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Abstract

A group divisible design GDD(v = 1 + n + n, 3, λ1, λ2) is an ordered pair
(V,B) where V is an (1 + n + n)-set of symbols and B is a collection
of 3-subsets (called blocks) of V satisfying the following properties: the
(1 + n + n)-set is divided into 3 groups of sizes 1, n and n; each pair of
symbols from the same group occurs in exactly λ1 blocks in B; and each
pair of symbols from different groups occurs in exactly λ2 blocks in B.
The spectrum of λ1, λ2, denoted by Spec(λ1, λ2), is defined by

Spec(λ1, λ2) = {n ∈ N : a GDD(v = 1 + n + n, 3, λ1, λ2) exists}.

We find the spectrum Spec(λ1, λ2) for all λ1 ≥ λ2.

1 Introduction

A balanced incomplete block design BIBD(v, b, r, k, λ) is a set S of v elements together
with a collection of b k-subsets of S, called blocks, where each point occurs in r blocks
and each pair of distinct elements occurs in exactly λ blocks (see [6], [7], [12]).

Note that in a BIBD(v, b, r, k, λ), the parameters must satisfy the necessary con-
ditions:
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1. vr = bk and

2. λ(v − 1) = r(k − 1).

With these conditions a BIBD(v, b, r, k, λ) is usually written as BIBD(v, k, λ).

A group divisible design GDD(v = v1 + v2 + . . . + vg, k, λ1, λ2) is a collection of
k-subsets (called blocks) of a v-set of symbols, where the v-set is partitioned into
g groups of sizes v1, v2, . . . , vg; each pair of symbols from the same group occurs in
exactly λ1 blocks; and each pair of symbols from different groups occurs in exactly
λ2 blocks. Elements occurring together in the same group are called first associates,
and elements occurring in different groups are called second associates. The existence
problem of such GDDs has been of interest over the years, going back to at least the
work of Bose and Shimamoto in 1952 who began classifying such designs [1]. More
recently, much work has been done on the existence of such designs when λ1 = 0 (see
[3] for a summary), and the designs here are called partially balanced incomplete
block designs (PBIBDs) of group divisible type in [3]. The existence question for
k = 3 has been solved by Sarvate, Fu and Rodger (see [6], [7]) when all groups are
of the same size.

The existence problem of GDD(v = v1 + v2 + . . . + vg, k, λ1, λ2), when the groups
may have different size, is considered recently. Chaiyasena, et al. [2] have published
a paper in this direction. In particular, they found all ordered pairs (n, λ) of positive
integers such that a GDD(v = 1 + n, 3, 1, λ) exists. Pabhapote and Punnim found
in [13] all ordered triples (m, n, λ) of positive integers such that a GDD(v = m +
n, 3, λ, 1) exists. The existence problem of a GDD(v = m + n, 3, λ1, λ2) is more
difficult if λ1 < λ2. Punnim and Uiyyasathian found in [14] infinitely many ordered
pairs (m, n) of positive integers such that a GDD(v = m + n, 3, 1, 2) exists. Let
(V = X ∪ Y,B) be a GDD(v = m + n, 3, λ1, λ2), where X and Y are of cardinality
m and n, respectively. Then (V = X ∪ Y,B) is called gregarious if for each block
B ∈ B, B ∩ X �= ∅ and B ∩ Y �= ∅. El-Zanati et al. found in [5] all ordered pairs
(m, n) of positive integers such that a gregarious GDD(v = m + n, 3, 1, 2) exists.

