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Abstract

Given any �-tuple
(
s1, s2, . . . , s�

)
of positive integers, there is an integer

N = N
(
s1, s2, . . . , s�

)
such that an orthogonal design of order 2n

(
s1 +

s2 + · · ·+ s�

)
and type

(
2ns1, 2

ns2, . . . , 2
ns�

)
exists, for each n ≥ N . This

complements a result of Eades et al. which in turn implies that if the
positive integers s1, s2, . . . , s� are all highly divisible by 2, then there is a
full orthogonal design of type

(
s1, s2, . . . , s�

)
.

1 Introduction

A Hadamard matrix of order n is a square {±1}-matrix H of order n such that
HH t = nIn, where H t is the transpose of H . A complex orthogonal design of order
n and type

(
s1, . . . , s�

)
, denoted COD

(
n; s1, . . . , s�

)
, is a square matrix X of order

n with entries from {0, ε1x1, . . . , ε�x�}, where the xj ’s are commuting variables and
εj ∈ {±1,±i} for each j, that satisfies

XX∗ =

(
�∑

j=1

sjx
2
j

)
In,

where X∗ denotes the conjugate transpose of X and In is the identity matrix of
order n. A complex orthogonal design (COD) in which εj ∈ {±1} for all j is called
an orthogonal design, denoted OD

(
n; s1, . . . , s�

)
. An orthogonal design (OD) in

which there is no zero entry is called a full OD. Equating all variables to 1 in any
full OD results in a Hadamard matrix.

It is shown (see [9]) that the number of variables in an OD of order n = 2ab, b
odd, cannot exceed the Radon number ρ(n), where ρ(n) is defined as follows:

ρ(n) := 8c + 2d, where a = 4c + d, 0 ≤ d < 4.
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The credit for the consideration of asymptotic existence results should be given
to Seberry [9, 15] for her fundamental approach in showing that for each positive
integer p, there is a Hadamard matrix of order 2np for each n ≥ 2 log2(p − 3). Thus
for each positive integer n, the existence of Hadamard matrices is in doubt for only
a finite number of orders of the form 2tn. Two of Seberry’s students, Robinson [13]
and Eades [6], did extensive work on ODs in their Ph.D. theses and made significant
advances towards showing the asymptotic existence of a number of ODs. The work
of Wolfe [16] provided enough ammunition for other researchers to pursue a different
approach to the asymptotic existence of ODs. There are now a number of asymptotic
existence results for ODs and thus Hadamard matrices; see [1, 2, 3, 4, 5, 8, 12] for a
sample.

Eades in his Ph.D. thesis [7] states that

If the positive integers s1, s2, . . . , su, are all highly divisible by 2, then
in many cases the existence of an OD of type s1, s2, . . . , su and order n
may be established.

He then proves the following general construction.

Theorem 1 Suppose that r and n are positive integers, b1, b2, . . . , b� are powers of 2,
and there is an OD of type (b1, b2, . . . , b�) and order 2rn. If s1, s2, . . . , su are positive
integers with sum 2d(b1 + b2 + · · · + b�) for some d ≥ 0, then there is an integer N
such that for each a ≥ N , there is an

OD
(
2a+d+rn; 2as1, 2

as2, . . . , 2
asu

)
.

One of the main results of the paper is an improvement of this result of Eades.
We show that the existence of the ODs of type (b1, b2, . . . , b�) and order 2rn can
be removed from Theorem 1. More specifically, we prove in Section 2, Theorem
4, that for any �-tuple

(
s1, s2, . . . , s�

)
of positive integers, there is an integer N =

N
(
s1, s2, . . . , s�

)
such that for each n ≥ N there is an OD of order 2n

(
s1+s2+. . .+s�

)
and type

(
2ns1, 2

ns2, . . . , 2
ns�

)
.

