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Abstract

Let In be the symmetric inverse semigroup on Xn = {1, 2, . . . , n} un-
der composition of maps and let DPn and ODPn be its subsemigroups
of partial isometries and of order-preserving partial isometries of Xn,
respectively. In this paper we investigate the cardinalities of some equiv-
alences on DPn and ODPn which lead naturally to obtaining the orders
of these semigroups.

∗ This work was begun when the second named author was visiting Sultan Qaboos University
for a 3 month research visit from October to December 2010.
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1 Introduction and Preliminaries

Let Xn = {1, 2, . . . , n} and In be the partial one-to-one transformation semigroup
on Xn under composition of mappings. Then In is an inverse semigroup (that is,
for all α ∈ In there exists a unique α′ ∈ In such that α = αα′α and α′ = α′αα′).
The importance of In (more commonly known as the symmetric inverse semigroup
or monoid) to inverse semigroup theory may be likened to that of the symmetric
group Sn to group theory. Every finite inverse semigroup S is embeddable in In, the
analogue of Cayley’s theorem for finite groups, and to the regular representation of
finite semigroups. Thus, just as the study of symmetric, alternating and dihedral
groups has made a significant contribution to group theory, so has the study of
various subsemigroups of In; see for example [2, 4, 5, 7, 15].
A transformation α ∈ In is said to be order-preserving (order-reversing) if (∀x, y ∈
Dom α) x ≤ y =⇒ xα ≤ yα (xα ≥ yα) and, an isometry (or distance-preserving)
if (∀x, y ∈ Dom α) | x − y |=| xα − yα |. We shall denote by DPn and ODPn,
the semigroups of partial isometries and of order-preserving partial isometries of
an n−chain, respectively. Eventhough semigroups of partial isometries on more
restrictive but richer mathematical structures have been studied by Wallen [17], and
Bracci and Picasso [3] the study of corresponding semigroups on chains was only
initiated recently by Al-Kharousi et al. [1]. This paper investigates the combinatorial
properties of DPn and ODPn, thereby complementing the results in Al-Kharousi et
al. [1] which dealt mainly with the algebraic and rank properties of these semigroups.

In this section we introduce basic terminologies and quote some elementary results
from Section 1 of Al-Kharousi et al. [1] that will be needed in this paper. In Section
2 we obtain the cardinalities of two equivalences defined on DPn and ODPn. These
equivalences lead to formulae for the orders of DPn and ODPn as well as new
triangles of numbers that were as a result of this work recently recorded in [14].
Lastly, in Section 3 we computed the number of Green’s D-classes in DPn.

For standard concepts in semigroup and symmetric inverse semigroup theory, see
for example [9, 11]. Let

DPn = {α ∈ In : (∀x, y ∈ Dom α) | x − y |=| xα − yα |} (1)

be the subsemigroup of In consisting of all partial isometries of Xn. Also let

ODPn = {α ∈ DPn : (∀x, y ∈ Domα) x ≤ y =⇒ xα ≤ yα} (2)

be the subsemigroup of DPn consisting of all order-preserving partial isometries of
Xn. It is clear that if α ∈ DPn (α ∈ ODPn) then α−1 ∈ DPn (α−1 ∈ ODPn) also.
Thus we have the following result.

Lemma 1.1 DPn and ODPn are inverse subsemigroups of In.

Next, let α be in In. The height of α is h(α) = | Im α| and fix of α is denoted by
f(α), and defined by f(α) = |F (α)|, where

F (α) = {x ∈ Domα : xα = x}.
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Lemma 1.2 [1, Lemma 1.7] Let α ∈ DPn be such that h(α) = p. Then f(α) = 0
or 1 or p.

Corollary 1.3 [1, Corollary 1.8] Let α ∈ DPn. If f(α) = p > 1 then f(α) = h(α).
Equivalently, if f(α) > 1 then α is a partial identity.

Lemma 1.4 [1, Lemma 1.3] Let α ∈ DPn. Then α is either order-preserving or
order-reversing.

Lemma 1.5 [1, Lemma 1.5] Let α ∈ DPn. For 1 < i < n, if F (α) = {i} then, for
all x ∈ Domα, we have x + xα = 2i.

For convenience we shall henceforth denote the set of order-reversing isometries of
Xn by DP∗

n.

