On a conjecture on total domination in claw-free cubic graphs: proof and new upper bound

Nicolas Lichiardopol
Lycée A. de Craponne
Salon
France
nicolas.lichiardopol@neuf.fr

Abstract

In 2008, Favaron and Henning proved that if G is a connected claw-free cubic graph of order $n \geq 10$, then the total domination number $\gamma_{t}(G)$ of G is at most $\frac{5}{11} n$, and they conjectured that in fact $\gamma_{t}(G)$ is at most $\frac{4}{9} n$ (see [O. Favaron and M.A. Henning, Discrete Math. 308 (2008), 3491-3507] and [M.A. Henning, Discrete Math. 309 (2009), 32-63]). In this paper, in a first step, we prove this conjecture and show that the bound is reached for exactly two graphs of order 18. In a second step, we prove that if G is a connected claw-free cubic graph of order $n \geq 20$, then $\gamma_{t}(G) \leq \frac{10}{23} n$, and we show that this second bound is not reached. Henning and Southey (see [Discrete Math. 310 (2010), 2984-2999] also proved the initial conjecture, but in a less natural way. Moreover, they gave two graphs for which the bound is reached without proving that there are no others. An open problem is proposed in the last section.

1 Introduction and notation

We work on simple graphs G (no loops or multiple edges). The set $V(G)$ is the vertex set of G and $v(G)$ is its order, that is, the number of the vertices of G. A neighbor of a vertex x of G is a vertex y such that $x y$ is an edge of G (we say then that x and y are adjacent). The number of the neighbors of x is the degree $d_{G}(x)$ of x. The graph G is regular of degree d if every vertex of G has degree d. When $d=3, G$ is a cubic graph. A subgraph of G is a graph H whose vertices are vertices of G and whose edges are edges of G. An induced subgraph of G is a subgraph H of G such that every edge $x y$ of G, with x and y in $V(H)$, is an edge of H. For a subset S of $V(G), G[S]$ is the induced subgraph whose vertex set is S (we say also that $G[S]$ is the subgraph of G induced by the vertices of S). A spanning subgraph of G is a subgraph H of G with $V(H)=V(G)$. For a subgraph H of G and a vertex x of H, a neighbor of x which is not a vertex of H is an H-external neighbor of x. When it
is clear from the context, we omit H. We say that a subgraph G_{1} of G is adjacent to a subgraph G_{2} of G if there exists an edge between a vertex of G_{1} and a vertex of G_{2}. If G_{1}, \ldots, G_{k} are subgraphs of G, we say that G is a vertex-disjoint union of the subgraphs $G_{i}, 1 \leq i \leq k$, if $V\left(G_{1}\right), \ldots, V\left(G_{k}\right)$ is a partition of $V(G)$.

For $n \geq 2$, the complete graph K_{n} is the graph of order n in which any two distinct vertices are adjacent. The claw $K_{1,3}$ is the graph of order 4 drawn in Fig. 1. A claw-free graph is a $K_{1,3}$-free graph G. This means that for every vertex x of G, the subgraph induced by any three neighbors of x, has at least one edge.

The graph G is connected if for every partition of the vertex set $V(G)$ into two non-empty sets X and Y, there is an edge $x y$ with x in X and y in Y. This means that for every non-spanning subgraph H of G, there exists a vertex of H having an H-external neighbor.

Two simple graphs G and G^{\prime} are isomorphic if there exists a bijection θ from $V(G)$ into $V\left(G^{\prime}\right)$ such that for any two vertices x and y of G, x and y are adjacent in G if and only if $\theta(x)$ and $\theta(y)$ are adjacent in G^{\prime}.

Fig. 1: The claw $K_{1,3}$

A total dominating set (TDS) of a graph G with no isolated vertices is a subset S of $V(G)$ such that every vertex of G is adjacent to a vertex of S. The total domination number $\gamma_{t}(G)$ of G is the minimum cardinality of a TDS of G. Total domination in graphs was introduced by Cockaine, Dawes and Hedetniemi (see[1]) and there is now a wide literature on this subject. Many of the results are in the books of Haynes, Hedetniemi and Slater ([2] and [3]).

In 2008, Favaron and Henning proved that if G is a connected claw-free cubic graph of order $n \geq 10$, then the total domination number $\gamma_{t}(G)$ of G is at most $\frac{5}{11} n$ and they conjectured that in fact $\gamma_{t}(G)$ is at most $\frac{4}{9} n$ (see [4] and [5]). In our paper, we prove this conjecture and then, by a deeper analysis, we improve the proposed bound. More precisely:

Theorem 1.1 a) For every connected claw-free cubic graph G of order $n \geq 10$, we have $\gamma_{t}(G) \leq 4 n / 9$.
b) For every connected claw-free cubic graph G of order $n \geq 20$, we have $\gamma_{t}(G) \leq \frac{10}{23} n$.

