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Abstract

In this paper we investigate properties of rank correlation coefficients
that can be derived from right-invariant generalized metrics on the sym-
metric group. We prove some new inequalities between a number of
generalized metrics, and we characterize the sample sizes for which sev-
eral (right-invariant) rank correlation coefficients can equal zero. Using
the Hausdorff generalized metric, we show how to construct circular rank
correlation coefficients from regular rank correlation coefficients. In ad-
dition, we show how generalized triangle inequalities satisfied by gener-
alized metrics on the symmetric group can be used to create new partial
rank correlation coefficients (that measure the association between two
variables controlling for the effect of a third one).

1 Introduction

Correlation coefficients range from −1 to 1 and they give a numerical summary of the
relationship between two numerical variables. In this paper we concentrate on rank
correlation coefficients that are derived from right-invariant metrics, pseudo-metrics,

∗ Certain parts of this paper were completed while the first author was taking part at the Clark
Scholar Program at Texas Tech University (in Lubbock, Texas, USA) in Summer 2010, while the
second author served as the faculty mentor.
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or semi-metrics on the symmetric group, which we collectively call “generalized met-
rics”, and whose general theory was developed by Diaconis and Graham [8] in 1977.
While reviewing and expanding on this theory, we define new right-invariant gener-
alized metrics and their corresponding rank correlation coefficients and prove new
inequalities between a number of such generalized metrics.

Of particular interest in this paper is Daniels’ [5] rank correlation coefficient that
can be used to measure the relationship between two angular variables (and in gen-
eral between two circular variables). We indicate that this circular rank correlation
coefficient (introduced in 1950) was re-invented several decades later by different
authors doing independent work in different countries! Inspired by this coefficient
and the work of Critchlow [4] on the analysis of partially ranked data, we give a
general theory for the creation of right-invariant circular generalized metrics (and
their corresponding circular rank correlation coefficients) from any right-invariant
generalized metric.

Finally, inspired by the triangle inequality satisfied by metrics on the symmetric
group, we give probably the first ever interpretation of the corresponding inequality
of the induced rank correlation coefficients: we show how a partial rank correlation
coefficient between two variables controlling for the effect of a third variable can be
created based on this inequality. (Most of our discussion on this topic is limited to
right-invariant metrics and their corresponding rank correlation coefficients that are
symmetric with respect to complements.)

We start our paper with a motivation and a review of the theory of right-invariant
generalized metrics on the symmetric group.

Given two numerical variables x and y (such as height and weight), one can take
measurements on n individuals or objects:

(x1, y1), (x2, y2), . . . , (xn, yn). (1)

One can measure the linear relationship between the x and y variables using the
Pearson product moment correlation coefficient

rn(x, y) =

∑n
i=1(xi − av(x))(yi − av(y))√∑n

i=1(xi − av(x))2
√∑n

i=1(yi − av(y))2
, (2)

where av(x) and av(y) are the sample means of the observed values of the x and
y variables, respectively. The correlation coefficient r always satisfies the inequal-
ity −1 ≤ r ≤ 1. If r = 1, there is a perfect positive linear relationship between
the observed values of x and y, while if r = −1, there is a perfect negative linear
relationship between the observed values of x and y.

In case the data (1) are not on an interval scale, some scientists prefer to replace
the data by the corresponding ranks:

(a1, b1), (a2, b2), . . . , (an, bn).

Here a = (a1, a2, . . . , an) is a permutation of the numbers 1, 2, . . . , n, and ai is the
rank of xi: the smallest x value gets rank 1, the second smallest x value gets rank 2,
and so on. Also b = (b1, b2, . . . , bn) are the ranks for (y1, y2, . . . , yn).
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If some of the x values have ties, then some ranks must be averaged. In this
paper, we are assuming there are no ties among the x values and no ties among the
y values1.

The Pearson moment product correlation coefficient between the ranks of x and
the ranks of y is called the Spearman rank correlation coefficient:

rS,n(a, b) =

∑n
i=1(ai − av(a))(bi − av(b))√∑n

i=1(ai − av(a))2
√∑n

i=1(bi − av(b))2
. (3)

One can show that (for n > 1)

rS,n(a, b) = 1 − 6
∑n

i=1(ai − bi)
2

n(n − 1)(n + 1)
. (4)

The numerator of the fraction of the expression above,

SQ1,n(a, b) :=

n∑
i=1

(ai − bi)
2, (5)

is a measure2 of “distance” between the permutations a and b. It can be shown that

0 ≤ SQ1,n(a, b) ≤ n(n − 1)(n + 1)

3
.

The first inequality holds as equality if and only if a = b, while the second inequality
holds as equality if and only if

a = (n, n − 1, . . . , 2, 1) ◦ b,

where ◦ denotes the composition of permutations f and g.
The set of all permutations, Sn, of the numbers 1, 2, . . . , n, endowed with the com-

position ◦ of permutations, has the structure of a group and is called the symmetric
group on n elements with identity element en := (1, 2, . . . , n). Instead of using SQ1,n

to measure the distance between a and b, one can use other “distance” functions,
which we call “generalized metrics” on Sn in this paper.

A generalized metric sequence3 is a list4 (dn |n ∈ N
∗) of functions dn : Sn ×Sn →

[0,∞) that satisfy the following properties:

1. For all n ∈ N
∗ and a, b ∈ Sn we have dn(a, b) ≥ 0.

1Unfortunately, the methods for tied ranks work well only for the Spearman pseudo-metric
SQ1,n (that appears in the formula for the Spearman rank correlation coefficient) and for few other
generalized metrics–see later for a precise definition. For an arbitrary generalized metric sequence
(dn|n ∈ N

∗), one has to use the general approach in Chapter IV of Critchlow [4].
2The subscript “1” in SQ1,n (and later in the section, in D1,n) can be understood by reading

the beginning of Section 4 in this paper, where two new pseudo-metrics, SQ2,n and D2,n, are
introduced.

3The phrase “generalized metric” has a different meaning in Section 3.4 (p. 75) in [6].
4We let N := {0, 1, 2, . . .} be the set of non-negative integers and N

∗ be the set of positive
integers.
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2. For all n ∈ N
∗ and a, b ∈ Sn we have dn(a, b) = dn(b, a).

3. There is C > 0 such that for all n ∈ N
∗ and a, b, c ∈ Sn we have

dn(a, b) ≤ C[dn(a, c) + dn(c, b)].

A pseudo-metric sequence5 is a generalized metric sequence (dn |n ∈ N
∗) that

satisfies the following property:

4. For all n ∈ N
∗ and a, b ∈ Sn,

dn(a, b) = 0 ⇔ a = b.

Pseudo-metric sequences were introduced by Estivill-Castro [12, 13].
A semi-metric sequence is a generalized metric sequence (dn |n ∈ N

∗) that satisfies
Property 3 above with C = 1, i.e., it is one that satisfies the triangle inequality. Some
of the semi-metrics we will examine in this paper are appropriate for measuring the
“distance” between the “ranks” of observations on two angular variables.

A metric sequence is a generalized metric sequence (dn |n ∈ N
∗) that is both

a pseudo-metric and a semi-metric sequence, i.e., it satisfies Properties 1–4 with 3
satisfied for C = 1.

A generalized metric sequence (dn |n ∈ N
∗) is called right-invariant if it satisfies

the property below:

5. For all n ∈ N
∗ and a, b, c ∈ Sn we have dn(a ◦ c, b ◦ c) = dn(a, b).

The last property is called right invariance and it implies

dn(a, b) = dn(a ◦ b−1, en) = d(en, b ◦ a−1)

and dn(en, a) = dn(en, a−1) for all a, b ∈ Sn. Here a−1 and b−1 are the inverses of
a and b, respectively, in the symmetric group Sn (endowed with the operation of
composition). For abbreviation, we use dn(a) for dn(en, a). One can think of dn(a)
as a measure of disarray in the permutation a. Not all plausible measures of disarray
in Sn, however, correspond to metrics (for more details, see Estivill-Castro [12, 13]
and Estivill-Castro et al. [14]). Right-invariant metrics were introduced by Diaconis
and Graham [8]. The reader may also consult [6, Chapter 11].

If right invariance is known to hold for a function dn : Sn × Sn → [0,∞) (that
satisfies Properties 1 and 2), to prove Property 3, it is enough to prove that there is
C > 0 such that for all n ∈ N

∗ and x, y ∈ Sn we have

dn(x ◦ y) ≤ C[dn(x) + dn(y)].

The generalized metric sequence (SQ1,n |n ∈ N
∗), where SQ1,n is defined by

Equation (5), is an example of a right-invariant pseudo-metric because it satis-
fies Property 3 with C = 2. On the other hand, the generalized metric sequence

5Sometimes the term quasi-metric is used in place of pseudo-metric.
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(
√

SQ1,n |n ∈ N
∗) is an example of a right-invariant metric sequence because it

satisfies Property 3 with C = 1.
According to Diaconis and Graham [8] and Estivill-Castro [12, 13], other examples

of right-invariant metrics on Sn are

(i) D1,n(a, b) =
∑n

i=1 |ai − bi|;
(ii) EXn(a, b) = the minimum number of transpositions (exchanges) required to

bring the list (a1, . . . , an) into the list (b1, . . . , bn);

(iii) In(a, b) = the minimum number of pairwise adjacent transpositions required
to bring ((a−1)1, . . . , (a

−1)n) into the order ((b−1)1, . . . , (b
−1)n);

(iv) Hn(a, b) = number of i ∈ {1, 2, . . . , n} such that ai 
= bi.

