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Abstract

A graph G on n vertices is Hamiltonian if it contains a spanning cycle,
and pancyclic if it contains cycles of all lengths from 3 to n. In 1984, Fan
presented a degree condition involving every pair of vertices at distance
two for a 2-connected graph to be Hamiltonian. Motivated by Fan’s
result, we say that an induced subgraph H of G is f1-heavy if for every
pair of vertices u, v ∈ V (H), dH(u, v) = 2 implies max{d(u), d(v)} ≥
(n + 1)/2. For a given graph R, G is called R-f1-heavy if every induced
subgraph of G isomorphic to R is f1-heavy. In this paper we show that
for a connected graph S with S �= P3 and a 2-connected claw-f1-heavy
graph G which is not a cycle, G being S-f1-heavy implies G is pancyclic if
S = P4, Z1 or Z2, where claw is K1,3 and Zi is the path a1a2a3 . . . ai+2ai+3

plus the edge a1a3. Our result partially improves a previous theorem due
to Bedrossian on pancyclicity of 2-connected graphs.

1 Introduction

We use Bondy and Murty [5] for terminology and notation not defined here, and we
only consider simple graphs.

Let G be a graph, H a subgraph and v a vertex of G. We use NH(v) to denote
the set, and dH(v) the number, of neighbors of v in H , respectively. We call dH(v)
the degree of v in H . For x, y ∈ V (G), an (x, y)-path is a path P connecting x and
y. If x, y ∈ V (H), the distance between x and y in H , denoted by dH(x, y), is the
length of a shortest (x, y)-path in H . When no confusion occurs, we use N(v), d(v)
and d(x, y) instead of NG(v), dG(v) and dG(x, y), respectively.

Let G be a graph on n vertices. For a given graph R, G is called R-free if G
contains no induced subgraph isomorphic to R, and R-fi-heavy if for every induced
subgraph H of G isomorphic to R and every pair of vertices u, v ∈ V (H), dH(u, v) = 2
implies that max{d(u), d(v)} ≥ (n + i)/2. For a family R of graphs, G is called R-
free (R-fi-heavy) if G is R-free (R-fi-heavy) for each R ∈ R. In particular, similar
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Figure 1: Graphs Pi, C3, Zi, B, N and W

as in [9], we use R-f -heavy (R-f -heavy) instead of R-f0-heavy (R-f0-heavy). Note
that every R-free graph is also R-f1-heavy (R-f -heavy).

The bipartite graph K1,3 is called the claw, its (only) vertex of degree 3 is called
its center and the other vertices are called its end vertices. In this paper, we use
claw-f1-heavy instead of K1,3-f1-heavy.

A graph G on n vertices is said to be Hamiltonian if it contains a Hamilton
cycle, i.e., a cycle containing all vertices of G, and pancyclic if G contains cycles
of all lengths from 3 to n. Bedrossian [1] completely characterized all the pairs of
forbidden subgraphs for a 2-connected graph to be Hamiltonian and to be pancyclic.

Theorem 1 (Bedrossian [1]). Let R and S be connected graphs with R, S �= P3 and
let G be a 2-connected graph. Then G being {R, S}-free implies G is Hamiltonian
if and only if (up to symmetry) R = K1,3 and S = P4, P5, P6, C3, Z1, Z2, B, N or W
(see Figure 1).

Theorem 2 (Bedrossian [1]). Let R and S be connected graphs with R, S �= P3 and
let G be a 2-connected graph which is not a cycle. Then G being {R, S}-free implies
G is pancyclic if and only if (up to symmetry) R = K1,3 and S = P4, P5, Z1 or Z2.

In 1984, Fan [6] presented a degree condition (so-called Fan’s condition) involving
every pair of vertices at distance two for a 2-connected graph to be Hamiltonian.

Theorem 3 (Fan [6]). Let G be a 2-connected graph on n vertices. If max{d(u), d(v)}
≥ n/2 for every pair of vertices u, v such that d(u, v) = 2, then G is Hamiltonian.