Let M be an OD
(
n; c1, . . . , ck

)
on variables α1, . . . , αk, and N be an OD

(
n; d1,

. . . , dm

)
on variables β1, . . . , βm, where the two sets of variables are disjoint. Then

the pair (M ; N) is said to form an amicable orthogonal design, denoted

AOD
(
n; c1, . . . , ck; d1, . . . , dm

)
,

if MN t = NM t. The pair (M ; N) is called anti-amicable if MN t = −NM t.

Let X be a COD
(
n; c1, . . . , ck

)
on variables α1, . . . , αk, and Y be a COD

(
n; d1,

. . . , dm

)
on variables β1, . . . , βm, where the two sets of variables are disjoint. Then

(X; Y ) is called an amicable complex orthogonal design, denoted

ACOD
(
n; c1, . . . , ck; d1, . . . , dm

)
,



E. GHADERPOUR ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 333–346 335

if XY ∗ = Y X∗.

We deal with the asymptotic existence of amicable orthogonal designs in Section
3. More specifically, we show in Theorem 5 that for any two sequences (u1, . . . , us)
and (v1, . . . , vt) of positive integers, there are integers h, h1, h2 and N such that
there exists an

AOD
(
2nh; 2n+h1u1, . . . , 2

n+h1us; 2n+h2v1, . . . , 2
n+h2vt

)
,

for each n ≥ N .

Wolfe [16], continuing Shapiro’s work [14], studied amicable and anti-amicable
orthogonal designs in detail. The following result from his work will be used in
Section 3. We give a construction which will be needed later.

Theorem 2 Given an integer n = 2sd, where d is odd and s ≥ 1, there exist two sets
A =

{
A1, . . . , As+1

}
and B =

{
B1, . . . , Bs+1

}
of signed permutation matrices of

order n such that

(i) A consists of pairwise disjoint anti-amicable matrices,

(ii) B consists of pairwise disjoint anti-amicable matrices,

(iii) for each i and j, AiB
t
j = BjA

t
i.

Proof. For each 2 ≤ k ≤ s + 1 let

A1 =
(
⊗s

i=1 I
)
⊗ Id, Ak =

(
⊗k−2

i=1 I
)
⊗ R ⊗

(
⊗s

i=k P
)
⊗ Id,

and
B1 =

(
⊗s

i=1 P
)
⊗ Id, Bk =

(
⊗k−2

i=1 I
)
⊗ Q ⊗

(
⊗s

i=k P
)
⊗ Id,

where P =

[
0 1
1 0

]
, Q =

[
1 0
0 −1

]
, R =

[
0 1
−1 0

]
and I and Id are the identity

matrices of orders 2 and d, respectively. Then the matrices Ai and Bi (1 ≤ i ≤ s+1)
satisfy the three properties (i), (ii) and (iii). �

The nonperiodic autocorrelation function [11] of a sequence A = (x1, . . . , xn) of
type 1 square matrices of order m, is defined by

NA(j) :=

⎧⎪⎨
⎪⎩

n−j∑
i=1

xi+jx
t
i if j = 0, 1, 2, . . . , n − 1

0 j ≥ n

where xt
i is the transpose of xi.

Let X = {x1, . . . , xn, y1, . . . , yn} be a set of type 1 matrices. Then a pair of
sequences A = (x1, . . . , xn) and B = (y1, . . . , yn) is called a Golay pair of length n
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in type 1 matrices xi, yi, 1 ≤ i ≤ n, if NA(j) + NB(j) = 0 for all j > 0. Note
that by our definition, the pair A = (x, y) and B = (y,−x) do not form a Golay
pair of length 2 in type 1 matrices in general, because NA(1) + NB(1) = 0 only if
xyt − yxt = 0. However, A = (x, y) and B = (x,−y) form a Golay pair of length 2
in type 1 matrices x and y. Note that the directed sequences terminology is used in
[10, 11] for a similar concept.

Although the results of this note apply to more general settings, we would concen-

trate only on type 1 matrices of the form

[
α β
−β α

]
, where α and β are commuting

variables.