By a result due to Cayley [3], EXn(a) = EXn(a, en) is equal to n minus the number
of cycles in a. By a “pairwise adjacent transposition” we mean a transposition of
the form (ai, ai+1). Note that In(a) = In(a, en) is the number of inversions in the
permutation a. An inversion in a is a pair of integers (i, j) with 1 ≤ i < j ≤ n
and ai > aj . The quantity Hn(a, b) is known as the Hamming distance between
permutations a and b and it was introduced by Hamming [25, pp. 154-155] in 1950.
Many of the measures of disorder induced by the above generalized metrics (through
dn(a) := dn(a, en) for a ∈ Sn) have been used by Hadjicostas and Lakshmanan
[21, 22, 23] for the analysis of sorting algorithms with erroneous comparisons.

If (dn|n ∈ N
∗) is a generalized metric sequence of functions dn : Sn ×Sn → [0,∞)

that are not necessarily right-invariant on the symmetric group, then one can create
a corresponding right-invariant generalized metric sequence (dri

n |n ∈ N
∗) as follows:

dri
n (a, b) = M

∑
c∈Sn

dn(a ◦ c, b ◦ c) (a, b ∈ Sn), (6)

where M is an arbitrary positive constant, e.g., M = 1/n!. It can be easily proven
that if (dn|n ∈ N

∗) is a generalized metric sequence, then so is (dri
n |n ∈ N

∗) with the
same constant C in Property 3. In addition, if (dn|n ∈ N

∗) is a pseudo-metric (resp.,
semi-metric, metric) then (dri

n |n ∈ N
∗) is also a pseudo-metric (resp., semi-metric,

metric).
Finally, we mention that there are useful generalized metric sequences (dn|n ∈ N

∗)
that are neither right-invariant nor left-invariant (see (38)), such as those considered
by Block et al. [2]. Those generalized metrics are invariant under inverse trans-
formations, i.e., they satisfy dn(a, b) = dn(a−1, b−1) for all n ∈ N

∗ and a, b ∈ Sn.
Such generalized metrics are useful for “dependence orderings on bivariate empirical
distributions,” but will not be examined in this paper.

The organization of the paper is as follows. In Section 2, as suggested by Diaconis
and Graham [8], we use right-invariant metrics (or pseudo-metrics or semi-metrics)
to define rank correlation coefficients between two permutations in the symmetric
group. Part of the section is devoted to the discussion and history of Daniels’ rank
correlation coefficient introduced by him in 1950, re-discovered independently by
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Guilbaud [20] in 1980, and re-discovered again by Fisher and Lee [16] in 1982 (even
though the two authors were not acquainted with his work). Daniels and Guilbaud’s
identity relating their rank correlation coefficient to the Spearman’s and Kendall’s
correlations–see (10)–was rediscovered independently by Shieh [36], who although ac-
quainted with the work of Fisher and Lee [16], was unaware of the work of Daniels [5]
and Guilbaud [20] (and the more general work of Monjardet [32, Section 6] on that
subject6). To the best of our knowledge, this is the first time anyone has pointed
that all of these works are connected together. Daniels’ coefficient serves as the in-
spiration of a number of original results and useful methodology proposals in this
paper (e.g., see the descriptions of Sections 3, 6, 7 and 8 below).

In Section 3, we formulate a precise theorem of when two angular variables have
Daniels-Gilbaud7 rank correlation coefficient equal to one. (This theorem can be
easily modified to deal with the case when the coefficient equals minus one.) This
simple, but clear result gives a useful interpetation of this coefficient that does not
depend on the probabilistic framework of Fisher and Lee [16]. In Section 4 we
introduce two new right-invariant pseudo-metrics, D2,n and SQ2,n: the first one
is a variation of Spearman’s footrule metric D1,n and the other is a variation of
Spearman’s pseudo-metric SQ1,n. (We do prove, however, that SQ2,n is a multiple
of SQ1,n, see (17).) We then proceed to prove that the first pseudo-metric is greater
than or equal to the Spearman pseudo-metric SQ1,n and less than or equal to n− 1
times the Spearman footrule metric D1,n (thus refining an inequality that appears in
Diaconis and Graham [8]).

In Section 5, we review the results of Marshal [30] about the sample sizes for
which Spearman’s correlation can be zero and the sample sizes for which Kendall’s
correlation can be zero, and then we characterize the sample sizes for which other
rank correlations can be zero. For example, in Theorem 3 we prove that for each
sample size n ≥ 3, Daniels and Guilbaud’s rank correlation coefficient can be zero if
and only if n is not of the form n = 4m + 3, where m ∈ N.

In Section 6 we prove a new inequality between three of the semi-metrics discussed
in this paper (D2,n, In and the Daniels-Guilbaud semi-metric) and show how it can be
transformed into an inequality between three rank correlation coefficients–see (25).

In Section 7 we give a motivation and a definition for generalized metrics that
measure the “distance” between the ranks of two circular variables (such as angles).
We also note that the Daniels-Guilbaud semi-metric (and the corresponding rank
correlation coefficient) is indeed circular because of a formula due to Shieh [36]. This
formula expresses the Daniels-Guilbaud rank correlation coefficient between two sets
of ranks (permutations in Sn) as an “average” of all the Kendall’s rank correlations
between circular permutations of the two sets of ranks.

In Section 8 we use Critchlow’s [4] method (for partially ranked data) to create
circular rank generalized metrics (and circular rank correlation coefficients) from any
(usual) generalized metric. This method uses the Hausdorff (generalized) “distance”

6Unfortunately, Monjardet [32] refers to the wrong paper by Daniels when mentioning his in-
equality (that can be derived from his equality (10)). He does refer to the right paper in later
works [33, 34].

7This name was suggested by Deza and Deza [6, p. 212].



RIGHT-INVARIANT GENERALIZED METRICS 163

between two right cosets in the quotient space of the symmetric group with the cyclic
group generated by gn := (2, 3, . . . , n, 1). In the case of bi-invariant generalized
metrics, we note that this method can be simplified (due to a result by Diaconis
and Graham that appears in Critchlow [4].) (A bi-invariant generalized metric is
one that is both left- and right-invariant.) For the case of the Hamming metric, we
show how to obtain the corresponding circular semi-metric and (using a result due
to Chris Monico [31]) we explain how to define the corresponding circular Hamming
rank correlation coefficient.

In Section 9 we show how the triangle inequality for metrics on the symmetric
group can be transformed into an inequality for the corresponding rank correlation
coefficients, and then use the latter to define partial rank correlation coefficients of
two sets of ranks controlling for a third one. More precisely, we define partial corre-
lation coefficients for generalized metric sequences that are symmetric with respect
to complements and satisfy Property 3 with C = 1. (In Remark 4, we generalize this
by showing how to define such coefficients when the constant C in Property 3 can
take any (fixed) positive value.)

The usual computational formula for the partial correlation coefficient between
two numerical variables x and y controlling for a third variable z—see Equation
(46)—can be used to define not only a Spearman partial rank correlation coefficient
(that corresponds to the pseudo-metric SQ1,n), but also a Spearman-induced partial
rank correlation coefficients that arises from any semi-metric that is symmetric with
respect to complements–see Equations (48) and (52). Besides the fact that this was
done in the past for the Spearman rank correlation coefficient, we note that it has
also traditionally been done on the Kendall (tau) correlation coefficient as well (see,
for example, [19, Chapter 5]). We observe in Remark 3 that the absolute value of
our partial rank correlation coefficient is greater than or equal to the corresponding
Spearman-induced rank correlation coefficient (for each semi-metric that is symmet-
ric with respect to complements).

The paper concludes with Section 10, where we discuss some possible future
research topics.

2 Rank correlation coefficients

Given a generalized metric sequence (dn |n ∈ N
∗) of functions dn : Sn×Sn → [0,∞),

Diaconis and Graham [8] defined the corresponding sequence of rank correlation
coefficients (rd,n |n ∈ N

∗) consisting of functions

rd,n : Sn × Sn → [−1, 1]

satisfying

rd,n(a, b) = 1 − 2dn(a, b)

max(dn)
, (7)

where

max(dn) := max{dn(π, σ)|π, σ ∈ Sn}.
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The above definition makes sense only for those n ∈ N
∗ such that max(dn) > 0.

Note that rd,n(a, b) = 1 if and only if dn(a, b) = 0; and rd,n(a, b) = −1 if and only if
dn(a, b) = max(dn).

The most widely used rank correlation coefficient is the one introduced by Spear-
man that was discussed in Section 1; see Equations (3) and (4). Another one is
Kendall’s (tau) rank correlation coefficient [27]

rK,n(a, b) = 1 − 2In(a, b)

max In

= 1 − 4In(a, b)

n(n − 1)
, (8)

which can be defined for all integers n > 1.8 Finally, one can use Spearman’s footrule
rank correlation coefficient defined by

rF,n(a, b) := 1 − 2D1,n(a, b)

max D1,n

= 1 − 2D1,n(a, b)

�n2/2� . (9)

Diaconis and Graham [8] pointed out that Kendall [27, p. 32] used the wrong de-
nominator in the definition of Spearman’s footrule.

The Hamming rank correlation coefficient can be similarly defined:

rH,n(a, b) := 1 − 2Hn(a, b)

max Hn

= 1 − 2Hn(a, b)

n
.