Obviously, Fan’s condition is equivalent to every 2-connected P3-f -heavy graph
is Hamiltonian. By restricting Fan’s condition to some induced subgraphs of 2-
connected graphs, Ning and Zhang [9] extended Theorem 1 as follows.
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K2r

Figure 2: The Graph F4r

Theorem 4 (Ning and Zhang [9]). Let R and S be connected graphs with R, S �= P3

and let G be a 2-connected graph. Then G being {R, S}-f -heavy implies G is Hamil-
tonian if and only if (up to symmetry) R = K1,3 and S = P4, P5, P6, Z1, Z2, B, N
or W .

Our aim in this paper is to consider the corresponding Fan-type heavy subgraph
conditions for a 2-connected graph to be pancyclic. First, we notice that every
2-connected P3-f1-heavy graph is pancyclic. This can be easily deduced from the
following result.

Theorem 5 (Benhocine and Wojda [3]). Let G be a 2-connected graph on n ≥ 3
vertices. If G is P3-f -heavy, then G is pancyclic unless n = 4r, r > 2, and G = F4r

(see Figure 2), or n is even and G = Kn/2,n/2 or else n ≥ 6 is even and G =
Kn/2,n/2 − e.

It is not difficult to see that P3 is the only connected graph S such that every
2-connected S-f1-heavy graph is pancyclic. For details, see [7, Theorem 13]. Further-
more, since every P3-free graph is also P3-f1-heavy, P3 is the only connected graph S
such that every 2-connected S-f1-heavy graph is pancyclic. So we have the following
problem.

Problem 1. Which two connected graphs R and S other than P3 imply that every
2-connected {R, S}-f1-heavy graph is pancyclic?

By Theorem 2, we know that R = K1,3 (up to symmetry) and S must be one of
Z1, Z2, P4 and P5.

In this paper, we mainly prove the following result.

Theorem 6. Let G be a 2-connected graph which is not a cycle. If G is {K1,3, Z2}-
f1-heavy, then G is pancyclic.

As a corollary of Theorem 6, we have
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Theorem 7. Let G be a 2-connected graph which is not a cycle. If G is {K1,3, P4}-
f1-heavy, then G is pancyclic.

In [2], Bedrossian et al. proved a theorem as follows.

Theorem 8 (Bedrossian, Chen and Schelp [2]). Let G be a 2-connected graph on
n vertices. If G is {K1,3, Z1}-f -heavy, then G is pancyclic unless G = F4r or G =
Kn/2,n/2 or G = Kn/2,n/2 − e or else G is a cycle.

By Theorem 8, we have

Theorem 9. Let G be a 2-connected graph which is not a cycle. If G is {K1,3, Z1}-
f1-heavy, then G is pancyclic.

Combining with Theorems 6, 7 and 9, we obtain Theorem 10, which partially
answers Problem 1.

Theorem 10. Let S be a connected graph with S �= P3 and let G be a 2-connected
claw-f1-heavy graph which is not a cycle. Then G being S-f1-heavy implies G is
pancyclic if S = P4, Z1 or Z2.

The rest of this paper is organized as follows. In Section 2, we will give additional
terminology and list some useful lemmas. The proof of Theorem 6 will be postponed
to Section 3.

2 Preliminaries

In this section, we first introduce some additional terminology and notation and then
present four lemmas which will be used in our proof of Theorem 6.

Let G be a graph and S be a subset of of V (G). We use G[S] to denote the
subgraph of G induced by S and G − S to denote G[V (G) \ S]. In particular, if
S = {u}, then we use G − u instead of G − {u}. If S = {xi : 1 ≤ i ≤ 5} and G[S] is
isomorphic to Z2, then we say that {x1, x2, x3; x4, x5} induces a Z2, where x1x2x3x1

is a triangle and x1 is the vertex of degree 3 in G[S]. If S = {xi : 1 ≤ i ≤ 4} and
G[S] is isomorphic to K1,3, then we say that {x1; x2, x3, x4} induces a claw, where x1

is the center, and x2, x3, x4 are the end vertices.
Let k, l (k < l) be two integers. We say that G contains a k-cycle if G contains a

cycle of length k, and G contains [k, l]-cycles if G contains cycles of all lengths from
k to l. In particular, for a vertex u ∈ V (G), we say that G contains a u-triangle if
G contains the cycle uxyu, where x, y ∈ V (G).