We use the standard notation a(k) to show that the figure a is repeated k times
and circ(a1, . . . , an) to denote a circulant matrix with the first row (a1, . . . , an).

2 The asymptotic existence of orthogonal designs

We start with the following well-known result (see [10] Section 2).

Lemma 1 For any positive integer n, there is a Golay pair of length 2n in two type
1 matrices each appearing 2n−1 times in each of the sequences.

Proof. Let An−1 and Bn−1 be a Golay pair of length 2n−1 in two type 1 matrices
each appearing 2n−2 times in both An−1 and Bn−1. Then An =

(
An−1, Bn−1

)
and

Bn =
(
An−1,−Bn−1

)
form a Golay pair of length 2n in two type 1 matrices as desired,

where (A, B) means sequence A followed by sequence B. �

Theorem 3 For any given sequence of positive integers (b, a1, a2, . . . , ak), there exists

a full COD of type
(
2N(m) · 1(b), 2

N(m) · 2a1

(4), . . . , 2
N(m) · 2ak

(4)

)
, where m = 4k + b+2 if

b is even, m = 4k + b + 1 if b is odd, and N(m) is the smallest positive integer such
that m ≤ ρ

(
2N(m)−1

)
.

Proof. Let (b, a1, a2, . . . , ak) be a sequence of positive integers. We distinguish two
cases:

Case 1. b is even. Consider the type 1 matrices xi, 0 ≤ i ≤ b

2
, yj and zj , 1 ≤ j ≤ k

of order 2. For each j, 1 ≤ j ≤ k, let Gj1 and Gj2 be a Golay pair of length 2aj in
two type 1 matrices yj and zj . Let

s1 = 0 and sj = 2

j−1∑
r=1

2ar , 2 ≤ j ≤ k + 1. (1)
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Let d =
b

2
+ sk+1 and define

M0 := circ
(
0(d), x0, 0(d−1)

)
, M1 := circ

(
x1, 0(2d−1)

)
, (2)

Mh := circ
(
0(h−1), xh, 0(2d−h)

)
, 2 ≤ h ≤ b

2
.

For each j, 1 ≤ j ≤ k, define

N2j−1 := circ
(
0( b

2
+sj)

, Gj1, 0(2d− b
2
−sj−2aj )

)
, N2j := circ

(
0( b

2
+sj+2aj ), Gj2, 0(2d− b

2
−sj+1)

)
.

Considering that all the variables in these matrices are assumed to be type 1 matrices
of order 2, these matrices are in fact commuting block-circulant matrices (see [9, 11]),
and the 0 entries denote the zero matrix of order 2. Let m = 4k+b+2 and let N(m)
be the smallest positive integer such that m ≤ ρ

(
2N(m)−1

)
. So there is a set

A′ =
{
A1, . . . , Am

}
(3)

of mutually disjoint anti-amicable signed permutation matrices of order 2N(m)−1.
These matrices are known as Hurwitz-Radon matrices (see [9] chapter 1). Suppose
H is a Hadamard matrix of order 2N(m)−1. Let

C =
1

2

(
M0 + M t

0

)⊗ A1H +
i

2

(
M0 − M t

0

)⊗ A2H (4)

+
1

2

(
M1 + M t

1

)⊗ A3H +
i

2

(
M1 − M t

1

)⊗ A4H

+

b
2∑

h=2

((
Mh + M t

h

)⊗ 1

2

(
A2h+1 + A2h+2

)
H + i

(
Mh − M t

h

)⊗ 1

2

(
A2h+1 − A2h+2

)
H
)

+

2k∑
j=1

((
Nj + N t

j

)⊗ 1

2

(
A2j+b+1 + A2j+b+2

)
H (5)

+ i
(
Nj − N t

j

)⊗ 1

2

(
A2j+b+1 − A2j+b+2

)
H
)
.

