, . . . , vn, and let H1, H2, . . . , Hn be any n
vertex disjoint edgeless graphs with |V (Hi)| = mi (≥ 0), for 1 ≤ i ≤ n. Then an
independent expansion I[G](m1, m2, . . . , mn) of G is the graph obtained from G by
(i) replacing the vertex vi of G by Hi, i ∈ {1, 2, . . . , n}, and (ii) joining the vertices
x ∈ Hi, y ∈ Hj if and only if vi and vj are adjacent in G. If mi = m, for all i, we
simply denote I[G](m1, m2, . . . , mn) by I[G](m).

Note that a complete bipartite graph is an independent expansion of K2, and in
general, for r > 1, a complete r-partite graph is an independent expansion of Kr.
Also, an independent expansion of a bipartite graph is again bipartite.

A consequence of Theorem B is the following.

Theorem 2 Let G be a connected (P5, paw)-free graph. Then G is one of the fol-
lowing.

(i) A complete multipartite graph.

(ii) A P5-free bipartite graph.

(iii) I[C5](m1, m2, m3, m4, m5), where mi ≥ 1, for all i, 1 ≤ i ≤ 5.

Proof: By Theorem B, assume that G is triangle-free (else, G belongs to (i)). Further
if G is C5-free, then since G is P5-free, G is C2k+1-free, k ≥ 1. Hence, G belongs to
(ii).

So, assume that G contains an induced C5, say C. Let C ∼= [{v1, v2, v3, v4, v5}] �
G.

Claim: Any vertex v in V (G) \ V (C) is adjacent to exactly two non-consecutive
vertices of C.

Let x be a vertex in V (G) \ V (C). Since G is triangle-free, |N(x) ∩ V (C)| ≤ 2.
If x is adjacent to exactly one vertex of C, say v1, then [x, v1, v2, v3, v4] ∼= P5 � G.
And, if x is adjacent to two consecutive vertices of C, say {v1, v2}, then {x, v1, v2}
forms a triangle in G.

So, we conclude that any x in V (G) \ V (C) that has a neighbor in C is adjacent
to exactly two non-consecutive vertices of C. If there is some vertex in G with no
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Figure 1: Equitable coloring of I[C5]’s using 4 colors.

neighbors in C, then, since G is connected, there exist y, z in V (G) \V (C) such that
yz ∈ E(G), y has no neighbors in C and z has at least one neighbor in C. By the
above analysis, z is adjacent to exactly two non-consecutive vertices of C and then
P5 � G, a contradiction. Hence, the claim holds.

For 1 ≤ i ≤ 5 (i mod 5), define

Ai = {vi} ∪ {x ∈ V (G) \ V (C) : N(x) ∩ V (C) = {vi−1, vi+1}}.

Then V (G) = V (C) ∪
5⋃

i=1

Ai. For 1 ≤ i ≤ 5, i mod 5, we have the following:

(1) Ai is an independent set (else, G contains a triangle).

(2) [Ai, Ai+1] is complete (else, if x ∈ Ai and y ∈ Ai+1 are not adjacent, then
[{x, vi−1, vi−2, vi+2, y}] ∼= P5 � G).

(3) [Ai, Ai+2] = ∅ (else, if x ∈ Ai and y ∈ Ai+2 are adjacent, then [{x, vi+1, y}] ∼=
K3 � G).

Hence, from (1), (2) and (3), we conclude that G ∼= I[C5](m1, m2, m3, m4, m5),
where mi = |Ai|, 1 ≤ i ≤ 5. �

In the following, we state some simple observations and derive a lemma which
will help us to verify the ECC for (P5, paw)-free graphs using Theorem 2.

(O1) If G is a graph on n vertices and if G admits a coloring such that each color
class contains 2 or 3 vertices, then χe(G) ≤ ⌊

n
2

⌋
.

(O2) A bipartite graph G admits a coloring such that each color class contains 2 or
3 vertices if and only if G has a bipartition in which neither part consists of
just one vertex.

For a fixed integer m ≥ 2, we say that G ∈ G1 if G ∼= I[C5](m), G ∈ G2 if
G ∼= I[C5](m, m, m, m, m + 1), G ∈ G3 if G ∼= I[C5](m, m, m, m + 1, m + 1), and
G ∈ G4 if G ∼= I[C5](m, m + 1, m, m, m + 1).
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Note that

I[C5](m1, m2, m3, m4, m5) ∼= I[C5](m5, m1, m2, m3, m4)
∼= I[C5](m1, m5, m4, m3, m2) ∼= I[C5](m3, m2, m1, m5, m4), etc.