In fact Theorem 1.1.a was independently proved by Henning and Southey (see [6]), but our proof is completely different. In addition, our method allows us to prove that the bound is reached for exactly two connected claw-free cubic graphs (Henning
and Southey pointed out these two graphs without proving that there are no others), but especially it is the starting point for proving Theorem 1.1.b.

In Section 2, we give some intermediate results, in Sections 3 and 4 we prove Theorem 1.1, and in Section 5 we study the sharpness of the bounds and an open problem will be given. We specify that for all the figures, the edges in bold are the edges of the graph induced by a TDS.

2 Intermediate results

Recall that a diamond is a graph of order 4, consisting of two triangles sharing a common edge (see Fig. 2).

Fig. 2: A diamond D

Now G is a connected claw-free cubic graph of order $n \geq 10$. By a diamond of G, we mean a diamond D which is a subgraph of G. The free vertices of D are the two vertices of D of degree two in D. The two other vertices are the non-free vertices of D. We observe that since G is connected, the two free vertices of D are not adjacent (in other words a diamond of G is an induced subgraph of G). We also observe that these two free vertices cannot have a common neighbor not in D. Indeed, suppose the opposite and then, let x be a common neighbor, not in D, of the free vertices a and b of D. Since all the vertices of D are of degree 3 in G, x has a neighbor y not in D. Since G is a claw-free graph, there exist at least two vertices of $\{a, b, y\}$ which are adjacent. But then, at least one of the vertices a and b would be of degree greater than 3 , which is not possible. Lastly, we observe that every edge of D is incident with a non-free vertex of D. By a proper triangle, we mean a triangle T of G which is not a subgraph of a diamond of G. This means that any two vertices of T have exactly one common neighbor, namely the third vertex of T.

A piece P of G is either a diamond of G or a proper triangle of G. The first result is:

Lemma 2.1 Two distinct pieces of G are vertex-disjoint.
Proof. Let P and P^{\prime} be two distinct pieces of G. Suppose that P and P^{\prime} are not vertex-disjoint, and then let a be a vertex of P and P^{\prime}. Since a has degree at least 2
in P and P^{\prime}, it follows that a has a neighbor b which is a vertex of P and P^{\prime}. This means that $a b$ is an edge of P and P^{\prime}. We distinguish three cases:
Case 1: P and P^{\prime} are proper triangles.
Since $V(P) \neq V\left(P^{\prime}\right)$ and since a proper triangle cannot be a subgraph of a diamond of G, clearly this is not possible.
Case 2: P and P^{\prime} are diamonds of G.
Observe first that a vertex of $V(P) \cap V\left(P^{\prime}\right)$ cannot be a non-free vertex of P and P^{\prime} (otherwise we would have $V(P)=V\left(P^{\prime}\right)$ and then P and P^{\prime} would be identical. We may assume that a is a free vertex of P, and then b is a non-free vertex of P. This implies that b is a free vertex of P^{\prime}, and then a is a non-free vertex of P^{\prime}. Let d be the other non-free vertex of P. Since a is a vertex of P, d is neighbor of a. Since a is a non-free vertex of P^{\prime}, we deduce that d is also a vertex of P^{\prime}, and then $b d$ is an edge of P and P^{\prime}. Since d is non-free in P, it follows that d is free in P^{\prime}. But then, the vertices b and d are free and adjacent in P^{\prime}, which is not possible.
Case 3: P and P^{\prime} are of distinct types.
We may suppose that P is a diamond and that P^{\prime} is a proper triangle of G. Since a and b are adjacent vertices of P, at least one of these vertices, say a is a non-free vertex of P. Then the third vertex c of P^{\prime} is also a vertex of P (because c is a neighbor of a which is non-free in P). We deduce that the triangle P^{\prime} is a subgraph of P, which is not possible.

In conclusion, we may assert that P and P^{\prime} are vertex-disjoint.
Lemma 2.2 Every vertex x of G is contained in a unique piece of G.
Proof. Since G is claw-free, x is contained in a triangle and then in a piece of G. The uniqueness follows from Lemma 2.1.