We now consider the problem of determining the existence of a GDD(v = n1 +
n2 +n3, 3, λ1, λ2). Chaiyasena, et al. [2] published a paper in this direction for small
values of n1, n2, n3. In particular, for each n ∈ {2, 3, 4, 5, 6} they found all ordered
pairs (λ1, λ2) of positive integers such that a GDD(v = 1 + 2 + n, 3, λ1, λ2) exists.
Hurd and Sarvate found in [8] all ordered pairs (n, λ) of positive integers such that a
GDD(v = 1 + 1 + n, 3, 1, λ) exists. Later, Hurd and Sarvate found in [9] all ordered
pairs (n, λ) of positive integers such that a GDD(v = 1+1+n, 3, λ, 1) exists. Recently,
Hurd and Sarvate found in [10] all ordered triples (n, λ1, λ2) of positive integers, with
λ1 > λ2, such that a GDD(v = 1 + 2 + n, 3, λ1, λ2) exists. More recently, Lapchinda,
et al. found in [11] all ordered triples (n, λ1, λ2) of positive integers, with λ1 < λ2,
such that a GDD(v = 1 + n + n, 3, λ1, λ2) exists. It is now reasonable to consider
the problem of determining all ordered triples (n, λ1, λ2) of positive integers, with
λ1 ≥ λ2, such that a GDD(v = 1 + n + n, 3, λ1, λ2) exists. The problem is equivalent
to finding the spectrum which is defined as follows: Let λ1, λ2 be positive integers.
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Then the spectrum of λ1, λ2, denoted by Spec(λ1, λ2), is defined by

Spec(λ1, λ2) = {n ∈ N : a GDD(v = 1 + n + n, 3, λ1, λ2) exists}.

We find the spectrum Spec(λ1, λ2) for λ1 ≥ λ2 in all situations. In order to solve
the problem it may be easier to describe the problem in terms of, so-called, graph
decomposition.

Let G and H be multigraphs. A G-decomposition of H is a partition of the edges
of H such that each element of the partition induces a copy of G. We write G | H if
there exists a G-decomposition of H . Let λKv denote the multigraph on v vertices
in which each pair of distinct vertices is joined by λ edges. Let G1 and G2 be vertex
disjoint graphs. Then G1 ∨λ G2 is the graph obtained from the union of G1 and G2

and by joining each vertex in G1 to each vertex in G2 with λ edges. Let G1, G2, G3

be pairwise vertex disjoint multigraphs. Then G1 ∨λ G2 ∨λ G3 can be defined as
(G1∨λG2)∨λG3. Thus the existence of a GDD(v = n1+n2+n3, 3, λ1, λ2) is easily seen
to be equivalent to the existence of a K3-decomposition of λ1Kn1∨λ2 λ1Kn2∨λ2λ1Kn3.
In this graph theoretic setting, edges joining vertices in the same group are referred
to as pure edges, whereas edges joining vertices in different groups are called mixed
edges.

The graph λ1Kn1 ∨λ2 λ1Kn2 ∨λ2 λ1Kn3 is of order n1 +n2 +n3 and size λ1[
(

n1

2

)
+(

n2

2

)
+

(
n3

2

)
] + λ2(n1n2 + n1n3 + n2n3). It contains n1 vertices of degree λ1(n1 − 1) +

λ2(n2 + n3), n2 vertices of degree λ1(n2 − 1) + λ2(n1 + n3), and n3 vertices of degree
λ1(n3 − 1) + λ2(n1 + n2).

Thus the existence of a K3-decomposition of λ1Kn1 ∨λ2 λ1Kn2 ∨λ2 λ1Kn3 implies
the following conditions:

λ1[
(

n1

2

)
+

(
n2

2

)
+

(
n3

2

)
] + λ2(n1n2 + n1n3 + n2n3) ≡ 0(mod 3)

λ1(n1 − 1) + λ2(n2 + n3) ≡ 0 (mod 2)
λ1(n2 − 1) + λ2(n1 + n3) ≡ 0 (mod 2)
λ1(n3 − 1) + λ2(n1 + n2) ≡ 0 (mod 2)

By putting n1 = 1 and n2 = n3 = n, we get

F (λ1, λ2) = λ1n(n − 1) + λ2n(n + 2) ≡ 0(mod 3) · · · (1)
G(λ1, λ2) = λ1(n − 1) + λ2(n + 1) ≡ 0 (mod 2) · · · (2)