In general, for all i, 1 ≤ i ≤ 5, i mod 5, I[C5](mi, mi+1, mi+2, mi+3, mi+4) is isomor-
phic to I[C5](mi+1, mi+2, mi+3, mi+4, mi+5).

By (O1), if G ∈ G1 ∪ G2 ∪ G3 ∪ G4, then χe(G) ≤ ⌊
5m+2

2

⌋
. However, the structure

of G enables us to prove that χe(G) ≤ 2m, and is given in the following:

Lemma 1 If G ∈ G1 ∪ G2 ∪ G3 ∪ G4, then V (G) can be colored equitably with 2m
colors such that each color class contains 2 or 3 vertices. So, χe(G) ≤ 2m.

Proof: Let m be of the form 2t or 2t + 1 (t ≥ 1) according as m is even or odd
respectively. If G ∈ G1 ∪ G2 ∪ G3 ∪ G4, then consider a partition of V (G) as follows:

• G ∈ G1: V (G) = (V1, V2, . . . , Vt, Vt′), where [Vi] ∼= I[C5](2), for all i, 1 ≤ i ≤ t
and Vt′ = ∅, if m is even, and [V1] ∼= I[C5](3, 2, 2, 2, 2), [Vi] ∼= I[C5](2), for all i,
2 ≤ i ≤ t, and [Vt′ ] ∼= P4, if m is odd.

• G ∈ G2: V (G) = (V1, V2, . . . , Vt, Vt′), where [V1] ∼= I[C5](2, 2, 2, 2, 3), [Vi] ∼=
I[C5](2), for all i, 2 ≤ i ≤ t, and Vt′ = ∅, if m is even, and [V1] ∼= I[C5](3, 2, 2,
2, 3), [Vi] ∼= I[C5](2), for all i, 2 ≤ i ≤ t, and [Vt′ ] ∼= P4, if m is odd.

• G ∈ G3: V (G) = (V1, V2, . . . , Vt, Vt′), where [V1] ∼= I[C5](2, 2, 2, 3, 3), [Vi] ∼=
I[C5](2), for all i, 2 ≤ i ≤ t, and Vt′ = ∅, if m is even, and [V1] ∼= I[C5](3, 2, 2,
2, 2), [Vi] ∼= I[C5](2), for all i, 2 ≤ i ≤ t, and [Vt′ ] ∼= I[P4](2, 2, 1, 1), if m is odd.

• G ∈ G4: V (G) = (V1, V2, . . . , Vt, Vt′), where [V1] ∼= I[C5](2, 3, 2, 2, 3), [Vi] ∼=
I[C5](2), for all i, 2 ≤ i ≤ t, and Vt′ = ∅, if m is even, and [V1] ∼= I[C5](3, 2, 2,
2, 2), [Vi] ∼= I[C5](2), for all i, 2 ≤ i ≤ t, and [Vt′ ] ∼= I[P4](2, 1, 1, 2), if m is odd.

In all the cases, we color each [Vi] (1 ≤ i ≤ t) with 4 colors such that each color
class contains 2 or 3 vertices (see Figure 1), and if Vt′ �= ∅, we color [Vt′ ] with another
two colors (by using (O2)). Hence the lemma. �

Theorem 3 If G is a connected (P5, paw)-free graph different from C5 and Kt (t ≥
1), then χe(G) ≤ Δ(G).

Proof: We use Theorem 2, and we use the same notation as in Theorem 2.

(i) If G is a complete multipartite graph, then χe(G) ≤ Δ(G) (by (R2)).

(ii) If G is a P5-free bipartite graph, then χe(G) ≤ Δ(G) (by (R1)).

(iii) Assume that G ∼= I[C5](m1, m2, m3, m4, m5).

Then Δ(G) = max{mi−1 + mi+1, 1 ≤ i ≤ 5, i mod 5}. Let m1 := min
1≤i≤5

mi.
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m2 + m4−2m1 m3 + m5 − 2m1 H [V (G) \ V (H)]
≥ 2 ≥ 2 I[C5](m1) I[C5](0,m2 − m1,m3 − m1,

m4 − m1,m5 − m1)
≥ 2 m3 − m1 = 1, I[C5](m1,m1,m1 + 1, I[C5](0,m2 − m1, 0,

m5 − m1 = 0 m1,m1) m4 − m1, 0)
≥ 2 m3 − m1 = 0, I[C5](m1,m1,m1, I[C5](0,m2 − m1, 0,

m5 − m1 = 1 m1,m1 + 1) m4 − m1, 0)
≥ 2 0 I[C5](m1) I[C5](0,m2 − m1, 0,

m4 − m1, 0)
m2 − m1 = 1, ≥ 2 I[C5](m1,m1 + 1,m1, I[C5](0, 0,m3 − m1, 0,
m4 − m1 = 0 m1,m1) m5 − m1)
m2 − m1 = 0, ≥ 2 I[C5](m1,m1,m1, I[C5](0, 0,m3 − m1, 0,
m4 − m1 = 1 m1 + 1,m1) m5 − m1)

0 ≥ 2 I[C5](m1) I[C5](0, 0,m3 − m1, 0,
m5 − m1, 0)

Table 1: Analysis of structure of G in Case 1

Now, we prove the theorem in two cases.