Note that rH,n(a, b) = 1 if and only if a = b, and rH,n(a, b) = −1 if and only if
a = c ◦ b for some derangement c ∈ Sn. A derangement c is a permutation in Sn

with no fixed points, and there are exactly
⌊

n!
e

+ 1
2

⌋
of them in Sn; see, for example,

Hassani [26]. (Here �x� is the greatest integer less than or equal to x ∈ R.)
Daniels [5] introduced another correlation coefficient, rU,n : Sn × Sn → [−1, 1],

which satisfies the equality

3n rK,n(a, b) − 2(n + 1)rS,n(a, b) = (n − 2)rU,n(a, b). (10)

To define rU,n(a, b), we first define the function OTn : Sn×Sn → R as follows9: we let
OTn(a, b) be the number of triplets of integers (i, j, k) such that 1 ≤ i < j < k ≤ n
and such that there is an odd permutation (α, β, γ) ∈ S3 with

Perm(ai, aj , ak) = Perm(bi, bj, bk) ◦ (α, β, γ).

Here Perm(ai, aj , ak) is the (ordered) list of ranks of the numbers ai, aj, ak; for exam-
ple,
Perm(10, 1, 33) = (2, 1, 3). Daniels’ correlation coefficient can then be defined as
follows:

rU,n(a, b) := 1 − 2OTn(a, b)

max OTn

= 1 − 12OTn(a, b)

n(n − 1)(n − 2)
, (11)

8For the traditional rank correlation coefficients, such as the ones due to Spearman and Kendall,
we use the more traditional notation, rather than the one introduced in this paper. For example,
for Kendall’s tau we write rK,n rather than rI,n.

9The notation OT stands for “odd triplets.”
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which can be defined only for n > 2.
The quantity OTn(a, b) can also be written as

OTn(a, b) = #{(i, j, k) | 1 ≤ i < j < k ≤ n and

Perm[(bi, bj, bk)]
−1 ◦ Perm[(ai, aj , ak)] is odd}.

For all a, b ∈ Sn, it can be proven that 0 ≤ OTn(a, b) ≤ (
n
3

)
; OTn(a, a) = 0; and

OTn(a, b) = OTn(b, a). On the other hand, OTn(a, b) = 0 if and only if a ◦ b−1 is a
cyclic permutation of en, i.e., there is m ∈ {1, 2, . . . , n} such that

a = (m + 1, m + 2, . . . , n, 1, 2, . . . , m) ◦ b.

(If m = n, the numbers m + 1, m + 2, . . . , n do not exist in the above equality, in
which case a = en ◦ b = b.) This means that OTn : Sn × Sn → [0,∞) is not a metric
on Sn, but a semi-metric because it does not satisfy Property 4 of the definition of
a metric.

If gn := (2, 3, . . . , n, 1), then gm
n = (m + 1, m + 2, . . . , n, 1, 2, . . . , m) for m =

0, 1, . . . , n− 1, where gk
n := gn ◦ gk−1

n for k ≥ 1, g0
n := en and g−k

n := (g−1
n )k for k ≥ 1.

This means that

g−m
n = gn−m

n = (n − m + 1, n − m + 2, . . . , n, 1, 2, . . . , n − m).

It follows that rU,n(a, b) = 1 if and only if OTn(a, b) = 0 if and only if there is
m ∈ {1, 2, . . . , n} such that a−1 = b−1 ◦ gn−m

n , i.e., if and only if a−1 is a cyclic
permutation of b−1.

Daniels [5] mentions that rU,n(a, b) = −1 if and only if OTn(a, b) =
(

n
3

)
, if and

only if a◦ b−1 is a cyclic permutation of en := (n, n−1, . . . , 1). Since the set of cyclic
permutations of en can be written as

{en, en ◦ gn, en ◦ g2
n, . . . , en ◦ gn−1

n },
we have that rU,n(a, b) = −1 if and only if there is m ∈ {0, 1, . . . , n − 1} such that
a = en ◦ gm

n ◦ b.
It can be easily shown that Equation (10) implies that

OTn(a, b) = nIn(a, b) − SQ1,n(a, b). (12)

Since In and SQ1,n are right-invariant functions on Sn×Sn, so is OTn (see Property 5
in Section 1).

Because of right invariance,

OTn(a, b) = OTn(a ◦ b−1, en) = OTn(en, b ◦ a−1).

Thus, we may assume without loss of generality that b = en, and define the measure
of disarray

OTn(a) := OTn(a, en) = #{(i, j, k) | 1 ≤ i < j < k ≤ n and Perm[ai, aj, ak]

is an odd permutation in S3}.
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Fisher and Lee [16] re-discovered Daniels’ rank correlation coefficient without
being acquainted with his work. They also gave the formula

rU,n(a, b) =

(
n

3

)−1 ∑
1≤i<j<k≤n

δa,b(i, j, k), (13)

where

δa,b(i, j, k) :=sgn(ai − aj)sgn(aj − ak)sgn(ak − ai)

× sgn(bi − bj)sgn(bj − bk)sgn(bk − bi),

with sgn(x) = 1 if x > 0, −1 if x < 0, and 0 if x = 0. The equivalence between
Daniels’ formula and Fisher and Lee’s formula was proven, for example, by Shieh [36]
and Shieh et al. [37, Appendix 4] even though in neither reference is Daniels’ paper
cited! For more details (and for an additional formula due to Shieh), see Section 7
of this paper.

Daniels did not emphasize the importance of his correlation coefficient, nor did
he state or prove the triangle inequality for OTn (i.e., Property 3 with C = 1).
Fisher and Lee [16] do not mention the triangle inequality either. This was proven
by by Monjardet in [33, Proposition 2] in a more general framework than the one
considered here.

3 Applications of Daniels’ rank correlation coefficient

Let θ and φ be two angular variables. Fisher and Lee [17] mentioned that a natural
way of defining linear relationship between these two variables is to write

θ ≡ φ + α0 mod (2π) for positive association, and (14)

θ ≡ −φ + α0 mod (2π) for negative association, (15)

for some arbitrary angle α0. They call such a dependence between θ and φ as toroidal-
linear.

As examples of two angular variables (whose association we want to study) one
may consider peak times of successive measurements of blood pressure, converted
into angles (Fisher and Lee [16, 17]; Downs [11]). Another example of a pair of
angular variables θ and φ are wind directions at two different times in a given day at
a weather station (Fisher [15, pp. 149-150]). One can then collect data over a period
of n days for the same weather station, or collect data for n weather stations on a
single day (but at two different times).

If Daniels’ correlation coefficient of the ranks of two angular variables θ and φ
equals 1, the relationship between θ and φ is not always described by (14). Similar-
ily, if Daniels’ correlation coefficient of the ranks of θ and φ is −1, angular variables
θ and φ are not necessarily related through (15). This, for example, is indirectly
mentioned in the discussion preceeding the introduction of Daniels’ correlation coef-
ficient in Section 2 of Fisher and Lee [16] (even though the authors were not aware
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of Daniels’ work). In any case, by avoiding the notation and probabilistic framework
of Fisher and Lee [16], we formulate below a theorem that gives necessary and suffi-
cient conditions of when the angular variables have rU = 1. A similar theorem can
be formulated for the case rU = −1 when we replace “strictly increasing function” by
“strictly decreasing function.” In the theorem below the angular data are described
by the n pairs

(θ1, φ1), (θ2, φ2), . . . , (θn, φn),

and we assume there are no ties among the θ values and no ties among the φ values.
Without loss of generality we assume the θ values are listed in increasing order. The
proof of the theorem is elementary and thus is omitted.

Theorem 1 Assume 0 ≤ φi, θi < 2π for i = 1, 2, . . . , n with θi 
= θj and φi 
= φj for
i 
= j, and Perm(θ) = en = (1, 2, . . . n). Then rU,n(Perm(θ), Perm(φ)) = 1 if and only
if there is an m ∈ {1, 2, . . . , n} and a strictly increasing function g : R → R such
that θi = g(φi) for i = m, m + 1, . . . , n and 2π + θi = g(φi) for i = 1, 2, . . . , m − 1.

4 Some new right-invariant pseudo-metrics

In this section we define two new right-invariant pseudo-metrics that are indirectly
related to Daniels’ semi-metric OTn defined earlier–see also Section 6. We define the
generalized metric sequences (D2,n|n ∈ N

∗) and (SQ2,n|n ∈ N
∗) by introducing the

functions D2,n : Sn × Sn → R and SQ2,n : Sn × Sn → R through the formulas

D2,n(a, b) =
∑

1≤i<j≤n

|(ai − bi) − (aj − bj)| (16)

and
SQ2,n(a, b) =

∑
1≤i<j≤n

|(ai − bi) − (aj − bj)|2

for all a, b ∈ Sn. The subscript 2 in the notation for D2,n and SQ2,n indicates that
the pseudo-metrics are modifications of D1,n and SQ1,n, respectively, that involve
two indices under the sum (i and j). One can easily show that D2,n is a metric
while SQ2,n is a pseudo-metric with C = 2 in Property 3 (see Section 1). To show
right-invariance for D2,n one has to observe that

D2,n(a, b) =
1

2

∑
1≤i,j≤n

|(ai − bi) − (aj − bj)|

for a, b ∈ Sn. A similar observation can be used to show that SQ2,n is right-invariant.
Unfortunately, the pseudo-metric SQ2,n does not add anything to our collection

of pseudo-metrics because

SQ2,n(a, b) = nSQ1,n(a, b) (a, b ∈ Sn). (17)

It follows that

maxSQ2,n =
n2(n + 1)(n − 1)

3
,
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and thus the non-parametric rank correlation coefficient induced by SQ2,n is the one
induced by SQ1,n, i.e., the Spearman rank correlation coefficient. To prove (17), note
that for a, b ∈ Sn,

SQ2,n(a, b) =
∑

1≤i<j≤n

(ai − bi)
2 +

∑
1≤i<j≤n

(aj − bj)
2

− 2
∑

1≤i<j≤n

(ai − bi)(aj − bj)

=

n∑
i=1

(n − i)(ai − bi)
2 +

n∑
j=1

(j − 1)(aj − bj)
2

−
∑

1≤i,j≤n

(ai − bi)(aj − bj) +
n∑

k=1

(ak − bk)
2

=
n∑

i=1

(n − i + (i − 1) + 1)(ai − bi)
2 − 0 = nSQ1,n(a, b).