Lemma 1.6 [1, Lemma 1.6] Let α ∈ DP∗
n. Then x + xα = y + yα for all x, y ∈

Dom α.

Lemma 1.7 [1, Lemma 1.10] Let α ∈ ODPn and f(α) ≥ 1. Then α is a partial
identity.

Lemma 1.8 [1, Lemma 1.11] Let α ∈ ODPn. Then α is either strictly order-
decreasing or strictly order-increasing or a partial identity.

2 Combinatorial results

Enumerative problems of an essentially combinatorial nature arise naturally in the
study of semigroups of transformations. Many numbers and triangle of numbers
regarded as combinatorial gems like the Stirling numbers [9, pp. 42 & 96], the fac-
torial [12, 15], the binomial [7], the Fibonacci number [8], Catalan numbers [6], Lah
numbers [6, 10], etc., have all featured in these enumeration problems. For a nice
survey article concerning combinatorial problems in the symmetric inverse semigroup
and some of its subsemigroups we refer the reader to Umar [16]. These enumeration
problems lead to many numbers in Sloane’s encyclopaedia of integer sequences [14]
but there are also others that are not yet or have just been recorded in [14].
As in Umar [16], for natural numbers n ≥ p ≥ m ≥ 0 we define

F (n; p) =| {α ∈ S : h(α) =| Im α |= p} |, (3)

F (n; m) =| {α ∈ S : f(α) = m} | (4)

where S is any subsemigroup of In. Also, let i = ai = a, for all a ∈ {p, m}, and
0 ≤ i ≤ n.
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Lemma 2.1 Let S = ODPn. Then F (n; p1) = n2 and F (n; pn) = 1, for all n ≥ 2.

Proof. Since all partial injections of height 1 are vacuously partial isometries, the
first statement of the lemma follows immediately. For the second statement, it is not
difficult to see that there is exactly one order-preserving partial isometry of height

n:
(

1 2 · · · n
1 2 · · · n

)
(the identity). �

Lemma 2.2 Let S = ODPn. Then F (n; p2) = 1
6
n(n − 1)(2n − 1), for all n ≥ 2.

Proof. First, we say that 2-subsets of Xn (that is, subsets of size 2), say A = {a1, a2}
and B = {b1, b2}, are of the same type if |a1 − a2| = |b1 − b2|. Now observe that if
|a1 − a2| = i (1 ≤ i ≤ n − 1) then there are n − i subsets of this type. However, for
order-preserving partial isometries, once we choose a 2-subset as a domain then the
possible image sets must be of the same type and there is only one possible order-
preserving bijection between any two 2-subsets of the same type. It is now clear that
F (n; p2) = F (n; 2) =

∑n−1
i=1 (n − i)2 = 1

6
n(n − 1)(2n − 1), as required. �

Lemma 2.3 Let S = ODPn. Then F (n; p) = F (n − 1; p − 1) + F (n − 1; p), for all
n ≥ p ≥ 3.

Proof. (Bijective proof.) Let α ∈ ODPn and h(α) = p. Then it is clear that
F (n; p) = |A| + |B|, where A = {α ∈ ODPn : h(α) = p and n /∈ Domα ∪ Im α}
and B = {α ∈ ODPn : h(α) = p and n ∈ Domα ∪ Im α}. Define a map θ : {α ∈
ODPn−1 : h(α) = p} → A by (α)θ = α′ where xα′ = xα (x ∈ Domα). This is
clearly a bijection since n /∈ Domα∪ Im α. Next, define the right (left) waist of α as
�+(α) = max(Domα) (w+(α) = max(Im α)) and a map Φ : {α ∈ ODPn−1 : h(α) =
p − 1} → B by (α)Φ = α′ where

(i) xα′ = xα (x ∈ Domα) andnα′ = n (if �+(α) = w+(α) );

(ii) xα′ = xα (x ∈ Domα) andnα′ = n−�+(α)+w+(α) < n (if �+(α) > w+(α));

(iii) x(α′)−1 = xα−1 (x ∈ Im α) andn(α′)−1 = n − �+(α−1) + w+(α−1) < n (if
�+(α) < w+(α)).