Case 1: m1 ≥ 2.

First we delete a subgraph H ∈ G1 ∪ G2 from G according to the numbers m2 +
m4 − 2m1 and m3 + m5 − 2m1, and analyze the remaining graph [V (G) \V (H)]. We
give the case analysis in Table 1, the graphs H and [V (G) \ V (H)] (in all the other
cases G ∈ G1 ∪ G2 ∪ G3 ∪ G4, and hence the theorem follows by Lemma 1).

Note that in all the above cases, since H ∈ G1 ∪ G2, H can be colored equitably
with 2m1 colors such that each color class contains 2 or 3 vertices, by Lemma 1.
Also, it is easy to see that [V (G) \ V (H)] is an independent expansion of a P4,
and hence a bipartite graph with m2 + m4 − 2m1 or 0 vertices in one partite set,
and with m3 + m5 − 2m1 or 0 vertices in the other partite set. So, in non-trivial
cases, by (O1) and (O2), [V (G) \ V (H)] can be colored equitably with at most
(m2 + m3 + m4 + m5 − 4m1)/2 colors such that each color class contains 2 or 3
vertices. Hence,

χe(G) ≤ 2m1 +
m2 + m3 + m4 + m5 − 4m1

2
=

m2 + m3 + m4 + m5

2
.

We prove that χe(G) ≤ Δ(G) in three cases as follows (the other symmetric cases
can be verified in a similar manner):

(1) If Δ(G) = m2 + m5, then m3 ≤ m2 and m4 ≤ m5. Hence χe(G) ≤ m2 + m5 =
Δ(G).

(2) If Δ(G) = m1 + m4, then m2 = m1 (since m1 is minimum) and m3 + m5 ≤
m1 + m4. Hence χe(G) ≤ m1 + m4 = Δ(G).

(3) If Δ(G) = m3+m5, then m2+m4 ≤ m3+m5. Hence χe(G) ≤ m3+m5 = Δ(G).
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Case 2: Assume that m1 = 1.

Case 2.1: Assume that Δ(G) = m2 + m5.

Note that m2 ≥ m3 and m5 ≥ m4. If m2+m5 ≥ m3+m4+1, then χe(G) ≤ Δ(G),
by (R3). So, m2 + m5 < m3 + m4 + 1. Hence, m2 + m5 = m3 + m4. Now, if

Δ(G) ≥ |V (G)|
3

+ 1, then χe(G) ≤ Δ(G), by (R4). Else, we have m2 + m5 ≤ 3. Since
m2 + m5 ≥ m3 + 1, and m2 + m5 ≥ m4 + 1, it is easy to verify that χe(G) ≤ Δ(G).

Case 2.2: Assume that Δ(G) = m4 + m1 = m4 + 1.

Note that m2 = 1 and m4 +1 ≥ m3 +m5. If m4 ≥ m3 +m5, then χe(G) ≤ Δ(G),

by (R3). So, m4 < m3 + m5. Hence, m3 + m5 = m4 + 1. Now, if Δ(G) ≥ |V (G)|
3

+ 1,
then χe(G) ≤ Δ(G), by (R4). Else, we have m4 ≤ 2. Now, it is easy to see that
χe(G) ≤ Δ(G).

The case Δ(G) = m3 + m1 = m3 + 1 can be verified using similar arguments.

Case 2.3: Assume that Δ(G) = m3 + m5.

Note that m3 + m5 ≥ m2 + m4. If m3 + m5 ≥ m2 + m4 + 1, then χe(G) ≤ Δ(G),

by (R3). So, m3 + m5 = m2 + m4. If Δ(G) ≥ |V (G)|
3

+ 1, then χe(G) ≤ Δ(G), by
(R4). Else, we have m3 + m5 ≤ 3. Now, it is easy to see that χe(G) ≤ Δ(G).

The case Δ(G) = m2 + m4 can be verified using similar arguments. �
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theorem on equitable coloring, Combin. Prob. Comp. 17 (2008), 265–270.

[12] H.A. Kierstead, A.V. Kostochka, M. Mydlarz, and E. Szemerédi, A fast algo-
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