Lemmas 2.1 and 2.2 imply that G is vertex-disjoint union of its pieces.
For $m \geq 2$, a chain of pieces of G of length $m-1$ consists of m vertex-disjoint pieces P_{1}, \ldots, P_{m}, such that for every $i, 1 \leq i \leq m-1$, there exists an edge e_{i} between P_{i} and P_{i+1}. The chain-graph $H=P_{1} \ldots P_{m}$ of G is the subgraph of G whose vertex set is the union of the vertex sets of the pieces $P_{i}, 1 \leq i \leq m$, and whose edges are the edges of the pieces $P_{i}, 1 \leq i \leq m$ and the edges $e_{i}, 1 \leq i \leq m-1$. We observe that the edges e_{i} are independent. We further observe that a chain-graph is not necessarily an induced subgraph of G.

The left piece of H is the piece P_{1} and the right piece of G is the piece P_{m}. We specify that the terms "left" and "right" are relative to the labeling $H=P_{1} \ldots P_{m}$ and also to the drawing of H (from left to right by beginning with P_{1}). An end-vertex of H is a vertex of P_{1} or P_{m}. A free left vertex of H is a vertex of the left piece, of degree 2 in H. A free right vertex of H is a vertex of the right piece, of degree 2 in H. A free end-vertex of H is a free left or a free right piece of H. An internal piece of H is a piece P_{i} with $2 \leq i \leq m-1$. Observe that a chain-graph of length 1 has no internal pieces. A free internal vertex of H is a vertex of an internal piece, of degree

2 in H. Observe that an internal diamond has no free internal vertices and that an internal proper triangle has exactly one free internal vertex.

We put $\bar{H}=P_{m} \ldots P_{1}$, and clearly \bar{H} is a chain-graph. In fact H and \bar{H} are identical but differently labeled and drawn. If $H=P_{1} \ldots P_{j}$ and $H^{\prime}=P_{1}^{\prime} \ldots P_{k}^{\prime}$ are vertex-disjoint chain-graphs, and if a free right vertex of H is adjacent to a free left vertex of H^{\prime}, we may define the chain-graph $H H^{\prime}=P_{1} \ldots P_{j} P_{1}^{\prime} \ldots P_{k}^{\prime}$.

We consider now the set \mathcal{H} of the chain-graphs H_{1}, \ldots, H_{13}, labeled and drawn in Fig. 3. The total domination numbers of the graphs of \mathcal{H} are:

$$
\begin{array}{rll}
\gamma_{t}\left(H_{1}\right)=2=\frac{1}{3} v\left(H_{1}\right), & \gamma_{t}\left(H_{2}\right)=3=\frac{3}{7} v\left(H_{2}\right), & \gamma_{t}\left(H_{3}\right)=4=\frac{4}{9} v\left(H_{3}\right), \\
\gamma_{t}\left(H_{4}\right)=4=\frac{2}{5} v\left(H_{4}\right), & \gamma_{t}\left(H_{5}\right)=4=\frac{2}{5} v\left(H_{5}\right), & \gamma_{t}\left(H_{6}\right)=4=\frac{4}{11} v\left(H_{6}\right), \\
\gamma_{t}\left(H_{7}\right)=5=\frac{5}{12} v\left(H_{7}\right), & \gamma_{t}\left(H_{8}\right)=6=\frac{3}{7} v\left(H_{8}\right), & \gamma_{t}\left(H_{9}\right)=6=\frac{2}{5} v\left(H_{9}\right), \\
\gamma_{t}\left(H_{10}\right)=6=\frac{2}{5} v\left(H_{10}\right), & \gamma_{t}\left(H_{11}\right)=6=\frac{3}{8} v\left(H_{11}\right), & \gamma_{t}\left(H_{12}\right)=8=\frac{2}{5} v\left(H_{12}\right), \\
\gamma_{t}\left(H_{13}\right)=8=\frac{8}{19} v\left(H_{13}\right) . &
\end{array}
$$

Graph $H_{1}=T T$

Graph $H_{3}=T T T$

$$
\text { Graph } H_{4}=D T T \quad \text { Graph } H_{5}=T D T \quad \text { Graph } H_{6}=T D D
$$

Graph $H_{7}=D D D \quad$ Graph $H_{8}=D D T T \quad$ Graph $H_{9}=D T D D$

Fig. 3: The chain-graphs of the set \mathcal{H}

We observe that for every chain-graph H of \mathcal{H}, we have $\gamma_{t}(H) \leq \frac{4}{9} v(H)$, with equality for H_{3}. We also observe that the graphs of \mathcal{H} containing a free internal vertex are those of the set $\mathcal{H}^{\prime}=\left\{H_{3}, H_{4}, H_{8}, H_{9}, H_{13}\right\}$ and that each of these graphs contains exactly one free internal vertex. We put $\overline{\mathcal{H}}=\{\bar{H} ; H \in \mathcal{H}\}$.