Note that F (λ1, λ2)−F (λ1 − 1, λ2 + 1) = −3n ≡ 0 (mod 3), and G(λ1, λ2)−G(λ1 −
1, λ2+1) = −2 ≡ 0 (mod 2). This means that n is a solution of F (λ1, λ2) ≡ 0 (mod 3)
and G(λ1, λ2) ≡ 0 (mod 2) if and only if n is a solution of F (λ1−1, λ2+1) ≡ 0 (mod 3)
and G(λ1 − 1, λ2 + 1) ≡ 0 (mod 2). Thus, it is enough to solve for n only for a fixed
λ2 and for all λ1 ≡ 0, 1, . . . , 5 (mod 6). The following results are obtained.

Theorem 1.1 If n ∈ Spec(λ1, λ2), then λ1, λ2 and n are related mod 6 as in the
following table.



W. LAPCHINDA ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 292–303 295

λ2 0 1 2 3 4 5
λ1

0 all n 1, 3 0, 1, 3, 4 1, 3, 5 0, 1, 3, 4 1, 3
1 1,3 0, 1, 3, 4 1, 3, 5 0, 1, 3, 4 1, 3 all n
2 0, 1, 3, 4 1, 3, 5 0, 1, 3, 4 1, 3 all n 1, 3
3 1, 3, 5 0, 1, 3, 4 1, 3 all n 1, 3 0, 1, 3, 4
4 0, 1, 3, 4 1, 3 all n 1, 3 0, 1, 3, 4 1, 3, 5
5 1, 3 all n 1, 3 0, 1, 3, 4 1, 3, 5 0, 1, 3, 4

The definition of GDD(v = 1 + n + n, 3, λ1, λ2) along with the existence of
BIBD(n, 3, 6) for all n ≥ 3 if GDD(v = 1 + n + n, 3, λ1, λ2) exists and n ≥ 3,
then for any positive integer i, GDD(v = 1 +n + n, 3, λ1 + 6i, λ2) exists. This means
that λ1 can be arbitrarily large.

2 Preliminary

We review some known results concerning triple designs that will be used in the
sequel, most of which are taken from [12]. We will also prove some results that are
needed for proving the main theorem.

A BIBD(v, 3, 1) is usually called a Steiner triple system and is denoted by STS(v).
Let (V,B) be an STS(v). Then the number of triples b = |B| = v(v − 1)/6.

The following results on the existence of λ-fold triple systems are well known (see,
e.g., [12]).

Theorem 2.1 Let n be a positive integer. Then a BIBD(n, 3, λ) exists if and only
if λ and n are in one of the following cases:

(a) λ ≡ 0 (mod 6) and n �= 2,

(b) λ ≡ 1 or 5 (mod 6) and n ≡ 1 or 3 (mod 6),

(c) λ ≡ 2 or 4 (mod 6) and n ≡ 0 or 1 (mod 3), and

(d) λ ≡ 3 (mod 6) and n is odd.

Let (V,B) be an STS(v). An automorphism of an (V,B) is a bijection α : V → V
such that t = {x, y, z} ∈ B if and only if tα = {xα, yα, zα} ∈ B. An STS(v) is
cyclic if it has an automorphism that is a permutation consisting of a single cycle of
length v. It is natural to ask, for which integers v does there exist a cyclic STS(v)?
This question can be answered by solving Heffter’s Difference Problems posed by L.
Heffter in 1896 (see page 32 of [12]).

For any integer v, a difference triple of {1, 2, 3, . . . , v − 1} is a subset {x, y, z} of
three distinct elements of {1, 2, . . . , v − 1} such that x + y ≡ ±z(mod v).
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Heffter’s Difference Problems:

1. Let v = 6k + 1. Is it possible to partition the set {1, 2, . . . , (v − 1)/2} into
difference triples?

2. Let v = 6k + 3. Is it possible to partition the set {1, 2, . . . , (v − 1)/2} \ {v/3}
into difference triples?

If {x, y, z} is a difference triple (so x + y ≡ ±z(mod v)), we define the corre-
sponding base block to be the triple {0, x, x + y}.