We show that

CC∗ = 2N(m)ωI2N(m)d, (6)

where ω =
1

2
x0x

t
0+

1

2
x1x

t
1+x2x

t
2+· · ·+x b

2
xt

b
2

+2a1y1y
t
1+2a1z1z

t
1+· · ·+2akyky

t
k+2akzkz

t
k.

To this end, we first note that each of the sets{1

2

(
M0 + M t

0

)
,

i

2

(
M0 − M t

0

)
,

1

2

(
M1 + M t

1

)
,

i

2

(
M1 − M t

1

)}
,

{(
Mh + M t

h

)
,
(
Nj + N t

j

)
; 2 ≤ h ≤ b

2
, 1 ≤ j ≤ 2k

}
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and {
i
(
Mh − M t

h

)
, i
(
Nj − N t

j

)
; 2 ≤ h ≤ b

2
, 1 ≤ j ≤ 2k

}
consist of mutually disjoint Hermitian circulant matrices. Moreover, for u = 0, 1, we
have

1

4

(
Mu + M t

u

)(
Mu + M t

u

)t
+

1

4

(
Mu − M t

u

)(
Mu − M t

u

)t
= xux

t
uI2d

and for each h, 2 ≤ h ≤ b

2
,

(
Mh + M t

h

)(
Mh + M t

h

)t
+
(
Mh − M t

h

)(
Mh − M t

h

)t
= 4xhx

t
hI2d.

Also, for each j, 1 ≤ j ≤ k, we have

2j∑
r=2j−1

((
Nr + N t

r

)(
Nr + N t

r

)t
+
(
Nr − N t

r

)(
Nr − N t

r

)t)
= 2

2j∑
r=2j−1

(
NrN

t
r + N t

rNr

)
= 2aj+2

(
yjy

t
j + zjz

t
j

)
I2d.

Note that for each j, 3 ≤ j ≤ b

2
+ 2k + 1, the matrices

1

2

(
A2j−1 + A2j

)
H and

1

2

(
A2j−1 − A2j

)
H are disjoint with 0,±1 entries. Furthermore, since the set A′

consists of mutually anti-amicable matrices, the set{
A1H, A2H, A3H, A4H,

1

2

(
A2j−1 ± A2j

)
H
(
3 ≤ j ≤ b

2
+ 2k + 1

)}

consists of mutually anti-amicable matrices. Since for each j, 3 ≤ j ≤ b

2
+ 2k + 1,

(1
2
(
A2j−1 ± A2j

)
H
)(1

2
(
A2j−1 ± A2j

)
H
)t

=
2N(m)−1

4
(
A2j−1 ± A2j

)(
A2j−1 ± A2j

)t
I2N(m)−1

= 2N(m)−2I2N(m)−1 ,

the validity of equation (6) follows.

In the equation (6), we now replace x0 by

[
α α
−α α

]
, x1 by

[
β β
−β β

]
, xh by[

αh βh

−βh αh

]
, 2 ≤ h ≤ b

2
, yj by

[
α′

j β ′
j

−β ′
j α′

j

]
, and zj by

[
α′′

j β ′′
j

−β ′′
j α′′

j

]
, 1 ≤ j ≤ k. The

resulted matrix will be a full COD of type
(
2N(m) · 1(b), 2

N(m) · 2a1

(4), . . . , 2
N(m) · 2ak

(4)

)
,

where the α, β, αh’s, βh’s, α′
j’s, β ′

j’s, α′′
j ’s and β ′′

j ’s are commuting variables.

Case 2. b is odd. Consider the following circulant matrices of order 2d + 1, where

d =
b − 1

2
+ sk+1 with the same sj ’s as in equation (1),

M1 = circ
(
x1, 0(2d)

)
,

Mh = circ
(
0(h−1), xh, 0(2d−h+1)

)
, 2 ≤ h ≤ b + 1

2
.
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For each j, 1 ≤ j ≤ k, assume

N2j−1 = circ
(
0( b+1

2
+sj

), Gj1, 0(
2d− b−1

2
−sj−2aj

)),
N2j = circ

(
0( b+1

2
+sj+2aj

), Gj2, 0(
2d− b−1

2
−sj+1

)).
The rest of proof is similar to Case 1, and so m = 4k + b + 1. �

Remark 1 The choice of N(m) in Theorem 3 and the next few asymptotic results
is crucial; the smaller N(m), the better asymptotic result. All N(m)’s appearing in
this note are either equal to or 1 less than the ceiling of (m+2)/2, depending on the
value of m.