A vertex v of a graph G on n vertices is called heavy if d(v) ≥ n/2, and super-
heavy if d(v) ≥ (n + 1)/2. For two vertices u, v of G, {u, v} is called a heavy-pair if
d(u) + d(v) ≥ n and a super-heavy pair if d(u) + d(v) ≥ n + 1.

Lemma 1 (Benhocine and Wojda [3]). Let G be a graph on n ≥ 4 vertices and C be
a cycle of length n − 1 in G. If d(x) ≥ n/2 for the vertex x ∈ V (G)\V (C), then G
is pancyclic.
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Lemma 2 (Bondy [4]). Let G be a graph on n vertices with a Hamilton cycle C. If
there exist two vertices x, y ∈ V (G) such that dC(x, y) = 1 and d(x) + d(y) ≥ n + 1,
then G is pancyclic.

Lemma 3 (Hakimi and Schmeichel [10]). Let G be a graph on n vertices with a
Hamilton cycle C. If there exist two vertices x, y ∈ V (G) such that dC(x, y) = 1 and
d(x) + d(y) ≥ n, then G is pancyclic unless G is bipartite or else G is missing only
an (n − 1)-cycle.

Lemma 4 (Ferrara, Jacobson and Harris [8]). Let G be a graph on n vertices with a
Hamilton cycle C. If there exist two vertices x, y ∈ V (G) such that dC(x, y) = 2 and
d(x) + d(y) ≥ n + 1, then G is pancyclic.

3 Proof of Theorem 6

We prove Theorem 6 by contradiction. Suppose that G satisfies the condition of
Theorem 6 but is not pancyclic. Since the result is easy to verify for 3 ≤ n ≤ 5, we
assume that n ≥ 6.

If G is {K1,3, Z2}-free, then by Theorem 2, G is pancyclic. Thus we assume that G
contains an induced claw or an induced Z2. Therefore, there is a super-heavy vertex,
say u ∈ V (G). Set G′ = G − u. Since G is {K1,3, Z2}-f1-heavy, G′ is {K1,3, Z2}-
f -heavy. If G′ is 2-connected, then by Theorem 4, G′ is Hamiltonian. Hence G is
pancyclic by Lemma 1. Now, it will be assumed that G′ is not 2-connected. Then
there exists a vertex v ∈ V (G) (v �= u) such that G − {u, v} is not connected. By
Theorem 4, G is Hamiltonian. Hence G−{u, v} consists of two components H1 and
H2. Without loss of generality, we assume that |V (H1)| ≤ |V (H2)|, where V (H1) =
{x1, x2, . . . , xh1} and V (H2) = {y1, y2, . . . , yh2}. Let C = uy1 · · · yh2vxh1 · · ·x1u be
a Hamilton cycle with the given orientation. In the following, for any two vertices
w1, w2 ∈ V (C), we use C[w1, w2] to denote the segment of C from w1 to w2 along
the orientation. Set G1 = G[V (H1) ∪ {u}] and G2 = G[V (H2) ∪ {u}].
Claim 1. There are no super-heavy vertices in H1.

Proof. For any vertex x ∈ V (H1), x is adjacent to at most u, v and all the vertices
in H1 except for itself. Therefore, d(x) ≤ dH1(x) + 2 ≤ h1 − 1 + 2 ≤ n/2. Hence H1

contains no super-heavy vertices.

Claim 2. NG2(u)\{y1} ⊆ N(y1).

Proof. If there exists a vertex yi ∈ NG2(u)\{y1} such that yiy1 /∈ E(G), then
{u; x1, y1, yi} induces a claw. By Claim 1, x1 is not super-heavy. Since G is claw-f1-
heavy, y1 is super-heavy. Hence {u, y1} is a super-heavy pair such that dC(u, y1) = 1.
By Lemma 2, G is pancyclic.