Peltesohn solved both of Heffter’s Difference Problems in 1939 (see page 33 of
[12]) as stated in the following theorem.

Theorem 2.2 For all v ≡ 1 or 3(mod 6), v �= 9, there exists a cyclic STS(v).

Let Kv be the complete graph of order v with Zv = {0, 1, 2, . . . , v − 1} as its
vertex set. The length of an edge xy, denoted by �(x, y), is defined by

�(x, y) = min{|x − y|, v − |x − y|}.

A factor of a graph G is a spanning subgraph. An r-factor of a graph is a spanning
r-regular subgraph, and an r-factorization is a partition of the edges of the graph into
disjoint r-factors. A graph G is said to be r-factorable if it admits an r-factorization.
In particular, a 1-factor is a perfect matching, and a 1-factorization of an r-regular
graph G is a set of 1-factors which partition the edge set of G.

The following observations are useful.

Let Kv be the complete graph of order v with Zv = {0, 1, 2, . . . , v − 1} as its
vertex set.

1. �(x, y) = �(y, x) and for each integer i, �(x + i, y + i) = �(x, y), where “ + ” is
taken modulo v.

2. Let i be an integer with 1 ≤ i < v
2
. Then the set of edges of Kv of length i

forms a 2-factor of Kv.

3. If v = 2m, then the set of edges of Kv of length m forms a 1-factor of Kv.

4. It is well known that Kv is 1-factorable if v is even while Kv is 2-factorable if
v is odd. Since a union of k 1-factors of Kv is a k-factor of Kv, it follows that
if v is even, then Kv is k-factorable if and only if k | v − 1.

5. A union of a disjoint k-factor and an h-factor of Kv forms a (k + h)-factor of
Kv.

Let v be an integer of the form 6k + 4. Then an STS(v) does not exist. By using
an idea similar to Heffter’s Difference Problems, we obtain the following theorem.
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Theorem 2.3 Let k be a positive integer and n = 6k + 4. Then there exists
t ∈ {1, 2, . . . , 3k + 1} such that {1, 2, . . . , 3k + 1} \ {t} can be partitioned into k
difference triples.

Proof. Let k be a positive integer and n = 6k + 4. We prove the result by con-
structing difference triples directly according to k as follows.

We start with k = 1. It is easy to see that {1, 2, 3} forms a difference triple, thus, in
this case, we may choose t = 4.

For k = 2, the set {1, 2, . . . , 3k + 1} = {1, 2, . . . , 7}. Since {1, 3, 4}, {2, 5, 7} are two
disjoint difference triples, we choose t = 6 for k = 2.

For k = 3, the set {1, 2, . . . , 3k+1} = {1, 2, . . . , 10}. Since {1, 4, 5}, {2, 8, 10}, {3, 6, 9}
are three pairwise disjoint difference triples, we choose t = 7 for k = 3.

For k = 4, it is clear that {1, 5, 6}, {2, 8, 10}, {3, 9, 12}, {4, 7, 11} are four pairwise
disjoint difference triples. Thus, in this case, we can choose t = 13.
We now suppose that k ≥ 5.

If k = 2r + 1 for some integer r ≥ 2, then {1, 2, . . . , 3k + 1} \ {3r + 4} can be
partitioned into k difference triples as follows:

{1, 2r + 2, 2r + 3}, {2r + 1, 2r + 4, 4r + 5}, {2r, 3r + 5, 5r + 5},
{2s + 1, 3r + 4 − s, 3r + 5 + s} for 1 ≤ s ≤ r − 1,

{2s, 5r + 5 − s, 5r + 5 + s} for 1 ≤ s ≤ r − 1.