Let (u1, . . . , u�) be an �-tuple of positive integers and suppose 2t is the largest
power of 2 appearing in the binary expansions of ui, i = 1, 2, . . . , �. Using the binary
expansion of each ui, one can write⎡

⎢⎢⎢⎣
u1

u2
...
u�

⎤
⎥⎥⎥⎦ = E

⎡
⎢⎢⎢⎣

1
2
...
2t

⎤
⎥⎥⎥⎦, (7)

where E = [eij ] is the unique � × (t + 1) matrix with 0 and 1 entries. We call E the
binary matrix corresponding to the �-tuple (u1, . . . , u�).

For convenience and in order to make the first column of the binary matrix E
nonzero, in the following lemma, we assume that the �-tuples of positive integers
have at least one odd element.

Lemma 2 Suppose that (u1, . . . , u�) is an �-tuple of positive integers such that at
least one of the ui’s is odd. Then there exists an integer m = m(u1, . . . , u�) such that
there is a

COD
(
2m(u1 + · · ·+ u�); 2mu1, . . . , 2

mu�

)
.

Proof. Let (u1, . . . , u�) be an �-tuple of positive integers such that at least one of
ui’s is odd, and let d = u1 + · · · + u�.

By applying Theorem 3 all we need is to equate variables appropriately. We do
this by applying the following procedure.

We form the � × (t + 1) binary matrix E = [eij ] corresponding to the �-tuple
(u1, . . . , u�), where t is the largest exponent appearing in the binary expansions of
ui, i = 1, 2, . . . , �. Let

γj−1 :=

�∑
i=1

eij, 1 ≤ j ≤ t + 1. (8)
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k := t; γ′
t :=

⌊γt

4

⌋
; (�x� is floor of x) (9)

while k > 0 do{
βk := γk (mod 4);

k := k − 1;

γk := γk + 2βk+1;

if k 	= 0 then

γ′
k :=

⌊γk

4

⌋
;

else

γ′
k := γk;

}
Now we apply Theorem 3 to the sequence

(
γ′

0, 1(γ′
1), 2(γ′

2), . . . , t(γ′
t)

)
. Thus, there is an

integer m such that there is a

COD
(
2md; 2m · 1(γ′

0), 2
m · 2(4γ′

1), 2
m · 22

(4γ′
2), . . . , 2

m · 2t
(4γ′

t)

)
, (10)

where m = N
(
4

t∑
j=1

γ′
j + γ′

0 + 2
)

if γ′
0 is even, and m = N

(
4

t∑
j=1

γ′
j + γ′

0 + 1
)

if γ′
0 is

odd.

Equating variables in (10) in an appropriate way, we obtain a

COD
(
2md; 2mu1, . . . , 2

mu�

)
.

�

Lemma 3 For any �-tuple (s1, . . . , s�) of positive integers, there is an integer r =
r(s1, . . . , s�) such that there is a

COD
(
2r(s1 + · · ·+ s�); 2rs1, . . . , 2

rs�

)
.

Proof. Suppose that (s1, . . . , s�) is an �-tuple of positive integers and let

(s1, . . . , s�) = 2q(u1, . . . , u�),

where q is the unique integer such that one of ui’s is odd. By Lemma 2, there exists
an integer m = m(u1, . . . , u�) such that there is a

COD
(
2m(u1 + · · · + u�); 2mu1, . . . , 2

mu�

)
.