Note that

maxD2,n =
n(n − 1)(n + 1)

3
= maxSQ1,n, (18)

and D2,n(a, b) = maxD2,n if and only if a = (n, n − 1, . . . , 1) ◦ b. To prove these
claims, observe first that

D2,n(a, b) ≤
∑

1≤i<j≤n

|ai − aj| +
∑

1≤i<j≤n

|bi − bj | = 2
∑

1≤i<j≤n

(j − i). (19)

The latter sum equals n(n − 1)(n + 1)/3, while equality in (19) holds if and only if

(ai − aj)(bi − bj) ≤ 0

for all i, j ∈ {1, 2, . . . , n} with i < j. The latter condition holds if and only if
a = (n, n − 1, . . . , 1) ◦ b, and our claims have been proven.

The metric D2,n is connected to SQ1,n and D1,n through

SQ1,n(a, b) ≤ D2,n(a, b) ≤ (n − 1)D1,n(a, b) (20)

for a, b ∈ Sn. The inequality SQ1,n(a, b) ≤ (n−1)D1,n(a, b) is proved in Diaconis and
Graham [8], and equality here holds if and only if a = b or a = (n, 2, 3, . . . , n−1, 1)◦b
– see also Hadjicostas and Monico [24]. To prove the right inequality in (20) we use
the triangle inequality to get

D2,n(a, b) ≤
∑

1≤i<j≤n

|ai − bi| +
∑

1≤i<j≤n

|aj − bj|

=

n∑
i=1

(n − i)|ai − bi| +
n∑

j=1

(j − 1)|aj − bj|,
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from which we obtain

D2,n(a, b) ≤
n∑

i=1

(n − i + i − 1)|ai − bi| = (n − 1)D1,n(a, b).

To prove the left inequality in (20), note first that

∑
1≤i<j≤n

((ai − bi) − (aj − bj)) = −2
n∑

i=1

i(ai − bi). (21)

When b = en, equality (21) gives

∑
1≤i<j≤n

((ai − i) − (aj − j)) = 2

n∑
i=1

i2 − 2

n∑
i=1

iai = SQ1,n(a). (22)

Since x ≤ |x| for each number x, it follows from the definition of D2,n(a) that
SQ1,n(a) ≤ D2,n(a).

We finish the section by giving necessary and sufficient conditions for each equality
to hold in (20). Due to space limitations we omit the proofs of our claims.

(i) For n = 1 we obviously have D2,n(a, b) = (n−1)D1,n(a, b) = 0 for a = b = (1).
Let n ≥ 2 and consider the set

An := {c ∈ Sn| ci 
= i for at most two i ∈ {1, . . . , n}}.

If c ∈ An and c 
= en, then there are i and j with 1 ≤ i < j ≤ n such that ai = j
and aj = i. This means that #An =

(
n
2

)
+ 1. One can show that D2,n(a, b) =

(n − 1)D1,n(a, b) if and only if there is c ∈ An such that a = c ◦ b.
(ii) It follows from (22), and the fact that x = |x| if and only if x ≥ 0, that (in

the case b = en) we have SQ1,n(a) = D2,n(a) if and only if

a1 − 1 ≥ a2 − 2 ≥ . . . ≥ an − n.

We can actually characterize all a ∈ Sn that satisfy SQ1,n(a) = D2,n(a) (or more
generally, all a, b ∈ Sn that satisfy SQ1,n(a, b) = D2,n(a, b)).

Define recursively the sequence of sets (Bn : n ∈ N∗) as follows. For n = 1, let
B1 := {(1)}. For n > 1 define Bn1 ⊆ Sn by attaching to each element c of Bn−1 the
number n at the beginning of the list to create (n, c) in Sn. Also, define Bn2 ⊆ Sn

by inserting to each element f of Bn−1 the number n after n− 1 and before the next
integer in f . Thus, if

f = (. . . , fi−1, n − 1, fi+1, . . .) ∈ Bn−1,

we create (. . . , fi−1, n − 1, n, fi+1, . . .) ∈ Bn2. Finally, define Bn := Bn1 ∪ Bn2.
It is clear that #Bn = 2n−1. Note also that en ∈ Bn, and for n > 1, we have in

particular that en ∈ Bn1. One can show by induction that SQ1,n(a, b) = D2,n(a, b) if
and only if there is c ∈ Bn such that a = c ◦ b.
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5 When does a rank correlation coefficient equal to zero?

If dn : Sn×Sn → R is the nth member of the generalized metric sequence (dν |ν ∈ N
∗)

and rd,n : Sn × Sn → [−1, 1] is the corresponding rank correlation coefficient given
by Equation (7), then rd,n(a, b) = 0 if and only if

dn(a, b) =
max(dn)

2
.

Marshall [30] proved that if n > 3, Spearman’s rank correlation coefficient, rS,n,
can be zero if and only if n is not of the form n = 4m + 2, where m is a positive
integer. He also proved that Kendall’s rank correlation coefficient, rK,n, can be zero
if and only if n is either of the form n = 4m or n = 4m + 1, where m is a positive
integer. For example, for the Hamming rank correlation coefficient, rH,n, it is clear
that it can be zero if and only if n is an even positive integer.

Knuth [28, p. 74, Ex. 104] calls a permutation a ∈ Sn well-balanced if

n∑
k=1

kak =

n∑
k=1

(n + 1 − k)ak.

It turns out a permutation a ∈ Sn is well-balanced if and and only if rS,n(a, en) = 0
(i.e. the Spearman’s rank correlation coefficient of a with the identity en is zero).

Marshall [30] proved a result that shows for which integers n there are two per-
mutations for which the Spearman’s footrule rank correlation coefficient can be zero,
but he used the wrong denominator for the correlation coefficient: he used the one
suggested in Section 2.20 in Kendall [27]. In Equation (7), instead of dividing by
the maximum of D1,n over Sn × Sn, Kendall [24] divides by 2(n2 − 1)/3. (In another
suggestion, he proposes dividing by n2/2, which does not equal the maximum of D1,n

when n is odd.) Below we prove a similar result using Equation (9), which is the one
suggested by Diaconis and Graham [8].

Theorem 2 For each integer n > 1, Spearman’s footrule rank correlation coefficient
rF,n can be zero if and only if n is not of the form 4m+2 where m ∈ N = {0, 1, 2, . . .}.

Proof. Notice that rF,n(a, b) = 0 if and only if

D1,n(a, b) =

⌊
n2

2

⌋
2

.

If n is even and rF,n(a, b) = 0, it can be easily shown that n is a multiple of 4
(since D1,n is always even). To prove the converse (when n is even), we show by
induction that if n = 4l (l ∈ N

∗), rankings a and b in Sn can be constructed so that
rF,n(a, b) = 0. For n = 4, consider the two rankings α = (1, 2, 3, 4) and β = (2, 1, 4, 3),
for which D1,n(α, β) = 4 and rF,n(α, β) = 0.

Assume now that n = 4l is a multiple of 4 greater than or equal to 8 and that
we can find a and b in Sn−4 = S4l−4 so that rF,n−4(a, b) is zero. Without loss of
generality we may assume b = en−4. Consider

π = (1, 2, . . . , 4l − 1, 4l) and σ = (4l − 1, 1, ε1, ε2, . . . , ε4l−4, 2, 4l),
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where (ε1, ε2, . . . , ε4l−4) = (a1 + 2, a2 + 2, . . . , a4l−4 + 2), which is a rearrangement
of (3, 4, . . . , 4l − 2). We have

∑n−4
i=1 |εi − (i + 2)| = 4l2 − 8l + 4 (by the induction

hypothesis), so D1,n(π, σ) = 4l2, which implies rF,n(π, σ) = 0.
Next we show by induction that if n = 2k + 1 (k ∈ N

∗), rankings a and b in
Sn can be constructed so that rF,n(a, b) = 0. For n = 3, consider the two rankings
a = (1, 2, 3) and b = (2, 1, 3), for which D1,n(a, b) = 2 and rF,n(a, b) = 0. For
n = 5, consider the two rankings a = (1, 2, 3, 4, 5) and b = (4, 1, 3, 2, 5), for which
D1,n(a, b) = 6 and rF,n(a, b) = 0.

Assume now that n = 2k + 1 ≥ 5 and that we may find a and b in Sn−4 = S2k−3

so that rF,n−4(a, b) is zero. Again assume b = en−4. Consider π = e2k+1 and

σ = (2k, 2, ε1, ε2, . . . , ε2k−3, 1, 2k + 1),

where (ε1, ε2, . . . , ε2k−3) = (a1 + 2, a2 + 2, . . . , a2k−3 + 2), which is a rearrangement
of (3, 4, . . . , 2k − 1). We have

∑n−4
i=1 |εi − (i + 2)| = k2 − 3k + 2 (by the induction

hypothesis), so D1,n(π, σ) = k2 + k, which implies rF,n(π, σ) = 0. This completes the
proof of the theorem. �

Next we investigate for which n > 2 there are at least two permutations for which
Daniels’ correlation coefficient rU,n can be zero.

Theorem 3 For each integer n ≥ 3, Daniels’ correlation coefficient rU,n can be zero
if and only if n is not of the form n = 4m + 3, where m ∈ N.