If k = 2r for some integer r ≥ 3, then {1, 2, . . . , 3k +1} \ {5r+3} can be partitioned
into k difference triples as follows:

{1, 2r + 1, 2r + 2}, {2r, 2r + 3, 4r + 3}, {2r − 1, 3r + 3, 5r + 2},
{2s, 3r + 3 − s, 3r + 3 + s} for 1 ≤ s ≤ r − 1,

{2s + 1, 5r + 2 − s, 5r + 3 + s} for 1 ≤ s ≤ r − 2. �

Let n = 6k + 4. Then M = {{j, j + 3k + 2} : j = 1, 2, . . . , 3k + 1} is a 1-factor
of Kn and H = {{j, j + t} : j ∈ Zn} is a 2-factor of Kn, where t is the removal
element as mentioned in Theorem 2.3. The following result can be obtained as a
direct consequence of Theorem 2.3.

Theorem 2.4 Let k be a positive integer. If n = 6k + 4. Then there exist a
1-factor M and a 2-factor H of Kn such that K3 | (Kn \ (M ∪ H)). �

The following notation will be used throughout the paper for our constructions.

1. Let G = 〈V (G), E(G)〉 and H = 〈V (H), E(H)〉 be two vertex disjoint simple
graphs. If e = uv ∈ E(G) and a ∈ V (H), then we use a + e for the triple
{a, u, v}. If ∅ �= X ⊆ E(G), then we use a+X for the collection of triples a+e
for all e ∈ X.

2. Let V be a v-set. We use K(V ) for the complete graph Kv on the vertex set V .
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3. Let V be a v-set. A BIBD(V, 3, λ) can be defined as

BIBD(V, 3, λ) = {B : (V,B) is a BIBD(v, 3, λ)}.

4. Let X and Y be disjoint sets of cardinality m and n, respectively.
We define a GDD(X, Y ; λ1, λ2) as

GDD(X, Y ; λ1, λ2) = {B : (X, Y ;B) is a GDD(v = m + n, 3, λ1, λ2)}.

5. Let X, Y and Z be three pairwise disjoint sets of cardinality n1, n2 and n3,
respectively. We define a GDD(X, Y, Z; λ1, λ2) as

GDD(X, Y, Z; λ1, λ2) = {B : (X, Y, Z;B) is a GDD(v = n1+n2+n3, 3, λ1, λ2)}.

6. When we say that B is a collection of subsets (blocks) of a v-set V , B may
contain repeated blocks. Thus “ ∪ ” in our context will be used for the union
of multisets.

7. Finally, if we have a set X, the cardinality of X is denoted by |X|.

3 Sufficiency

We prove in this section that the necessary conditions given in Theorem 1.1 become
sufficient by constructing a GDD(v = 1 + n + n, 3, λ1, λ2) corresponding to (λ1, λ2)
given in the table. The problem of determining (λ1, λ2) such that a GDD(v = 1+2+
2, 3, λ1, λ2) exists was completely solved in [2]. Thus for GDD(v = 1+n+n, 3, λ1, λ2)
we understand that n ≥ 3. As we will construct GDD(v = 1 + n + n, 3, λ1, λ2), we
will use in this section X, Y, Z for sets of sizes 1, n, n, respectively. The following
observations are useful.

1. GDD(v = 1 + n + n, 3, λ, λ) exists if and only if BIBD(2n + 1, 3, λ) exists.

2. Spec(λ, λ) can be obtained by applying results of Theorem 2.1 and we can
characterize Spec(λ, λ) according to λ (mod 6) as

(a) Since 2n+1 is odd, it follows that n ∈ Spec(λ, λ) for all λ ≡ 0 or 3 (mod 6).

(b) If λ ≡ 1, 2, 4 or 5 (mod 6), then n ∈ Spec(λ, λ) if and only if n ≡
0 or 1 (mod 3).

3. Let 〈X, Y, Z;B〉 be a GDD(v = 1 + n + n, 3, λ1, λ2). Then for each positive
integer i, 〈X, Y, Z; iB〉 is a GDD(v = 1 + n + n, 3, iλ1, iλ2), where iB is the
union of i copies of B. Thus, if n ∈ Spec(λ1, λ2), then n ∈ Spec(iλ1, iλ2).