Choose r = m − q, if m ≥ q, and if m < q, then A ⊗ H is a

COD
(
2q(u1 + · · · + u�); 2qu1, . . . , 2

qu�

)
= COD

(
s1 + · · ·+ s�; s1, . . . , s�

)
,

where H is a Hadamard matrix of order 2q−m, and therefore we may choose r = 0 to
complete the proof. �
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Theorem 4 For any �-tuple (s1, . . . , s�) of positive integers, there is an integer N =
N(s1, . . . , s�) such that for each n ≥ N there is an

OD
(
2n(s1 + · · ·+ s�); 2ns1, . . . , 2

ns�

)
.

Proof. Let (s1, . . . , s�) be a �-tuple of positive integers. From Lemma 3, there is
an integer r = r(s1, . . . , s�) such that there is a

COD
(
2r(s1 + · · ·+ s�); 2rs1, . . . , 2

rs�

)
,

call it A. We may write A = X + iY, where X and Y are disjoint and amicable
matrices such that XX t + Y Y t = AA∗. It can be seen that the matrix B,

B =

[
1 1
1 −1

]
⊗ X +

[ −1 1
1 1

]
⊗ Y

is an

OD
(
2r+1(s1 + · · ·+ s�); 2r+1s1, 2

r+1s2, . . . , 2
r+1s�

)
.

Let N = r + 1, and H is a Hadamard matrix of order 2n−N . Then B ⊗ H is an

OD
(
2n(s1 + · · ·+ s�); 2ns1, . . . , 2

ns�

)
.

�

Example 1 Consider the 5-tuple (8, 12, 20, 68, 136). We may write this as 22(2, 3, 5,
17, 34). We apply the equation (7) to (2, 3, 5, 17, 34) as follows:

⎡
⎢⎢⎢⎢⎣

2
3
5
17
34

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 0 1 0
0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2
22

23

24

25

⎤
⎥⎥⎥⎥⎥⎥⎦

.

From the equation (8), we have γ0 = 3, γ1 = 3, γ2 = 1, γ3 = 0, γ4 = 1 and γ5 = 1. By
applying the procedure (9), we find γ′

0 = 5, γ′
1 = 1, γ′

2 = 1, γ′
3 = 1, γ′

4 = 0 and γ′
5 = 0.

So, we apply Theorem 3 to the sequence (b, a1, a2, a3) = (5, 1, 2, 3). Since b is odd,
we use Case 2 of the theorem, and so m = 4 × 3 + 5 + 1 = 18. N(18) = 10 as 10 is
the smallest positive integer such that 18 ≤ ρ

(
210−1

)
. Thus there is a

COD
(
210 · 61; 210 · 1(5), 2

10 · 2(4), 2
10 · 22

(4), 2
10 · 23

(4)

)
.

By equating variables, we obtain a

COD
(
28 · 244; 28 · 8, 28 · 12, 28 · 20, 28 · 68, 28 · 136

)
.
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Example 2 We apply the equation (7) to the 4-tuple (1, 5, 7, 17). Thus,

⎡
⎢⎢⎣

1
5
7
17

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0 0
1 0 1 0 0
1 1 1 0 0
1 0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

1
2
22

23

24

⎤
⎥⎥⎥⎥⎦ .

From (8), we have γ0 = 4, γ1 = 1, γ2 = 2, γ3 = 0, γ4 = 1. By applying the procedure
(9), we find γ′

0 = 6, γ′
1 = 1, γ′

2 = 1, γ′
3 = 0, γ′

4 = 0. Now we apply Theorem 3 to the
sequence (b, a1, a2) = (6, 1, 2). Since b is even, we use Case 1 of Theorem 3, and so
m = 4 × 2 + 6 + 2 = 16. N(16) = 8 as 8 is the smallest positive integer such that
16 ≤ ρ

(
28−1

)
. Thus there is a

COD
(
28 · 30; 28 · 1(6), 2

8 · 2(4), 2
8 · 22

(4)

)
.

By equating variables, we obtain a

COD
(
28 · 30; 28 · 1, 28 · 5, 28 · 7, 28 · 17

)
.