Proof. If rU,n(a, b) = 0 for some a, b ∈ Sn, then n(n− 1)(n− 2)/12 is an integer,
and thus n 
≡ 3 (mod 4). Conversely, assume first that n ≡ 2 (mod 4) (where n ≥ 6),
and let b = en and

a =

(
1, 2, 3, . . . ,

n

2
, n, n − 1, n − 2, . . . ,

n + 2

2

)
.

We have

In(a, b) =
n
2

(
n
2
− 1

)
2

and SQn(a, b) =

n
2
−1∑

i=0

(n

2
− 2i − 1

)2

=
n3 − 4n

24
.

Using (12), we obtain OTn(a, b) = n(n− 1)(n− 2)/12, which implies rU,n(a, b) = 0.
Now we proceed with the cases n ≡ 0 (mod 4) and n ≡ 1 (mod 4) (where n ∈ N

∗

with n ≥ 4). We will show by induction on n that there are two permutations whose
Kendall and Daniels rank correlations are both zero. For the base case, consider
the two rankings (1, 2, 3, 4) and (2, 4, 1, 3) for the first case, for which rK,n = rS,n =
rU,n = 0; while for the second case consider (1, 2, 3, 4, 5) and (2, 5, 3, 1, 4), for which
rK,n = rS,n = rU,n = 0.

Assume now that n is an integer greater than or equal to 8 and that it is possible
to find a and b in Sn−4 so that rK,n−4(a, b) = rU,n−4(a, b) = 0. Assume again that
b = en−4. Consider π = en and

σ = (n − 1, 1, ε1, ε2, . . . , εn−4, n, 2),
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where (ε1, ε2, . . . , εn−4) = (a1 + 2, a2 + 2, . . . , an−4 + 2), which is a rearrangement
of (3, 4, . . . , n − 2). Since rU,n−4(a, b) = rK,n−4(a, b) = 0, we get from (10) that
6SQ1,n−4(a, b) = (n − 4)(n − 3)(n − 5). In addition, the increment in the sum
of squares contributed by the integers n − 1, 1, n, 2 is 2n2 − 8n + 10, which implies
6SQ1,n(π, σ) = (n−1)n(n+1), i.e., rS,n(π, σ) = 0. Furthermore, we have rK,n(π, σ) =

0 because In−4(a, b) = (n−4)(n−5)
4

(by the induction hypothesis), and the increment
in the number of inversions due to the numbers n − 1, 1, n, 2 is 2n − 5. By (10),
rU,n(π, σ) = 0. This completes the induction. �

In the next theorem we investigate for which integers n ≥ 2 the modified Spear-
man’s footrule (rank correlation coefficient), defined by

rMF,n(a, b) := 1 − 2D2,n(a, b)

max D2,n

= 1 − 6D2,n(a, b)

n(n − 1)(n + 1)
, (23)

equals zero. (Because of (18) and (20), we have rMF,n(a, b) ≤ rS,n(a, b), i.e., the
modified Spearman’s footrule is always less than or equal to the Spearman rank
correlation coefficient.)

Theorem 4 For each integer n ≥ 2, the modified Spearman’s footrule rMF,n can be
zero if and only if n is not of the form 4m + 2 where m ∈ N.

Proof. If rMF,n(a, b) = 0, then D2,n(a, b) = n(n − 1)(n + 1)/6. Because of (21),
the integer D2,n(a, b) must be even. Thus n cannot be of the form 4m + 2 where
m ∈ {0, 1, 2, . . . , }.

Conversely, assume n = 2k − 1, where k ∈ N
∗ − {1}. Let b = en and

a = (1, 3, . . . , 2k − 1, 2, 4, . . . , 2k − 2).

It follows that

(a1 − b1, a2 − b2, . . . , an − bn) = (0, 1, 2, . . . , k − 1,−(k − 1),−(k − 2), . . . ,−1).

Then

D2,n(a, b) =
∑

0≤i<j≤k−1

(j − i) +
∑

1≤i<j≤k−1

(j − i) +
k−1∑
i=0

k−1∑
j=1

(i + k − j).

Expanding the sums either by hand or using a symbolic computation package, we
obtain 2D2,n(a, b) = max D2,n, which proves that rMF,n(a, b) = 0.

Finally assume n = 4m (m ∈ N
∗), and let σ = en and

π = (1, 3, . . . , 4m − 1, 2, 4, . . . , 2m − 2, 4m, 2m + 2, 2m + 4, . . . , 4m − 2, 2m).

In other words, π consists of the odd integers in order followed by the even integers
in order with the exception that 4m switches position with 2m. Then

(π1 − σ1, . . . , πn − σn) =(0, 1, . . . , 2m − 1,−(2m − 1), . . . ,

− (m + 1), m,−(m − 1), . . . ,−1,−2m).

Using a symbolic computation package, a tedious but straightforward calculation
(similar to the one above for the case n = 2k − 1) yields 2D2,n(π, σ) = maxD2,n,
which implies rMF,n(π, σ) = 0. This completes the proof of the theorem. �
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6 A new inequality between three generalized metrics

In this section we prove a new inequality between the three generalized metrics D2,n,
In and OTn for n > 2:

|D2,n(a, b) − nIn(a, b)| ≤ 3OTn(a, b) (a, b ∈ Sn). (24)

Equality holds if and only if a−1 is a cyclic permutation of b−1 (i.e., if and only if
OTn(a, b) = 0).

In terms of the corresponding rank correlation coefficients, after suppressing the
dependence on a and b, when n > 2, inequality (24) becomes

|2(n + 1)(1 − rMF,n) − 3n(1 − rK,n)| ≤ 3(n − 2)(1 − rU,n),

where the three coefficients are defined by Equations (8), (11) and (23). Equivalently,
the above inequality can be written as

(n − 2)(3rU,n − 2) ≤ 3nrK,n − 2(n + 1)rMF,n ≤ (n − 2)(4 − 3rU,n). (25)

Fix a ∈ Sn and without loss of generality assume b = en. To prove (24), for each
pair of integers (i, j) with 1 ≤ i < j ≤ n, we define:

μij := #{k ∈ N ∩ [1, n] | i < j < k and Perm[ai, aj, ak] is odd};
mij := #{k ∈ N ∩ [1, n] | i < k < j and Perm[ai, ak, aj] is odd};
λij := #{k ∈ N ∩ [1, n] | k < i < j and Perm[ak, ai, aj] is odd}.

Recall from Section 2 that Perm[x, y, z] is the (ordered) list of ranks of the numbers
x, y, z, i.e., Perm[x, y, z] ∈ S3. Note that

∑
1≤i<j≤n

(μij + mij + λij) = 3OTn(a). (26)

For the numbers x and y let δ(x, y) = 1 if x > y, and 0 otherwise. We observe that

In(a) =
∑

1≤i<j≤n

δ(ai, aj). (27)

We claim (and prove later in the section) that for each pair of integers (i, j) with
1 ≤ i < j ≤ n we have

(ai − aj) − (i − j) = nδ(ai, aj) + mij − μij − λij. (28)

Since 0 ≤ μij + mij + λij ≤ n − 2, the latter equality implies

nδ(ai, aj)−(mij +μij +λij) ≤ |(ai−aj)−(i−j)| ≤ nδ(ai, aj)+(mij +μij +λij). (29)

Using (26)–(29) and the definition of D2,n(a) we get

nIn(a) − 3OTn(a) ≤ D2,n(a) ≤ nIn(a) + 3OTn(a), (30)
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which entails inequality (24).

Proof of equality (28). (i) First assume ai < aj, in which case δ(ai, aj) = 0.
Since

λij = #{k ∈ N ∩ [1, n] | k < i < j and ai < ak < aj}
and

μij = #{k ∈ N ∩ [1, n] | i < j < k and ai < ak < aj},
we have

(i − 1 − λij) + (n − j − μij) = #{k ∈ N ∩ [1, n] |not-(i ≤ k ≤ j) and

not-(ai < ak < aj)}.
Since in addition

mij = #{k ∈ N ∩ [1, n] | i < k < j and not-(ai < ak < aj)}
and there are (ai−1)+(n−aj) integers k ∈ [1, n]−{i, j} such that ak is not between
ai and aj, we have

(i − 1 − λij) + (n − j − μij) + mij = (ai − 1) + (n − aj).

The last equality implies (28) for the case ai < aj .
(ii) In the case ai > aj we have δ(ai, aj) = 1 and a similar reasoning as in case

(i) gives
(i − 1 − λij) + (n − j − μij) + mij = ai − aj − 1,

the number of integers k ∈ [1, n] − {i, j} such that ak is between ai and aj . By
simplifying the last equality, we obtain (28). �

Remark 1 Summing both sides of (28) over all integers (i, j) with 1 ≤ i < j ≤ n
and using (22) and (27) we obtain

−
∑

1≤i<j≤n

(mij − μij − λij) = nIn(a) − SQ1,n(a). (31)

Subtracting (31) from (26) we get

2
∑

1≤i<j≤n

mij = 3OTn(a) − (nIn(a) − SQ1,n(a)).

On the other hand, it follows from the definition of OTn(a) that

OTn(a) =
∑

1≤i<j≤n

mij .

If follows easily from the last two equalities that

OTn(a) = nIn(a) − SQ1,n(a),

which gives another proof of (12) provided of course one has a proof of equality (28)!
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Remark 2 Equality (12) implies 2SQ1,n(a) ≤ 2nIn(a). Adding this one to inequal-
ity SQ1,n(a) ≤ D2,n(a) from Section 4 gives us

3SQ1,n(a) ≤ 2nIn(a) + D2,n(a).