Claim 3. There are no super-heavy pairs with distance one or two along the orien-
tation of a Hamilton cycle in G.

Proof. Suppose not. By Lemma 2 or 4, G is pancyclic.
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Case 1. h1 = 1.

Subcase 1.1. uv ∈ E(G).

Note that G cannot be bipartite or missing an (n − 1) cycle. So if Lemma 3
applies to G then G is pancyclic. If u is adjacent to every vertex in C, then G
is pancyclic. Now we can choose a vertex yi ∈ NG2(u) such that uyi+1 /∈ E(G).
Let yj be the first vertex on C[yi, yh2] such that uyj+1 ∈ E(G), where assume that
yh2+1 = v. Obviously, j ≥ i + 1.

Claim 4. i ≥ 2.

Proof. Assume there exists y ∈ V (H2) such that y1y ∈ E(G) and uy /∈ E(G).
By Claim 2, we have NG2(u)\{y1} ⊂ N(y1). Since d(u) ≥ (n + 1)/2 and u, y ∈
N(y1)\N(u), d(y1) ≥ d(u) − 3 + 2 ≥ (n − 1)/2. Therefore, {u, y1} is a heavy-pair
such that dC(u, y1) = 1. By Lemma 3, G is pancyclic. Also, since y1y2 ∈ E(G), then
uy2 ∈ E(G) and i ≥ 2.

Next we assume that i ≤ h2 − 2. Note that yi, yi+1, yi+2 ∈ C[y2, yh2].

Claim 5. j ≥ i + 2.

Proof. Assume that j = i + 1. First, we have uyi, uyi+2 ∈ E(G) and uyi+1 /∈ E(G).
If yiyi+2 /∈ E(G), then {u; x1, yi, yi+2} induces a claw. Since d(x1) = 2 < (n+1)/2

and G is claw-f1-heavy, {yi, yi+2} is a super-heavy pair such that dC(yi, yi+2) = 2,
which contradicts to Claim 3.

Now assume that yiyi+2 ∈ E(G). If y1yi+1 ∈ E(G), then it follows d(y1) ≥
(n − 1)/2 from Claim 2. Hence {u, y1} is a heavy pair with dC(u, y1) = 1, and
G is pancyclic by Lemma 3. Therefore, y1yi+1 /∈ E(G). We set G′ = G − yi.
Clearly, C ′ = C[yi+2, yi]yiyi+2 is a Hamilton cycle in G′. Moreover, u, y1 satisfy that
dG′(u) + dG′(y1) = d(u) + d(y1) ≥ (n + 1)/2 + (n − 3)/2 = n − 1 and dC′(u, y1) = 1.
By Lemma 3, G′ is pancyclic. Together with the cycle C, G is pancyclic.

By Claim 5, we obtain uyi+2 /∈ E(G).

Claim 6. vyi+1 ∈ E(G).

Proof. Assume that vyi+1 /∈ E(G).

Claim 6.1. vyi+2 /∈ E(G).

Proof. Assume that vyi+2 ∈ E(G). Then {v, x1, u; yi+2, yi+1} induces a Z2. If v
is a super-heavy vertex, then {u, v} is a super-heavy pair such that dC(u, v) = 2,
contradicting Claim 3. Now assume that v is not super-heavy. Note that x1 is not
super-heavy. Since G is Z2-f1-heavy, {yi+1, yi+2} is a super-heavy pair such that
dC(yi, yi+1) = 1, contradicting Claim 3.

Claim 6.2. vyi /∈ E(G).
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Proof. Assume that vyi ∈ E(G). By Claim 6.1, we have vyi+2 /∈ E(G). Note that
vyi+1 /∈ E(G) by the initial hypothesis. If yiyi+2 /∈ E(G), then {yi, u, v; yi+1, yi+2}
induces a Z2. Since v is not super-heavy, yi+1 is super-heavy. Hence either {yi+1, yi+2}
or {yi+1, yi} is a super-heavy pair, a contradiction by Claim 3. If yiyi+2 ∈ E(G), then
{yi, yi+1, yi+2; v, x1} induces a Z2. Since v is not super-heavy, {yi+1, yi+2} is a super-
heavy pair such that dC(yi, yi+1) = 1, a contradiction by Claim 3.