3 The asymptotic existence of amicable orthogonal designs

We now include an asymptotic result related to the amicable orthogonal designs.

Lemma 4 If there exists an ACOD
(
n; u1, . . . , us; v1, . . . , vt

)
, then there exists an

AOD
(
2n; 2u1, . . . , 2us; 2v1, . . . , 2vt

)
.

Proof. Suppose that (X; Y ) is a complex amicable orthogonal design. We write
X = A + iB and Y = C + iD, where A and B (C and D) are disjoint and amicable

matrices such that AAt + BBt = XX∗ and CCt + DDt = Y Y ∗. Let R =

[
0 1
−1 0

]

and H =

[
1 1
1 −1

]
. Since (X; Y ) is a complex amicable orthogonal design,

ACt + BDt = CAt + DBt, ADt − BCt = CBt − DAt.

Let X ′ = A ⊗ RH + B ⊗ H and Y ′ = C ⊗ RH + D ⊗ H . Then

X ′Y ′t = 2
(
ACt + BDt

)⊗ I + 2
(
ADt − BCt

)⊗ R

Y ′tX ′ = 2
(
CAt + DBt

)⊗ I + 2
(
CBt − DAt

)⊗ R.

Therefore (X ′; Y ′) is an amicable orthogonal design as desired. �

We are now ready for the main result of this section.
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Theorem 5 For any two sequences (u1, . . . , us) and (v1, . . . , vt) of positive integers,
there are integers h, h1, h2 and N such that there exists an

AOD
(
2nh; 2n+h1u1, . . . , 2

n+h1us; 2n+h2v1, . . . , 2
n+h2vt

)
,

for each n ≥ N .

Proof. Suppose that (u1, . . . , us) and (v1, . . . , vt) are two sequences of positive in-
tegers. Let (u1, . . . , us) = 2q1(u′

1, . . . , u
′
s) and (v1, . . . , vt) = 2q2(v′

1, . . . , v
′
t), where q1

and q2 are the unique integers such that at least one of ui’s and one of vj ’s is odd.

Let u′
1 + · · · + u′

s = c1 and v′
1 + · · · + v′

t = c2. We may use the procedure (9)
in the proof of Lemma 2 for sequences (u′

1, . . . , u
′
s) and (v′

1, . . . , v
′
t) to get sequences

(b, a1, a2, . . . , ak) and (β, α1, α2, . . . , α�) of positive integers, respectively.

We have c1 = b + 4
k∑

i=1

2ai and c2 = β + 4
�∑

i=1

2αi . Without loss of generality we may

assume that c1 ≥ c2, and b and β are both even. Let m = max
{
4k+b+2, 4�+β+2

}
.

Suppose that A =
{
A1, . . . , Am

}
and B =

{
B1, . . . , Bm

}
are the same set of

matrices of order 2m−1 as in Theorem 2.

Apply Theorem 3 to the sequence
(
b, a1, a2, . . . , ak

)
by using the set A which

contains matrices of order 2m−1 instead of the set A′ in (3) which contains matrices
of order 2N(m)−1. It can be seen that there is a COD, say C, of order 2mc1 and type(
2m · 1(b), 2

m · 2a1

(4), . . . , 2
m · 2ak

(4)

)
.

Again apply Theorem 3 to the sequence
(
β + c1 − c2, α1, α2, . . . , α�

)
by using the

set B instead of the set A′ in (3). It can be seen that there is a COD, say D, of order

2mc1 and type
(
2m · 1(β), 2

m · 2α1

(4), . . . , 2
m · 2α�

(4)

)
. Note that there is no need to use

circulant matrices Mi’s corresponding to the c1 − c2 variables to construct matrix D,
and we do not necessarily need to use all matrices in sets A and B.