Replacing SQ1,n(a) with nIn(a) − OTn(a) in the above inequality, we obtain after
some simple algebra

nIn(a) − 3OTn(a) ≤ D2,n(a),

which is the left inequality in (30).

7 Right-invariant generalized metrics for circular data

In this section we discuss right-invariant generalized metrics for angular (and in
general, circular) data consisting of n pairs of angles

(θ1, φ1), (θ2, φ2), . . . , (θn, φn). (32)

As before, we assume that there are no ties among the θ values and no ties among
the φ values. Finally, we assume that all the angles are in the interval [0, 2π). To
motivate our definition below about circular generalized metrics, we first prove the
following result.

Lemma 1 Let n ∈ N
∗ − {1} and assume the list φ = (φ1, . . . , φn) consists of n

distinct numbers such that 0 ≤ φi < 2π for i = 1, . . . , n. If 0 < c < 2π, and
φ′ = (φ′

1, . . . , φ
′
n) with φ′

i = φi + c (mod 2π) for i = 1, . . . , n, then there is an integer
m ∈ {0, 1, . . . , n − 1} such that

Perm(φ′) = gm
n ◦ Perm(φ), (33)

where gn := (2, 3, . . . , n, 1).

Proof. Let a := [Perm(φ)]−1 = (a1, . . . , an) ∈ Sn and b := [Perm(φ′)]−1 =
(b1, . . . , bn) ∈ Sn be the inverses of the lists of ranks of vectors φ and φ′, respectively.
Then the lists of ordered statistics for φ and φ′ are (φa1 , . . . , φan) and (φ′

b1
, . . . , φ′

bn
),

respectively. We have

c ≤ φa1 + c < . . . < φan + c < 2π + c < 4π.

If c < 2π ≤ φa1 + c, then φ′
i = (φi + c) mod 2π = φi + c− 2π for i = 1, . . . , n, in

which case Perm(φ) = Perm(φ′), that is, equality (33) holds trivially with m = 0.
Similarly, if φan +c ≤ 2π < 2π+c, we have again Perm(φ) = Perm(φ′), and equality
(33) holds again trivially with m = 0.

Assume φak
+ c ≤ 2π < φak+1

+ c for some k ∈ {1, . . . , n − 1}. Then

φa1 + c − 2π < . . . < φak
+ c − 2π ≤ 0 < φak+1

+ c − 2π < . . . < φan + c − 2π < c,

and thus
φ′

a1
− 2π < . . . < φ′

ak
− 2π < 0 < φ′

ak+1
< . . . < φ′

an
< c.
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Since φan + c − 2π < φa1 + c, that is, φ′
an

< φ′
a1

, we obtain

0 < φ′
ak+1

< . . . < φ′
an

< φ′
a1

< . . . < φ′
ak

< 2π,

which entails

b = (b1, . . . , bn) = (ak+1, . . . , an, a1, . . . , ak) = a ◦ gk
n.

This implies b−1 = g−k
n ◦ a−1, i.e., Perm(φ′) = gn−k

n ◦ Perm(φ). This means that
equality (33) holds with m = n − k ∈ {1, . . . , n − 1}. �

The previous lemma tells us that if we rotate the origin clockwise by c radians,
then the ranks of the new values of the angles in φ are connected to the ranks of the
angles of the original angles through Equation (33). If without loss of generality, we
assume the ranks of the angles (θ1, . . . , θn) are (1, 2, . . . , n) = en, then we want any
right-invariant generalized metric sequences (dn|n ∈ N

∗) applied to the ranks of the
data in (32) to satisfy

dn(Perm(φ), en) = dn(Perm(φ′), en) = dn(gm
n ◦ Perm(φ), en)

for all n ∈ N
∗ − {1} and all m ∈ {0, 1 . . . , n − 1}. This leads us to the following

definition:

Definition 1 A right-invariant generalized metric sequence (dn|n ∈ N
∗) of functions

dn : Sn × Sn → [0,∞) is called circular if

dn(a, b) = dn(gm
n ◦ a, gs

n ◦ b) (34)

for all n ∈ N
∗−{1}, m, s ∈ {0, 1 . . . , n−1}, and a, b ∈ Sn (where gn = (2, 3, . . . , n, 1)).

It is clear that a right-invariant generalized metric sequence (dn|n ∈ N
∗) is circular

if and only if dn(gm
n ◦a) = dn(a) for all n ∈ N

∗−{1}, m ∈ {0, 1 . . . , n−1} and a ∈ Sn.
Such a sequence obviously does not satisfy Property 4 (in Section 1), so a circular
generalized metric sequence cannot be a pseudo-metric sequence.

The Daniels-Guilbaud semi-metric sequence (OTn|n ∈ N
∗) is indeed circular.

This follows directly from the following formula proved in Shieh [36] and Shieh et
al. [37]:

rU,n(a, b) =
3

n(n − 2)

n−1∑
m=0

n−1∑
s=0

rK,n(g
m
n ◦ a, gs

n ◦ b).

In terms of the corresponding semi-metrics, this formula becomes:

OTn(a, b) =
1

n

n−1∑
m=0

n−1∑
s=0

In(gm
n ◦ a, gs

n ◦ b) − (n − 1)n(n + 1)

6
.
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8 Creation of circular generalized metrics

In this section we show how Critchlow’s [4] theory can be used so that a right-
invariant generalized metric sequence (dn|n ∈ N

∗) can be transformed into a circular
one. Even though Critchlow’s [4] theory was applied for analyzing partially ranked
data, it can be easily modified for our purpose.

For each n ∈ N
∗, consider the cyclic group

Cn := {gm
n |m ∈ {0, 1 . . . , n − 1} and gn := (2, 3, . . . , n, 1)},

which is a subgroup of the symmetric group Sn of order n. For each permutation
a ∈ Sn consider the right coset

Cna := {gm
n ◦ a | m ∈ {0, 1 . . . , n − 1} and gn := (2, 3, . . . , n, 1)},

and the coset (quotient) space Sn/Cn:

Sn/Cn := {Cna | a ∈ Sn}.

Essentially, Sn/Cn partitions Sn into (n − 1)! equivalent classes, each of size n. The
idea is to create (through a certain process) a right-invariant generalized metric
sequence (d̆n|n ∈ N

∗) on Sn/Cn from the given right-invariant generalized metric
sequence (dn|n ∈ N

∗) on Sn. We can then define a circular right-invariant generalized
metric sequence (̊dn|n ∈ N

∗) on Sn by

d̊n(a, b) := d̆n(Cna, Cnb) (35)

for n ∈ N
∗ and a, b ∈ Sn. Such a generalized metric does satisfy Equation (34)

in Definition 1. One can then define the corresponding circular rank correlation
coefficient as follows:

r̊d,n(a, b) := 1 − 2̊dn(a, b)

max(̊dn)
(a, b ∈ Sn).

By right invariance, the denominator in the above formula equals

max(̊dn) = max{̊dn(a, b) | a, b ∈ Sn} = max{d̆n(Cna, Cnen) | a ∈ Sn}.

The discrete maximization above, however, is a difficult combinatorial problem even
for circular generalized metrics d̊n induced by quite simple generalized metrics dn.

But the main question is how to define the right-invariant generalized metric
sequence (d̆n|n ∈ N

∗) on Sn/Cn from (dn|n ∈ N
∗). The most often used and simplest

method of achieving that is through the Hausdorff generalized metric as modified by
Dieudonné [10, pp. 53-54] and introduced to statisticians by Critchlow [4, pp. 14-26]:

d̆n(Cna, Cnb) := max

{
max
c∈Cna

min
f∈Cnb

dn(c, f), max
f∈Cnb

min
c∈Cna

dn(c, f)

}
(36)
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for a, b ∈ Sn (or equivalently, for cosets Cna, Cnb ∈ Sn/Cn). Observe that, for each
c ∈ Cna, the quantity min

f∈Cnb
dn(c, f) is the distance of permutation c to the coset

Cnb. Then max
c∈Cna

(
min

f∈Cnb
dn(c, f)

)
is the worst (largest) of these distances to the coset

Cnb. Similarly, max
f∈Cnb

(
min

c∈Cna
dn(c, f)

)
is the largest distance to the coset Cna from

permutations in Cnb. The Hausdorff distance between cosets Cna and Cnb is the
largest of these two maximum distances.

It can be proven that the induced sequence of Hausdorff generalized metrics
(d̆n |n ∈ N

∗) satisfies Property 3 with the same positive constant C as the sequence
(dn |n ∈ N

∗).
The calculation of the Hausdorff generalized “distance” through Equation (36)

is a formidable task and (in this paper) we shall only concentrate on right-invariant
generalized metrics that are also left-invariant because, in this case, as proven in a
lemma in Critchlow [4, pp. 21–24],

d̆n(Cna, Cnb) = min{dn(c, f) | c ∈ Cna, f ∈ Cnb} = min
c∈Cna

dn(c, b). (37)

Critchlow attributes this result and its proof to Diaconis and Graham [9]. See also
[7, Chapter 6D]. We remind the reader that dn : Sn × Sn → [0,∞) is left-invariant if
and only if

dn(c ◦ a, c ◦ b) = dn(a, b) (38)

for all a, b, c ∈ Sn.

Imitating Equation (6) from Section 1, if (dn|n ∈ N
∗) is a right-invariant general-

ized metric sequence of functions dn : Sn ×Sn → [0,∞) that are not necessarily left-
invariant on the symmetric group, then one can create a corresponding bi-invariant
generalized metric sequence (dbi

n |n ∈ N∗) as follows:

dbi
n (a, b) = M

∑
c∈Sn

dn(c ◦ a, c ◦ b) (a, b ∈ Sn), (39)

where M is an arbitrary positive constant, e.g., M = 1/n!. Equations (6) and (39),
however, involve a lot of computational cost, so we would stick with the two natural
bi-invariant (generalized) metrics in this paper: Hn and EXn.