4. If n ∈ Spec(λ1, λ2) and for each pair of non-negative integers (i, j) with i ≥ j,
then n ∈ Spec(λ1 + 6i, λ2 + 6j).
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5. If a BIBD(n, 3, λ1) exists and a BIBD(2n + 1, 3, λ2) exists, then a GDD(v =
1 + n + n, 3, λ1 + λ2, λ2) exists.

With these observations and Theorem 1.1 we have the following results.

Theorem 3.1 Let λ1 and λ2 be positive integers such that λ1 ≥ λ2 and λ1 ≡
λ2 (mod 6). Then

1. for all n ≥ 3, n ∈ Spec(λ1, λ2) if and only if λ1 ≡ 0 or 3 (mod 6),

2. for all n ≥ 3 and n �≡ 2 (mod 3), n ∈ Spec(λ1, λ2) if and only if λ1 ≡
1, 2, 4 or 5 (mod 6).

Theorem 3.1 confirms that all entries in the main diagonal of the table are suffi-
cient.

Theorem 3.2 Let λ1 and λ2 be positive integers such that λ1 ≥ λ2. If n ≡
1 or 3 (mod 6), then n ∈ Spec(λ1, λ2).

Theorem 3.2 shows that the necessary conditions for n ≡ 1 or 3 (mod 6) appear-
ing in every entry of the table become sufficient.

Let n be a positive integer. Then there exists i ∈ {0, 1, . . . , 5} such that n ≡
i (mod 6). We say that n and (λ1, λ2) are related if i is an entry in (λ1, λ2) position
in the table. Let

F (n ≡ i (mod 6)) = {(λ1, λ2) : n and (λ1, λ2) are related}.

Let n ≡ 0 or 4 (mod 6). We can see in the table that F (n ≡ 0 (mod 6)) = F (n ≡
4 (mod 6)) and they are equal to {(i, i) : i ∈ {0, 1, . . . , 5}}∪{(2, 0), (0, 2), (0, 4), (4, 0),
(1, 3), (3, 1), (1, 5), (5, 1), (2, 4), (4, 2), (3, 5), (5, 3)}. Since n ≡ 0 or 4 (mod 6), it fol-
lows that 2n + 1 ≡ 1 or 3 (mod 6) and hence BIBD(2n + 1, 3, 1) and BIBD(n, 3, 2)
exist. Thus, it is clear that if GDD(v = 1 + n + n, 3, λ1, λ2) exists, then GDD(v =
1 + n + n, 3, λ1 + 1, λ2 + 1) and GDD(v = 1 + n + n, 3, λ1 + 2, λ2) exist. We use

(a, b) ⇒ (a + 1, b + 1)

to denote that if GDD(v = 1 + n + n, 3, a, b) exists, then GDD(v = 1 + n + n, 3, a +
1, b + 1) exists and we use

(a, b)
⇓

(a + 2, b)

to denote that if GDD(v = 1+n+n, 3, a, b) exists, then GDD(v = 1+n+n, 3, a+2, b)
exists. The following diagram shows that if n ≡ 0 or 4 (mod 6), then n ∈ Spec(λ1, λ2)
for all (λ1, λ2) ∈ F(n ≡ 0 (mod 6)).
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(1, 1) ⇒ (2, 2) ⇒ (3, 3) ⇒ (4, 4) ⇒ (5, 5) ⇒ (6, 6)
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

(3, 1) ⇒ (4, 2) ⇒ (5, 3) ⇒ (6, 4) ⇒ (7, 5) ⇒ (8, 6)
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

(5, 1) ⇒ (6, 2) ⇒ (7, 3) ⇒ (8, 4) ⇒ (9, 5) ⇒ (10, 6)
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

(7, 1) ⇒ (8, 2) ⇒ (9, 3) ⇒ (10, 4) ⇒ (11, 5) ⇒ (12, 6)