Since the circulant matrices used to construct C and D in (4) are Hermitian of
order c1 and AiB

t
j = BjA

t
i for 1 ≤ i, j ≤ m, (C; D) is an

ACOD
(
2mc1; 2m · 1(b), 2

m · 2a1

(4), . . . , 2
m · 2ak

(4); 2m · 1(β), 2
m · 2α1

(4), . . . , 2
m · 2α�

(4)

)
.

Equating variables in C and D in an appropriate way, we obtain an

ACOD
(
2mc1; 2mu′

1, . . . , 2
mu′

s; 2mv′
1, . . . , 2

mv′
t

)
,

and so by Lemma 4, there exists an

AOD
(
2m′

c1; 2m′
u′

1, . . . , 2
m′

u′
s; 2m′

v′
1, . . . , 2

m′
v′

t

)
, (11)

where m′ = m + 1.
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Now if q1 = q2 = 0, then we choose h = c1, h1 = h2 = 0 and N = m′. If
q1 ≤ q2 ≤ m′, then we choose h = c1, h1 = −q1, h2 = −q2 and N = m′. For cases
q1 ≤ m′ ≤ q2 and m′ ≤ q1 ≤ q2, the Kronecker product of a Hadamard matrix of
order 2q2−m′

with the amicable orthogonal design (11) implies h = 2q2c1, h1 = q2 − q1

and h2 = N = 0. Therefore, there exists an

AOD
(
2nh; 2n+h1u1, . . . , 2

n+h1us; 2n+h2v1, . . . , 2
n+h2vt

)
,

for each n ≥ N .

If β and b are not both even, then we may use Case 2 in Theorem 3 with a similar
argument.

�

Example 3 Let
(
u1, u2, u3, u4, u5

)
= (8, 12, 20, 68, 136) and

(
v1, v2, v3, v4

)
= (1, 5, 7,

17). We use the same notation as in the proof of Theorem 5. Thus, we have(
u′

1, u
′
2, u

′
3, u

′
4, u

′
5

)
= (2, 3, 5, 17, 34),

(
v′

1, v
′
2, v

′
3, v

′
4

)
= (1, 5, 7, 17), q1 = 2, q2 = 0,

c1 =
5∑

i=1

u′
i = 61, c2 =

4∑
i=1

v′
i = 30 and c1 ≥ c2.

In Examples 1 and 2, we applied the procedure (9) to the sequences(
u′

1, u
′
2, u

′
3, u

′
4, u

′
5

)
= (2, 3, 5, 17, 34) and

(
v′

1, v
′
2, v

′
3, v

′
4

)
= (1, 5, 7, 17),

and we obtained the two sequences(
b, a1, a2, a3

)
= (5, 1, 2, 3) and

(
β, α1, α2

)
= (6, 1, 2),

respectively. We may choose m = max
{
4·3+b+1, 4·2+β+2

}
= max

{
18, 16

}
= 18.

Note that b is odd, and β is even. From the proof of Theorem 5, there is an

ACOD
(
218 · 61; 218 · 1(5), 2

18 · 2(4), 2
18 · 22

(4), 2
18 · 23

(4); 218 · 1(6), 2
18 · 2(4), 2

18 · 22
(4)

)
,

and so there is an

AOD
(
219 · 61; 219 · 1(5), 2

19 · 2(4), 2
19 · 22

(4), 2
19 · 23

(4); 219 · 1(6), 2
19 · 2(4), 2

19 · 22
(4)

)
.

Equating variables, we obtain an

AOD
(
219 · 61; 219 · 2, 219 · 3, 219 · 5, 219 · 17, 219 · 34; 219 · 1, 219 · 5, 219 · 7, 219 · 17

)
.

Since q2 ≤ q1 ≤ 19, we choose N = 19, h = 61, h1 = −2, h2 = 0, and therefore for
each n ≥ 19, there exists an

AOD
(
2n ·61; 2n−2 ·8, 2n−2 ·12, 2n−2 ·20, 2n−2 ·68, 2n−2 ·136; 2n ·1, 2n ·5, 2n ·7, 2n ·17

)
.
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