In all cases h(α′) = p, and case (i) coincides with n ∈ Domα′ ∩ Im α′; case (ii)
coincides with n ∈ Dom α′ \ Im α′; and case (iii) coincides with n ∈ Im α′ \ Domα′.
Thus Φ is onto. Moreover, it is not difficult to see that α′ in (i) is idempotent;
α′ in (ii) is (strictly) order-decreasing (xα′ < x); and α′ in (iii) is (strictly) order-
increasing (xα′ > x). Thus, Φ is one-to-one. Hence Φ is a bijection, as required.
This establishes the statement of the lemma. �

Proposition 2.4 Let S = ODPn. Then F (n; p) = (2n−p+1)
p+1

(
n
p

)
, where n ≥ p ≥ 1.
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Proof. (The proof is by double induction).
Basis step: First, note that the formulae for F (n; p1), F (n; pn) and F (n; p2) are true
by Lemmas 2.1 and 2.2.
Inductive step: Suppose F (n − 1; p) is true for all n − 1 ≥ p. (This is the induction
hypothesis.) Now using Lemma 2.3, we see that

F (n; p) = F (n − 1; p − 1) + F (n − 1; p)

=
(2n − p)

p

(
n − 1

p − 1

)
+

(2n − p − 1)

p + 1

(
n − 1

p

)
(by ind. hyp.)

=
(2n − p)

p

p

n

(
n

p

)
+

(2n − p − 1)

p + 1

(n − p)

n

(
n

p

)

=
(2n − p)(p + 1) + (2n − p − 1)(n − p)

n(p + 1)

(
n

p

)

=
(2n2 − np + n)

n(p + 1)

(
n

p

)
=

(2n − p + 1)

p + 1

(
n

p

)
,

as required. �

To find the order of ODPn the next lemma seems indispensable.

Lemma 2.5 For any integer n ≥ 2, we have

n∑
p=1

2n − p + 1

p + 1

(
n

p

)
= 3 · 2n − 2n − 3.

Proof. It is enough to observe that 2n − p + 1 = 2(n − p) + (p + 1). �

Theorem 2.6 Let S = ODPn. Then

| ODPn |= 3 · 2n − 2(n + 1).

Proof. This follows from Proposition 2.4, Lemma 2.5, and some algebraic manipu-
lation. �

Lemma 2.7 Let S = ODPn. Then F (n; m) =
(

n
m

)
, for all n ≥ m ≥ 1.

Proof. This follows directly from Lemma 1.5. �

Proposition 2.8 Let S = ODPn. Then F (n; m0) = 2n+1 − (2n + 1).

Proof. This follows from Theorem 2.6, Lemma 2.5 and the fact that |ODPn| =∑n
m=0 F (n; m). �
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Remark 2.9 The triangles of numbers F (n; p) and F (n; m), the sequence F (n; m0)
have as a result of this work just been recorded in Sloane [14]. However, |ODPn| is
[14, A097813].

Remark 2.10 For p = 0, 1 the concepts of order-preserving and order-reversing
coincide but distinct otherwise. However, there is a bijection between the two sets for
p ≥ 2; see [5, page 2, last paragraph].

We now use Remark 2.10 and Lemma 1.6 to deduce corresponding combinatorial
results for DPn from those of ODPn above.

Lemma 2.11 Let S = DPn. Then F (n; p1) = F (n; 1) = n2 and F (n; pn) =
F (n; n) = 2, for all n ≥ 2.

Lemma 2.12 Let S = DPn. Then F (n; p2) = F (n; 2) = 1
3
n(n − 1)(2n − 1), for all

n ≥ 2.

Lemma 2.13 Let S = DPn. Then F (n; p) = F (n − 1; p − 1) + F (n − 1; p), for all
n ≥ p ≥ 3.

Proposition 2.14 Let S = DPn. Then F (n; p) = 2(2n−p+1)
p+1

(
n
p

)
, where n ≥ p ≥ 2.

Theorem 2.15 Let S = DPn. Then

| DPn |= 3 · 2n+1 − (n + 2)2 − 1.

Proof. This follows from Proposition 2.14, Lemma 2.11 and some algebraic manip-
ulation. �

Lemma 2.16 Let S = DPn. Then F (n; m) =
(

n
m

)
, for all n ≥ m ≥ 2.