Let n ≡ 2 (mod 6). Since |X ∪ Y | = |X ∪ Z| ≡ 3 (mod 6), it follows, by
Theorem 2.1, that BIBD(X ∪ Y, 3, 2) and BIBD(X ∪Z, 3, 2) are not empty. We now
choose B1 ∈ BIBD(X ∪ Y, 3, 2) and B2 ∈ BIBD(X ∪ Z, 3, 2). Since Y ∪ Z is a set of
size 12k + 4, it follows, by Theorem 2.1, that there exists B3 ∈ BIBD(Y ∪ Z, 3, 2).
We now let B = B1 ∪ B2 ∪ B3. It can be easily check that (X, Y, Z;B) forms a
GDD(v = 1 + n + n, 3, 4, 2).

Let n be an integer with n ≡ 2 (mod 6). Let X, Y and Z be pairwise disjoint sets
of cardinality 1, n and n, respectively. Since |X∪Y | = |X∪Z| ≡ 3 (mod 6), it follows,
by Theorem 2.1, that BIBD(X ∪ Y, 3, 1) and BIBD(X ∪ Z, 3, 1) are not empty. We
now choose B1 ∈ BIBD(X∪Y, 3, 1) and B2 ∈ BIBD(X∪Z, 3, 1). It was shown in [13]
that GDD(Y, Z; 4, 1) �= ∅, so we choose B3 ∈ GDD(Y, Z; 4, 1). Let B = B1 ∪B2 ∪B3.
It can be easily checked that (X, Y, Z;B) forms a GDD(v = 1 + n + n, 3, 5, 1).

Let n ≡ 2 (mod 6). We can see in the table that F (n ≡ 2 (mod 6)) is equal to
{(0, 0), (5, 1), (4, 2), (3, 3), (2, 4), (1, 5)}. Since n ≡ 2 (mod 6), it follows that 2n+1 ≡
5 (mod 6) and hence BIBD(2n + 1, 3, 3) exist. Thus, it is clear that if GDD(v =
1 + n + n, 3, λ1, λ2) exists, then GDD(v = 1 + n + n, 3, λ1 + 3, λ2 + 3) exist. We use

(a, b) ⇒ (a + 3, b + 3)

to denote that if GDD(v = 1+n+n, 3, a, b) exists, then GDD(v = 1+n+n, 3, a+3, b+
3) exists. The following diagram shows that if n ≡ 2 (mod 6), then n ∈ Spec(λ1, λ2)
for all (λ1, λ2) ∈ F(n ≡ 2 (mod 6)). Note that n ∈ Spec(0, 0) and n ∈ Spec(3, 3) has
been proved in Theorem 3.1.

(4, 2) ⇒ (7, 5) = (1, 5)
(5, 1) ⇒ (8, 4) = (2, 4)

Let n be an integer such that n ≡ 5 (mod 6). We first observe the following
construction. Let n = 5. Put X = {x}, Y = {1, 2, 3, 4, y}, and Z = {a, b, c, d, z},
and Y ′ = Y \ {y} and Z ′ = Z \ {z}. Since |X ∪ Y ′ ∪ Z ′| = 9, it follows that
BIBD(X ∪ Y ′ ∪ Z ′, 3, 1) �= ∅. We choose B1 ∈ BIBD(X ∪ Y ′ ∪ Z ′, 3, 1). Define

B2 = {{1, 2, y}, {2, 3, y}, {3, 4, y}, {4, 1, y}},
B3 = {{a, b, z}, {b, c, z}, {c, d, z}, {d, a, z}},
B4 = {{1, 3, z}, {2, 4, z}}, and

B5 = {{a, c, y}, {b, d, y}}.
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Choose B = B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ {{x, y, z}}. It can be easily checked that
(X, Y, Z;B) forms a GDD(v = 1 + 5 + 5, 3, 2, 1).