Claim 6.3. yi is super-heavy.

Proof. By Claims 6.2 and the initial hypothesis, we have vyi /∈ E(G) and vyi+1 /∈
E(G). Since {u, v, x1; yi, yi+1} induces a Z2 and x1 is not super-heavy, yi is super-
heavy.

By Claim 4, we have i ≥ 2, and this implies yi−1 is well-defined.

Claim 6.4. yi−1yi+1 /∈ E(G), uyi−1 ∈ E(G), yiyi+2 /∈ E(G) and yi−1yi+2 /∈ E(G).

Proof. By Claim 6.3, yi is super-heavy. If yi−1yi+1 ∈ E(G), then G is pancyclic by
Lemma 1.

If uyi−1 /∈ E(G), then {yi; yi−1, yi+1, u} induces a claw. Hence either yi−1 or yi+1

is super-heavy. Therefore, either {yi−1, yi} or {yi, yi+1} is a super-heavy pair such
that dC(yi−1, yi) = dC(yi, yi+1) = 1, a contradiction by Claim 3.

By Claim 2 and Lemma 3, y1yi+1 /∈ E(G). If yiyi+2 ∈ E(G), then set G′ =
G− yi+1. Now C ′ = vx1uy1 . . . yiyi+2 . . . yh2v is a Hamilton cycle in G′, and dG′(u) +
dG′(y1) ≥ n− 1 = |G′| by Claim 2. By Lemma 3, G′ is either pancyclic, bipartite, or
missing only an (n− 2)-cycle. Since C ′ = vx1uy1 · · · yiyi+2 · · · yh2v is an (n− 1)-cycle
and C ′′ = vuy1 · · · yiyi+2 · · · yh2v is an (n− 2)-cycle in G′, G′ is pancyclic. Therefore,
G is pancyclic.

If yi−1yi+2 ∈ E(G), then set G′ = G− yi+1. Now C ′ = uy1 . . . yi−1yi+2 . . . yh2vx1u
is a Hamilton cycle in G′′ = G′ − yi and dG′(yi) ≥ (n − 1)/2 = |G′|/2. By Lemma 1,
G′ is pancyclic. Together with the cycle C, G is pancyclic.

By Claim 6.4, {yi, u, yi−1; yi+1, yi+2} induces a Z2. Since G is Z2-f1-heavy, either
yi−1 or yi+1 is super-heavy. Then either {yi−1, yi} or {yi+1, yi} is a super-heavy pair
such that dC(yi−1, yi) = dC(yi+1, yi) = 1. By Claim 3, a contradiction.

Claim 7. For any k ∈ {i + 1, · · · , j}, vyk ∈ E(G).

Proof. By Claim 6, we have vyi+1 ∈ E(G). Now we show that vyk ∈ E(G) for
any k ∈ {i + 2, · · · , j}. Otherwise, assume that yt is the first vertex on C[yi+2, yj]
such that vyt /∈ E(G). Note that for any k ∈ {i + 1, · · · , j}, uyk /∈ E(G). We
have uyt−1, uyt /∈ E(G). Then {v, x1, u; yt−1, yt} induces a Z2. Since x1, v are not
super-heavy, {yt−1, yt} is a super-heavy pair such that dC(yt−1, yt) = 1. By Claim 3,
a contradiction, hence vyk ∈ E(G).

Note that since j ≥ i+2 and i could be selected to be ≤ h2 − 2, then if (j +1) ≤
h2 − 2, let i = j + 1 and repeat the previous arguments to conclude that for any
vertex y ∈ {y2, y3, · · · , yh2−2} such that uy /∈ E(G), we have vy ∈ E(G). Hence
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dC[y1,yh2−2](u) + dC[y1,yh2−2](v) ≥ h2 − 2. If uyh2−1 ∈ E(G) or vyh2−1 ∈ E(G) or
uyh2 ∈ E(G), then dG2(u)+dG2(v) ≥ h2 = n−3. This implies that d(u)+d(v) ≥ n+1.
By Claim 3, a contradiction. Otherwise, assume that uyh2−1, uyh2 /∈ E(G) and
vyh2−1 /∈ E(G). Then {v, x1, u; yh2, yh2−1} induces a Z2. It follows that {yh2, yh2−1}
is a super-heavy pair such that dC(yh2−1, yh2) = 1, contradicting Claim 3.