A chain-graph of type H_{i} (of type \bar{H}_{i}) is a chain-graph having, to within isomorphisms, the same labeling as $H_{i}\left(\right.$ as $\left.\bar{H}_{i}\right)$. For example, a chain-graph of type H_{2} is a chain-graph $D_{1} T_{1}$ where D_{1} is a diamond of G and T_{1} is a proper triangle of G; a chain-graph of type \bar{H}_{6} is a chain-graph $D_{1} D_{2} T_{1}$ where D_{1} and D_{2} are diamonds and T_{1} is a proper triangle. A subgraph of type in \mathcal{H} is a subgraph G^{\prime} of G, isomorphic to a graph of \mathcal{H}. If the type H_{i} is specified, we say that G^{\prime} is of type H_{i}.

When we consider a subgraph G^{\prime} of type H_{i}, we always represent it by a chaingraph of type H_{i}, and then speaking about left vertex, right vertex or internal vertex of G^{\prime} has a sense.

If G_{1}, \ldots, G_{k} are vertex-disjoint chain-graphs with G_{i} of type $H_{p_{i}}^{\prime}$ in \mathcal{H} or in $\overline{\mathcal{H}}$ for $1 \leq i \leq k$, and if $G^{\prime}=G_{1} \ldots G_{k}$ is a chain-graph of G, we say that this chaingraph is of type $H_{p_{1}}^{\prime} \ldots H_{p_{k}}^{\prime}$. An important remark is that G^{\prime} is a vertex-disjoint union of subgraphs of type in \mathcal{H}. For example, a chain-graph $G^{\prime}=T_{1} T_{2} D_{1} T_{3} D_{2} D_{3}$ may be considered as a chain-graph of type $\bar{H}_{4} H_{6}$ but it may also be considered as a chain-graph of type $H_{1} H_{9}$. Then G^{\prime} is a vertex-disjoint union of a subgraph of type H_{4} and of a subgraph of type H_{6}, but it is also a vertex-disjoint union of a subgraph of type H_{1} and of a subgraph of type H_{9}.

Let m be the maximum number of vertices of G covered by a vertex-disjoint union of subgraphs of G of type in \mathcal{H}. Since G is connected, it is easy to see that G contains a subgraph of type in $\left\{H_{1}, H_{2}, H_{7}\right\}$, and consequently $m>0$. For a set S of vertex-disjoint subgraphs of G of type in \mathcal{H} and covering m vertices of G, we
put $W(S)=\bigcup_{H \in S} V(H)$. Now $F(S)$ is the set of the subgraphs of S of type in \mathcal{H}^{\prime} and $f(S)$ is its cardinality. We denote by $f_{3}(S)$ the number of the subgraphs of S of type H_{3}.

Among the sets of vertex-disjoint subgraphs of G of type in \mathcal{H} and covering m vertices of G, we consider sets S with a minimum number of subgraphs of G of type in \mathcal{H}^{\prime} (Condition C1), and among the sets verifying C 1 , we choose a set $S=\left\{H_{j}^{\prime} ; 1 \leq j \leq r\right\}$ with a minimum number of subgraphs of type H_{3} (condition C2). It is clear that if $m<n$, then $V(G) \backslash W(S)$ is a vertex-disjoint union of proper triangles and diamonds of G. We state:

Lemma 2.3

a) Each vertex of a proper triangle T of $V(G) \backslash W(S)$ has exactly one neighbor in $W(S)$ and this neighbor is a free internal vertex of a graph of $F(S)$.
b) Let D be a diamond of $V(G) \backslash W(S)$. At least one of its free vertices has a neighbor in $W(S)$, and a neighbor in $W(S)$ of a free vertex of D is either a free right vertex of a subgraph of S of type H_{2}, or a free internal vertex of a subgraph of S of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$.

Proof. a) Let x be a free vertex of the triangle T. Now x has exactly one neighbor z which is not in T. Suppose that z is not in $W(S)$. Then z is contained in a piece P of $V(G) \backslash W(S)$, vertex-disjoint with T. Since the subgraph $P T$ is of type in \mathcal{H}, $S \cup\{P T\}$ would be a set of vertex-disjoint subgraphs of type in \mathcal{H} covering $m+6$ or $m+7$ vertices of G, which, by maximality of m, is not possible. So z is a vertex of $W(S)$.