Proof. This follows from Corollary 1.3. �

Proposition 2.17 Let S = DPn. Then F (2n; m1) = 2(22n−1)
3

and F (2n − 1; m1) =
2(22n−2−1)

3
+ 22n−2, for all n ≥ 1.

Proof. Let F (α) = {i}. Then by Lemma 1.5, for any x ∈ Domα we have x + xα =
2i. Thus there 2i − 1 possible elements for Dom α : (x, xα) ∈ {(1, 2i − 1), (2, 2i −
2), . . . , (2i − 1, 1)}. However, (excluding (i, i)) we see that there are

∑2i−2
j=0

(
2i−2

j

)
=

22i−2, possible partial isometries with F (α) = {i}, where 2i − 1 ≤ n (equivalently,
i ≤ (n+1)/2). Moreover, by symmetry we see that F (α) = {i} and F (α) = {n−i+1}
give rise to equal numbers of partial isometries. Note that if n is odd (even) the
equation i = n − i + 1 has one (no) solution. Hence, if n = 2a − 1 we have

2
a−1∑
i=1

22i−2 + 22a−2 =
2(22a−2 − 1)

3
+ 22a−2
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partial isometries with exactly one fixed point; if n = 2a we have

2
a∑

i=1

22i−2 =
2(22a − 1)

3

partial isometries with exactly one fixed point. �

Proposition 2.18 Let S = DPn. Then

F (n; m0) =

{
13·2n−(3n2+9n+10)

3
, if n is even;

25·2n−1−(3n2+9n+10)
3

, if n is odd.

Proof. This follows from Theorem 2.15, Lemma 2.16, Proposition 2.17 and the fact
that |DPn| =

∑n
m=0 F (n; m). �

Remark 2.19 The triangles of numbers F (n; p) and F (n; m) and, the sequences
|DPn| and F (n; m0), have as a result of this work been recorded recently in Sloane
[14]. However, F (n; m1) is [14, A061547].

3 Number of D-classes

First, notice that from [1, Lemma 2.1] we deduce that number of L-classes in
K(n, p) = {α ∈ DPn : h(α) = p} (as well as the number of R-classes there) is(

n
p

)
. To count the number of D-classes in DPn and ODPn, first we recall (from

[1]) that the gap and reverse gap of the image set of α (with h(α) = p) are ordered
(p − 1)-tuples defined as follows:

g(Imα) = (|a2α − a1α|, |a3α − a2α|, . . . , |apα − ap−1α|)

and
gR(Im α) = (|apα − ap−1α|), . . . , |a3α − a2α|, |a2α − a1α|),

where α =
(

a1 a2 · · · ap

a1α a2α · · · apα

)
with 1 ≤ a1 < a2 < · · · < ap ≤ n. Further, let

di = |ai+1α − aiα| for i = 1, 2, . . . , p − 1. Then

g(Imα) = (d1, d2, . . . , dp−1) and gR(Im α) = (dp−1, dp−2, . . . , d1).

For example, if

α =
(

1 2 4 7 8
3 4 6 9 10

)
, β =

(
2 4 7 8
10 8 5 4

)
∈ DP10

then g(Imα) = (1, 2, 3, 1), g(Imβ) = (2, 3, 1), gR(Im α) = (1, 3, 2, 1) and gR(Im β) =
(1, 3, 2).
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Theorem 3.1 [1, Theorem 2.4] Let DPn be as defined in (1) and let α, β ∈ DPn.
Then

(α, β) ∈ D if and only if g(Imα) = g(Imβ) or gR(Im α) = g(Imβ).

Theorem 3.2 [1, Theorem 2.5] Let ODPn be as defined in (2) and let α, β ∈
ODPn. Then

(α, β) ∈ D if and only if g(Imα) = g(Imβ).

Next we prove some preliminary results towards our goal.

Lemma 3.3 Let p − 1 ≤ ∑p−1
i=1 di ≤ n − 1.

Proof. The greatest lower bound is attained if di = 1 for all i ∈ {1, 2, . . . , p − 1}
whilst the least upper bound is attained if α is order-preserving (order-reversing)
and a1α = 1, apα = n (a1α = n, apα = 1). �

Let d(n, p) be the number of distinct ordered p-tuples: (d1, d2, . . . , dp) with∑p
i=1 di = n. This is clearly the number of compositions of n into p parts. Thus, we

have

Lemma 3.4 [13, p.151] d(n, p) =
(

n−1
p−1

)
.