Subcase 1.2. uv /∈ E(G).

By Claim 2, NG2(u)\{y1} ⊆ N(y1). If uy2 /∈ E(G), then since u is super-heavy
and u, y2 ∈ N(y1)\N(u), y1 is super-heavy. Hence {u, y1} is a super-heavy pair
such that dC(u, y1) = 1, a contradiction by Claim 3. If uy2 ∈ E(G), then we have
d(y1) ≥ (n − 1)/2 and {u, y1} is a heavy-pair such that dC(u, y1) = 1. By Lemma 3,
G is either pancyclic, bipartite, or missing only an (n−1)-cycle. The cycle uy1y2u (a
triangle) is odd, so G is not bipartite. Since C ′ = ux1vyh2, . . . , y2u is an (n−1)-cycle,
G is pancyclic.

Case 2. h1 ≥ 2.

Subcase 2.1. G1 contains a u-triangle.

Without loss of generality, we denote a u-triangle in G1 by uxkxk′u where k < k′.

Subsubcase 2.1.1. u is not adjacent to every vertex of H2.

Let yi ∈ V (H2) be the vertex such that uyi /∈ E(G) and i is as small as possible.
Note that {u, xk, xk′; yi−1, yi} induces a Z2. By Claim 1, yi−1 is super heavy. So if
i = 2 then {u, y1} is a super-heavy pair such that dC(u, y1) = 1, a contradiction by
Claim 3. Therefore i ≥ 3 and uy2 ∈ E(G).

If there exists t ∈ {1, 2, . . . , h1 − 1} such that uxt ∈ E(G) and uxt+1 /∈ E(G),
then {u, y1, y2; xt, xt+1} induces a Z2. Note that xt is not super-heavy. Since G
is Z2-f1-heavy, y1 is super-heavy. Hence {u, y1} is a super-heavy pair such that
dC(u, y1) = 1, contradicting Claim 3. Therefore, u is adjacent to every vertex of H1.
Note that C ′ = ux1 · · ·xiu is an (i + 1)-cycle, where 2 ≤ i ≤ h1, and G contains
[3, h1 + 1]-cycles. If i = h2, then u is adjacent to every vertex of H2 other than yh2.
It follows G contains [h1 + 4, n]-cycles. Furthermore, C ′ = ux2 · · ·xh1vyh2yh2−1u is
an (h1 +3)-cycle. If h1 ≥ 3, then C ′ = ux3 · · ·xh1vyh2yh2−1u is an (h1 +2)-cycle, and
G is pancyclic. If h1 = 2 and h2 ≥ 4, then we can easily find a 4-cycle in G, and G is
pancyclic. If h1 = 2 and h2 = 2 or 3, then n = 6 or 7. In these two cases, the result
is easy to verify.

Now we suppose that 3 ≤ i ≤ h2 − 1 and try to get a contradiction. If there
exists yk ∈ NG2(u) such that ykyi−2 /∈ E(G) and yk �= yi−2, then {u; x1, yk, yi−2}
induces a claw. Since G is claw-f1-heavy and x1 is not super-heavy, yi−2 is super-
heavy. Therefore, {yi−2, yi−1} is a super-heavy pair such that dC(yi−2, yi−1) = 1, a
contradiction by Claim 3. So, NG2(u)\{yi−2} ⊆ N(yi−2).