Using Equations (35) and (37), we can define the Hamming circular semi-metric
as follows:

H̊n(a, b) = H̆n(Cna, Cnb) = min
c∈Cna

Hn(c, b) (a, b ∈ Sn).

For example, if a = (4, 3, 2, 1) and b = (3, 2, 1, 4), then

C4a = {(4, 3, 2, 1), (1, 4, 3, 2), (2, 1, 4, 3), (3, 2, 1, 4)}

and H̊4(a, b) = min{4, 4, 4, 0} = 0. On the other hand, if b = (3, 2, 4, 1), then
H̊4(a, b) = min{3, 4, 3, 2} = 2.
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Because of the bi-invariance of Hn, the Hamming circular semi-metric H̊n(a, b)
can be calculated using left cosets as well:

H̊n(a, b) = Ĥn(aCn, bCn) = min
c∈aCn

Hn(c, b) (a, b ∈ Sn),

where Ĥ : (Cn\Sn)× (Cn\Sn) → [0,∞) can be defined via a modification of (36) on
the set10 Cn\Sn of left cosets

aCn := {a ◦ gm
n | m ∈ {0, 1 . . . , n − 1} and gn := (2, 3, . . . , n, 1)} (40)

= {(a1, a2, . . . , an), (a2, a3, . . . , an, a1), . . . , (an, a1, . . . , an−1)}. (41)

Since a1 appears in all possible positions in the members of aCn, there is c ∈ aCn

such that ca1 = a1. In such a case, H̊n(c, en) 
= n, and thus

0 ≤ max H̊n ≤ n − 1.

We are now ready to define the Hamming circular rank correlation coefficient:

r̊H,n(a, b) := 1 −
2 min

c∈Cna
Hn(c, b)

max(H̊n)
= 1 −

2 min
c∈Cna

Hn(c, b)

n − 1
2
(3 + (−1)n)

.

The denominator in the above expression is n − 1 when n is odd and n − 2 when
n is even (see below). For the first example above (with a = (4, 3, 2, 1) and b =
(3, 2, 1, 4)) we have r̊H,4(a, b) = 1, while for the second example (with the same a but
b = (3, 2, 4, 1)) we have r̊H,4(a, b) = −1.

Since H̊n(en, en) = n−1 when n is odd, it is obvious that (in this case) max H̊n =
n − 1. The case n being even is more complicated. To prove that (in such a case)
max H̊n = n − 2, we need the following result due to Chris Monico [31]:

Lemma 2 Assume n = 2k with k ∈ N
∗ and let a = (a1, . . . , a2k) ∈ S2k. If g2k =

(2, 3, . . . , 2k, 1), at least one of the permutations in the left coset aC2k, given by (40)
or (41), has at least two fixed points.

Proof. Consider the 2k integers αi := ai − i (mod 2k), i = 1, 2, . . . , 2k, with
0 ≤ αi < 2k. If these integers were distinct, then

{α1, . . . , α2k} = {0, 1, . . . , 2k − 1}
and

0 =
2k∑
i=1

(ai − i) =
2k∑
i=1

αi =
2k−1∑
j=0

j = 2k2 − k = k (mod 2k),

a contradiction because k 
= 0 (mod 2k). Therefore there are two integers l1 and l2
such that 1 ≤ l1 < l2 ≤ 2k and al1 − l1 = al2 − l2 (mod 2k). Then

al1 = l1 + r + 2ks and al2 = l2 + r + 2ks

10To agree with Critchlow [4, p. 15], we are forced to use the opposite notation from the one used
by Dieudonné [10, pp. 52-55].
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for some r, s ∈ Z with r ∈ {0, 1, . . . , 2k − 1}. Since l1 < l2, we have

1 ≤ al1 = l1 + r + 2ks < al2 = l2 + r + 2ks ≤ 2k,

from which we obtain

1 − (2k − 1) − (2k − 1) ≤ 1 − l1 − r ≤ 2ks ≤ 2k − l2 − r ≤ 2k − 2 − 0.

This entails

−2 +
3

2k
≤ s ≤ 1 − 1

k
.

It follows that s = −1 or s = 0.
If s = 0, then 1 ≤ al1 = l1 + r < al2 = l2 + r ≤ 2k and 1 ≤ l1 < l2 ≤ 2k− r. Since

a ◦ g2k−r
2k = (a2k+1−r , . . . , a2k, a1, . . . , a2k−r),

it follows that the element of a◦g2k−r
2k in position r+ l1 is al1 = r+ l1 and the element

of a◦g2k−r
2k in position r+ l2 is al2 = r+ l2, i.e., a◦g2k−r

2k has at least two fixed points.
If s = −1 then 1 ≤ al1 = l1 + r − 2k < al2 = l2 + r − 2k ≤ 2k, and the element of

a ◦ g2k−r
2k in position li + r − 2k is ali = li + r − 2k for i = 1, 2. Again, a ◦ g2k−r

2k has
at least two fixed points and the proof of the lemma is complete. �

Lemma 2 implies that, for each a ∈ S2k, there is c0 ∈ aC2k such that H2k(c0, e2k) ≤
2k − 2. Thus

H̊2k(a, e2k) = min
c∈aC2k

H2k(c, e2k) ≤ 2k − 2. (42)

To show that there is an a ∈ Sn so that equality can be achieved in (42), consider the
left coset e2kC2k. Each permutation in this coset that starts with an even number
has no fixed points because even integers occupy odd positions and vice versa. On
the other hand, each permutation in the coset that starts with an odd integer, say
2λ − 1 (where λ ∈ {1, 2, . . . , k}), has exactly two fixed points, in positions λ and
λ + k. This shows that H̊2k(e2k, e2k) = 2k − 2, which proves that max H̊2k = 2k − 2.

Another bi-invariant metric on Sn is EXn, which induces the following Cayley
circular semi-metric:

E̊Xn(a, b) = ĔXn(aCn, bCn) = min
c∈aCn

EXn(c, b) = n − max
c∈aCn

CYn(c ◦ b−1)

for a, b ∈ Sn. Here, CYn(f) is the number of cycles in list f ∈ Sn. In order to be able
to define the corresponding Cayley circular rank correlation coefficient, we would
need to know a general formula for max ĔXn over (Sn/Cn) × (Sn/Cn). This is a
topic for a future paper as is the analysis for other generalized metrics used in this
paper (most of which are not bi-invariant).

9 Partial rank correlation coefficients

If (dn|n ∈ N∗) is a generalized metric sequence with max dn > 0 for each n ∈ N∗ with
n ≥ N (for some N ∈ N

∗), Property 3 from Section 1 can be expressed in terms of
the corresponding rank correlation coefficient sequence:

rd,n(a, c) + rd,n(c, b) ≤ 2 − 1

C
+

rd,n(a, b)

C
(a, b, c ∈ Sn). (43)
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Even though in Section 1 we let C > 0, for the rest of the section we will assume
that C ≥ 1. If C = 1, (dn|n ∈ N

∗) becomes a sequence of metrics and inequality
(43) simplifies to

rd,n(a, c) + rd,n(c, b) ≤ 1 + rd,n(a, b). (44)

It is not clear what the meaning of inequalities (43) and (44) is. Even Diaconis [7,
pp. 103-104] wonders about the meaning of (44). In this section, we shall attempt
to use (44) to define partial rank correlation coefficients.

Given three numerical variables x, y, z (such as height, arm length and weight),
one can take measurements on n individuals or objects:

(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn). (45)

One can measure the linear relationship between the x and y controlling for z using
the following formula (see [1], [18], and [29]):

rn[(x, y) • z] =
rn(x, y) − rn(x, z)rn(y, z)√
[1 − rn(x, z)2][1 − rn(y, z)2]

, (46)

where rn(w1, w2) denotes the Pearson product moment correlation coefficient between
numerical variables w1 and w2, defined by Equation (2) in Section 1.

We call the quantity rn[(x, y)•z] the partial 11 linear correlation coefficient between
variables x and y controlling for z and originally it is defined as follows. One runs
a linear regression between x and z and a linear regression between y and z and
then calculates the residuals from each linear regression. The quantity rn[(x, y) • z]
is defined to be the Pearson product moment correlation coefficient between the two
sets of residuals. Formula (46) follows from this definition.

If we replace the data (46) with their ranks12

(a1, b1, c1), (a2, b2, c2), . . . , (an, bn, cn), (47)

they we may calculate the Spearman partial rank correlation coefficient between the
two variables controlling for the third one:

r̃S,n[(a, b) • c] =
rS,n(a, b) − rS,n(a, c)rS,n(b, c)√
[1 − rS,n(a, c)2][1 − rS,n(b, c)2]

. (48)

Here we use rS,n(·, ·) to denote the Spearman rank correlation coefficient given by
Equation (3) (or equivalently by (4)).

It is not clear how formulas (46) and (48) can be used to define partial rank
correlation coefficient corresponding to other generalized metrics (besides SQ1,n that

11It should be noted, however, that this is not a conditional linear correlation between x and y
given z unless certain conditions hold; see [1] and [29]. This is the reason we do not use the notation
rn(x, y|z).

12Here a = (a1, . . . , an) are the ranks of the x values, b = (b1, . . . , bn) are the ranks for the y
values, and c = (c1, . . . , cn) are the ranks for the z values. We assume that there are no ties in the
x values, and similarly for the y values and the z values.
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gives rise to (48)). Even though one can define a kind of “linear regression” based
on ranks using generalized metrics13 (see [7, pp. 106-107] and [35]), we propose a
different method for creating partial rank correlation coefficients induced by metrics
(with C = 1) that are symmetric with respect to complements.