We shall henceforth use the following well-known binomial identity when needed:

n∑
m=p

(
m

p

)
=

(
n + 1

p + 1

)
.

An ordered p-tuple: (d1, d2, . . . , dp) is said to be symmetric if

(d1, d2, . . . , dp) = (d1, d2, . . . , dp)
R = (dp, dp−1, . . . , d1).

Let ds(n, p) be the number of distinct symmetric ordered p-tuples:
(d1, d2, . . . , dp) with

∑p
i=1 di = n. Then we have

Lemma 3.5 ds(n; p) =

⎧⎨
⎩

0, if n is odd and p is even;(�n−1
2

�
� p−1

2
�
)
, otherwise.

Proof. First notice that for symmetric ordered p-tuples the right-half is the reverse
of the left-half. Of course if p is odd then the left-half and right-half would exclude
the middle term which must be even (odd) if n is even (odd), respectively. Next,
observe that if p is even then

p/2∑
i=1

di =
p/2∑
i=1

dp−i
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and so
p∑

i=1

di = 2
p/2∑
i=1

di = n

which implies that n must be even. In other words, if n is odd and p is even then
ds(n, p) = 0, as required. Otherwise, we have three cases:
(i) n and p are both odd.

ds(n, p) =
∑
i≥1

d(
n − 2i + 1

2
,
p − 1

2
) =

∑
i≥1

(
n−2i−1

2
p−3
2

)
=

(
n−1

2
p−1
2

)
;

(ii) n and p are both even.

ds(n, p) = d(
n

2
,
p

2
) =

(
n−2

2
p−2
2

)
;

(iii) n is even and p is odd.

ds(n, p) =
∑
i≥1

d(
n − 2i

2
,
p − 1

2
) =

∑
i≥1

(
n−2i−2

2
p−3
2

)
=

(
n−2

2
p−1
2

)
.

�

Define an equivalence R on the class of ordered p-tuples: (d1, d2, . . . , dp) with∑p
i=1 di = n by
(a1, a2, . . . , ap) R (b1, b2, . . . , bp) if and only if

(a1, a2, . . . , ap) = (b1, b2, . . . , bp) or (a1, a2, . . . , ap) = (b1, b2, . . . , bp)
R.

Let e(n, p) be the number of these equivalence classes. Then we have

Lemma 3.6 e(n; p) =

⎧⎪⎨
⎪⎩

1
2

(
n−1
p−1

)
, if n is odd and p is even;

1
2
[
(

n−1
p−1

)
+
(�n−1

2
�

� p−1
2

�
)
], otherwise.

Proof. The result follows from Lemmas 3.4 and 3.5 and the observation that

e(n, p) =
d(n, p) − ds(n, p)

2
+ ds(n, p) =

d(n, p) + ds(n, p)

2
.

�

Now we have the main result of this section.

Theorem 3.7 Let B(n, p) be the number of D-classes of height p in DPn. Then
B(n, 0) = 1 and for n ≥ p ≥ 1 we have

B(n, p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2
[
(

n−1
p−1

)
+ 2

(n−1
2
p
2

)
], if n is odd and p is even;

1
2
[
(

n−1
p−1

)
+ 2

(n−2
2
p
2

)
+
(n−2

2
p−2
2

)
], if n, p are both even;

1
2
[
(

n−1
p−1

)
+
(�n−2

2
�

p−1
2

)
], otherwise.
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Proof. The result follows from Lemma 3.6 and the fact that
B(n, p) =

∑n−1
i=p−1 e(i, p − 1). �

Corollary 3.8
∑n

p=0 B(n, p) =

{
2n−2 + 2

n
2 , if n is even;

2n−2 + 3 · 2n−3
2 , if n is odd.

Proof. The result follows from Theorem 3.7. �

Remark 3.9 The triangle of numbers B(n; p) and seqence
∑

p≥0 B(n, p) have as at
the time of submitting this paper not yet been recorded in Sloane [14]. However,
ds(n; p) and e(n, p) are [14, A051159] and [14, A034851], respectively.
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