If uv ∈ E(G), then we set G′ = G − V (H1). Since N(u) ∪ {u}\(V (H1) ∪
{v, yi−2}) ⊆ N(yi−2), we have d(yi−2) ≥ d(u) + 1 − h1 − 2 ≥ (n + 1)/2 − h1 − 1.
Furthermore, we obtain dG′(yi−2) + dG′(yi−1) = d(yi−2) + d(yi−1) ≥ n − h1 = |G′|.
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Let C ′ = uvyh2 · · · y1u. Then C ′ is a Hamilton cycle in G′ and dC′(yi−2, yi−1) = 1.
By Lemma 3, G′ is either pancyclic, bipartite, or missing only a (|G′|−1)-cycle. But
G′ contains the triangle uy1y2u, hence it is not bipartite. Note that G contains the
cycle C ′′ = uvyh2 · · · y2u of length |G′| − 1. Hence G′ is pancyclic, and this implies
that G contains [3, |G′|]-cycles. Since u is adjacent to every vertex of H1, G contains
[|G′| + 1, n]-cycles. Hence G is pancyclic.

If uv /∈ E(G), then we set G′ = G − (V (H1)\{xh1}). Now we have d(yi−2) ≥
d(u)− h1 − 1 + 1 ≥ (n + 1)/2− h1. And we obtain dG′(yi−2) + dG′(yi−1) ≥ d(yi−2) +
d(yi−1) ≥ n + 1 − h1 = |G′|. Similarly, we can prove that G is pancyclic.

Subsubcase 2.1.2. u is adjacent to every vertex of H2.

Note that uy1y2u is a u-triangle. If there exists a vertex xt ∈ V (H1) such that
uxt ∈ E(G) and uxt+1 /∈ E(G), then {u, y1, y2; xt, xt+1} induces a Z2. This implies
that y1 is super-heavy. Hence {u, y1} is a super-heavy pair such that dC(u, y1) = 1,
a contradiction by Claim 3. If u is adjacent to every vertex in H1, then u is adjacent
to all vertices of V (G)\{u, v}. This implies that d(u) ≥ n− 2, and d(u) + d(y1) ≥ n.
By Lemma 3, G is either pancyclic, bipartite, or missing only an (n−1)-cycle. Since
u is adjacent to every vertex in H2, G is neither bipartite nor missing (n− 1)-cycles.
It follows that G is pancyclic.

Subcase 2.2. G1 contains no u-triangles.

We first show that NG1(u) = {x1}. Suppose not. If there is a vertex x ∈ NG1(u)
such that x �= x1, then since G1 contains no u-triangles, we have xx1 /∈ E(G). Now
{u; x, x1, y1} induces a claw. It follows that either x or x1 is super-heavy, which
contradicts to Claim 1.

If there exist two consecutive vertices, say yi, yi+1 ∈ V (H2), such that uyi, uyi+1 ∈
E(G), then {u, yi, yi+1; x1, x2} induce a Z2. Hence {yi, yi+1} is a super-heavy pair
such that dC(yi, yi+1) = 1, a contradiction by Claim 3.

Therefore for any yi ∈ V (H2)\{yh2}, |{uyi, uyi+1}∩E(G)| ≤ 1. This implies that
u is adjacent to only one vertex x1 in H1 and at most (h1 + 1)/2 vertices in H2 and
maybe adjacent to v or not. Hence we have (n + 1)/2 ≤ d(u) ≤ 1 + 1 + (h2 + 1)/2.
This implies that h2 ≥ n − 4. Noting that h2 = n − 2 − h1 ≤ n − 2 − 2 = n − 4, we
have h2 = n − 4, h1 = 2, uv ∈ E(G) and NG2(u) = {y2k+1 : k = 0, 1, . . . , (n − 5)/2},
where n is odd.

If y1y3 /∈ E(G), then {u; x1, y1, y3} induces a claw. Since G is claw-f1-heavy,
{y1, y3} is a super-heavy pair such that dC(y1, y3) = 2. By Claim 3, a contradiction.

If y1y3 ∈ E(G), then {u, y1, y3; x1, x2} induces a Z2. Since G is Z2-f1-heavy,
{y1, y3} is a super-heavy pair such that dC(y1, y3) = 2. By Claim 3, also a contra-
diction.

The proof is complete. �
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