A right-invariant generalized metric sequence (dn|n ∈ N
∗) is called symmetric

with respect to complements if

dn(a) + dn(a) = max dn (49)

for all n ∈ N
∗ and a ∈ Sn. Here

a = en ◦ a = (n + 1 − a1, n + 1 − a2, . . . , n + 1 − an)

is the complement or conjugate14 of list a. Note that, even for generalized metrics
that do not satisfy (49), Property 3 in Section 1 (along with right invariance) implies

dn(a) + dn(a) ≥ d(en)

C
.

In case d(en) = max dn (which happens, for example, when dn is SQ1,n, In or OTn),
we then have

dn(a) + dn(a) ≥ max dn

C
.

If d(en) = max dn (for all n ∈ N
∗) and C = 1 (e.g., when dn =

√
SQ1,n), then

dn(a) + dn(a) ≥ max dn.

If (dn|n ∈ N
∗) is a generalized metric sequence that is symmetric with respect

to complements and (rd,n|n ≥ N) is the corresponding induced rank correlation
coefficient sequence (for some N ∈ N

∗), then we have

rd,n(a) = −rd,n(a) (n ≥ N, a ∈ Sn). (50)

Note that (50) and the right invariance of rd,n imply

rd,n(a, b) = −rd,n(a, b) and rd,n(a, b) = rd,n(a, b) (51)

for all n ≥ N and a, b ∈ Sn.
Examples of generalized metric sequences (dn|n ∈ N

∗) that are symmetric with
respect to complements are (SQ1,n|n ∈ N

∗), (In|n ∈ N
∗) and (OTn|n ∈ N

∗). The last
two are semi-metrics for they satisfy Property 3 with C = 1, and we concentrate for
the rest of the section on such examples only. (We do, however, briefly discuss the

13If this is possible and reasonable, then one can define rn[(x, y) • z] from any generalized metric
by using the procedure used above for creating the usual rn[(x, y) • z] and by replacing the usual
linear regression with the linear regression based on ranks with “distance” defined through the
generalized metric.

14See Section 4 in [21], Section 5 in [22], Section 4 in [23] and pp. 11–12 in [27].
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general case at the end of the section.) For such cases, for a, b, c ∈ Sn, we define15

the partial rank correlation coefficient of a and b controlling for c by

rd,n[(a, b) • c] :=
rd,n(a, b) − rd,n(a, c)rd,n(b, c)

min Ωd,n[(a, b) • c]
,

where

Ωd,n[(a, b) • c] := {[1 − rd,n(a, c)][1 − rd,n(b, c)], [1 + rd,n(a, c)][1 + rd,n(b, c)]}
if rd,n(a, b) − rd,n(a, c)rd,n(b, c) ≤ 0, and

Ωd,n[(a, b) • c] := {[1 − rd,n(a, c)][1 + rd,n(b, c)], [1 + rd,n(a, c)][1 − rd,n(b, c)]}
if rd,n(a, b) − rd,n(a, c)rd,n(b, c) ≥ 0.

It is interesting that, in either case, the geometric mean of the two numbers in
the set Ωd,n[(a, b) • c] is equal to the denominator of the formula for the Spearman
partial rank correlation coefficient in (48)–see also Remark 3 below. The fact that
−1 ≤ rd,n[(a, b)•c] ≤ 1 follows from inequality (44)–valid when C = 1–and equalities
(51).

It is clear that the partial rank correlation coefficient rd,n[(·, ·)•·] : (Sn×Sn)×Sn →
[−1, 1] (as defined above) is right-invariant, i.e.,

rd,n[(a ◦ f, b ◦ f) • c ◦ f ] = rd,n[(a, b) • c]

for all n ≥ N and a, b, c, f ∈ Sn (for which both sides of the above equality make
sense). We can also easily prove that

rd,n[(a, b) • c] = −rd,n[(a, b) • c], rd,n[(a, b) • c] = rd,n[(a, b) • c],

and rd,n[(a, b) • c] = rd,n[(a, b) • c].

Remark 3 Suppose that given a metric sequence16 (dn|n ∈ N∗), we define the
Spearman-induced partial rank correlation coefficient of a and b controlling for c as
follows:

Rd,n[(a, b) • c] :=
rd,n(a, b) − rd,n(a, c)rd,n(b, c)√
[1 − rd,n(a, c)2][1 − rd,n(b, c)2]

(52)

for all n ∈ N
∗ and a, b, c ∈ Sn such that 0 < dn(f, g) < max dn for (f, g) ∈

{(a, b), (a, c), (b, c)}. In other words, Rd,n[(a, b) • c] is obtained from formula (48)
by replacing rS,n with rd,n. Since for x, y > 0 we have min(x, y) ≤ √

xy, we obtain

|Rd,n[(a, b) • c]| ≤ |rd,n[(a, b) • c]| ≤ 1,

which shows that (indeed) Rd,n[(a, b) • c] ∈ [−1, 1]. We also have

Rd,n[(a, b) • c] = −Rd,n[(a, b) • c], Rd,n[(a, b) • c] = Rd,n[(a, b) • c],

15It is clear that we have to assume that −1 < rd,n(a, c) < 1 and −1 < rd,n(b, c) < 1 (i.e,
0 < dn(a, c) < max dn and 0 < dn(b, c) < max dn), otherwise the definition is meaningless.

16That is, we assume (dn|n ∈ N
∗) satisfies Property 3 with C = 1.
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and Rd,n[(a, b) • c] = Rd,n[(a, b) • c].

Note that, if a, b, c ∈ Sn are the lists of ranks for n triplets of observations from
the numerical variables x, y, z, respectively–see (45) and (47)–and rd,n is the Kendall
tau correlation coefficient (i.e., dn = In and rd,n = rK,n), then Equation (52) has
been used for many decades to define “Kendall’s partial tau correlation coefficient
for x and y when z is held constant” (see, for example, [19, Chapter 5]).

Remark 4 For generalized metric sequences (dn|n ∈ N∗) that satisfy Property 3 for
a general C ≥ 1 and are symmetric with respect to complements, inequality (43)
allows us to define a partial rank correlation coefficient in a way that generalizes the
definition of rd,n[(·, ·) • ·] above (for metric sequences). We let

rd,n[(a, b) • c] :=
(2C − 1)rd,n(a, b) − C2rd,n(a, c)rd,n(b, c)

min Ad,n[(a, b) • c; C]
,

where17

Ad,n[(a, b) • c; C] : = {[(2C − 1) − Crd,n(a, c)][(2C − 1) − Crd,n(b, c)],

[(2C − 1) + Crd,n(a, c)][(2C − 1) + Crd,n(b, c)]}
if (2C − 1)rd,n(a, b) − C2rd,n(a, c)rd,n(b, c) ≤ 0, and

Ad,n[(a, b) • c; C] : = {[(2C − 1) − Crd,n(a, c)][(2C − 1) + Crd,n(b, c)],

[(2C − 1) + Crd,n(a, c)][(2C − 1) − Crd,n(b, c)]}
if (2C − 1)rd,n(a, b) − C2rd,n(a, c)rd,n(b, c) ≥ 0. Even though inequality (43) and
equalities (51) can be used to show that −1 ≤ rd,n[(a, b)• c] ≤ 1, the above definition
(for a general C ≥ 1) is not as elegant as the one for the case C = 1 nor does
it have any connection to the Spearman-induced partial rank correlation coefficient
defined in Remark 3 above, which resembles the one in formula (48)18. In addition,
if dn = SQ1,n and C = 2, then rd,n[(·, ·) • ·] (as defined in this remark) clearly does
not equal the Spearman partial rank correlation coefficient given in (48)19.

10 Future research

The research in this paper reveals many open problems that require study and careful
examination. For example, if all permutation pairs (a, b) in Sn × Sn are assumed to
be equally likely and the sample size n goes to infinity, what is the asymptotic
distribution of the right-invariant generalized metrics (and their corresponding rank

17Using a notation introduced earlier in the section, Ad,n[(a, b) • c;C = 1] = Ωd,n[(a, b) • c].
18One can generalize Rd,n[(·, ·) • ·] in (52) for generalized metrics (dn|n ∈ N

∗) as well that satisfy
Property 3 for a general C ≥ 1 and are symmetric with respect to complements. The resulting
formula, however, is as not as elegant as the one for C = 1. To avoid confusion, we omit the relevant
discussion.

19This is the reason we put a tilde over rS,n in (48) so that we can distinguish the usual Spearman
partial rank correlation coefficient from the one defined in this remark with dn = SQ1,n and C = 2.
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correlation coefficients) studied in this paper? For most of the “old” generalized
metrics, the asymptotic theory is well-established–see, for example, [8, 19, 36, 37].

Even if a general asymptotic theory is not feasible, it would be interesting to
study the asymptotic properties of the new right-invariant metric D2,n defined by
(16) (and those of the corresponding rank correlation coefficient rMF,n, defined by
(23)).

The creation of circular generalized metrics using Critchlow’s theory (via the
Hausdorff generalized metric) was studied in Section 8, but a detailed analysis was
given only for the Hamming circular rank correlation coefficient. It will be interesting
to investigate the properties of other circular rank correlation coefficients generated
in the same way.

Finally, the partial rank correlation coefficients introduced in Section 9 require
further analysis and how they relate to the ones introduced in Remark 3 (e.g., one
may study which one of the two has the smallest asymptotic variance).
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