Now suppose that n ≡ 5 (mod 6) and n = 6k + 5 ≥ 11. Let X, Y and Z be
pairwise disjoint sets of cardinality 1, n and n, respectively. Choose y ∈ Y and z ∈ Z
and put Y ′ = Y \ {y} and Z ′ = Z \ {z}. Since |Y ′| = |Z ′| = 6k + 4, it follows,
by Theorem 2.4, that there exist a perfect matching M1 and a 2-factor H1 of K(Y ′)
such that K3 | (K(Y ′) \ (M1 ∪ H1)). Similarly, there exist a perfect matching M2

and a 2-factor H2 of K(Z ′) such that K3 | (K(Z ′) \ (M2 ∪ H2)). Let T1 be a set
of triples in K(Y ′) \ (M1 ∪ H1), and T2 be a set of triples in K(Z ′) \ (M2 ∪ H2)
as described in Theorem 2.4. Let B1 = y + H1, B2 = z + M1, B3 = z + H2,
B4 = y + M2. Since X ∪ Y ′ ∪ Z ′ is a (12k + 9)-set, it follows, by Theorem 2.1,
that BIBD(X ∪ Y ′ ∪ Z ′, 3, 1) �= ∅. We choose B5 ∈ BIBD(X ′ ∪ Y ′ ∪ Z, 3, 1). Let
B = B1 ∪B2 ∪B3 ∪B4 ∪B5 ∪T1 ∪T2 ∪{{x, y, z}}. It can be checked that (X, Y, Z;B)
forms a GDD(v = 1 + n + n, 3, 2, 1). Therefore, GDD(v = 1 + n + n, 3, 2, 1) exists
and GDD(v = 1+n+n, 3, 2i, i) exists as well for all positive integers i. In particular,
GDD(v = 1 + n + n, 3, 4, 2) exists

Let n ≡ 5 (mod 6). We can see in the table that F (n ≡ 5 (mod 6)) is equal to
{(0, 0), (3, 0), (2, 1)), (5, 1), (1, 2), (4, 2), (0, 3), (3, 3), (2, 4), (5, 4), (1, 5), (4, 5)}. Since
n ≡ 5 (mod 6), it follows that 2n + 1 ≡ 5 (mod 6) and hence BIBD(2n + 1, 3, 3)
and BIBD(n, 3, 3) exist. Thus, it is clear that if GDD(v = 1 +n+n, 3, λ1, λ2) exists,
then GDD(v = 1 + n + n, 3, λ1 + 3, λ2 + 3) and GDD(v = 1 + n + n, 3, λ1 + 3, λ2)
exist. Note that n ∈ Spec(0, 0) and n ∈ Spec(3, 3) has been proved in Theorem 3.1.
We use

(a, b) ⇒ (a + 3, b + 3)

to denote that if GDD(v = 1 + n + n, 3, a, b) exists, then GDD(v = 1 + n + n, 3, a +
3, b + 3) exists and we use

(a, b)
⇓

(a + 3, b)

to denote that if GDD(v = 1+n+n, 3, a, b) exists, then GDD(v = 1+n+n, 3, a+3, b)
exists. The following diagram shows that if n ≡ 5 (mod 6), then n ∈ Spec(λ1, λ2) for
all (λ1, λ2) ∈ F(n ≡ 5 (mod 6)).

(0, 0) (3, 3)
⇓ ⇓

(3, 0) (0, 3)

(2, 1) ⇒ (5, 4)
⇓ ⇓

(5, 1) (2, 4)
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(4, 2) ⇒ (1, 5)
⇓ ⇓

(1, 2) (4, 5)

Combining the results in this section we have the following main theorem.

Theorem 3.3 Let n be an integer n ≥ 3 and λ1 ≥ λ2. Then GDD(v = 1 + n +
n, 3, λ1, λ2) exists if and only if

λ1n(n − 1) + λ2n(n + 2) ≡ 0 (mod 3) and
λ1(n − 1) + λ2(n + 1) ≡ 0 (mod 2).
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