Suppose that z is not a free internal vertex of a subgraph of $F(S)$. Then z is either a left vertex of a subgraph H_{j}^{\prime} of S and this yields the chain-graph $T H_{j}^{\prime}$, or a right vertex of a subgraph H_{j}^{\prime} of S and this yields the chain-graph $H_{j}^{\prime} T$. A simple verification shows that a chain-graph $T H$ or $H T$, with H a chain-graph of type in \mathcal{H}, is either a chain graph of type in $\mathcal{H} \cup \overline{\mathcal{H}}$ or a chain-graph $G_{1} G_{2}$ with chain-graphs G_{1} and G_{2} of type in $\mathcal{H} \cup \overline{\mathcal{H}}$. This implies that $T H$ or $H T$ is either a subgraph of type in \mathcal{H}, or a vertex-disjoint union of two subgraphs of type in \mathcal{H}. Then the set $W(S) \cup V(T)$ would be covered by a vertex-disjoint union of subgraphs of type in \mathcal{H}, which, by maximality of m, is not possible. Consequently z is a free internal vertex of a subgraph of $F(S)$, and the result is proved.
b) Let a and c be the free vertices of D. Suppose that a and c have no neighbors in $W(S)$. Since G does not contain a K_{4}, vertex a has a neighbor a_{1} not in D but in $V(G) \backslash W(S)$. This neighbor a_{1} is contained in a piece P_{1} of $V(G) \backslash W(S)$ vertexdisjoint with D (by Lemma 1.1). This yields a chain-graph $D P_{1}$. Since a chain-graph $D T$ is of type in \mathcal{H}, by maximality of m, P_{1} is a diamond, and a_{1} is a free vertex of P_{1}. Since c is adjacent neither with a_{1}, nor with the other free vertex of P_{1} (because G is a connected cubic graph of order $n>8$), it follows that c has a neighbor c_{1}, not in D and not in P_{1} but in $V(G) \backslash W(S)$. The vertex c_{1} is contained in a piece P_{2} of $V(G) \backslash W(S)$, vertex-disjoint with D and P_{1}. This yields the subgraph $P_{2} D P_{1}$, which
is of type in \mathcal{H}. This means that the set $W(S) \cup V\left(P_{2}\right) \cup V(D) \cup V\left(P_{1}\right)$ would be covered by a vertex-disjoint union of subgraphs of type in \mathcal{H}, which, by maximality of m, is not possible. Consequently, at least one of the free vertices of D has a neighbor in $W(S)$.

This being settled, let a be a free vertex of D having a neighbor a_{1} in $W(S)$. As in the proof of 2.3.a, by verification, we prove that a subgraph $D H$ or $H D$ with $H \in \mathcal{H}, H \neq H_{2}$, is either a subgraph of type in \mathcal{H}, or a vertex-disjoint union of two subgraphs of type in \mathcal{H}. This implies that a_{1} cannot be a free end-vertex of a subgraph of S not of type H_{2}. Since a subgraph $D H$, with H subgraph of type H_{2} is of type H_{6}, it follows that a_{1} cannot be a left vertex of a subgraph of type H_{2}. We claim that a_{1} cannot be the free internal vertex of a subgraph of S of type H_{3}. Indeed, suppose that a_{1} is the free internal vertex of a subgraph $G^{\prime}=T_{1} T_{2} T_{3}$ of S. Then $D T_{2} T_{3}$ is a subgraph of G of type $H_{4} \in \mathcal{H}$. Clearly, $W_{1}=\left(W(S) \backslash V\left(T_{1}\right)\right) \cup V(D)$ is covered by a vertex-disjoint union of subgraphs of type in \mathcal{H}, and since W_{1} contains $m+1$ vertices, this is not possible. With a similar reasoning, we deduce that a_{1} cannot be the internal free vertex of a subgraph of S of type H_{8}. So the assertion is proved.

This lemma implies that every end-vertex of a subgraph of S, distinct from H_{2} has all its neighbors in $W(S)$. We continue with:

Lemma 2.4 Every chain-graph of \mathcal{H}^{\prime} is either of type $G_{1} T$ or of type $G_{1} D D$ with G_{1} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}^{\prime}}$.

Proof. By simple verification, the result is immediate.
Lemma 2.5 Let H be a chain-graph of \mathcal{H} distinct from H_{1}.
a) If H is distinct from H_{6}, then a chain-graph TH or $D D H$ is either of type G_{2}, with G_{2} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$, or of type $G_{2} G_{3}$, with G_{2} and G_{3} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}^{\prime}}$.
b) If H is distinct from H_{2}, then a chain graph $T \bar{H}$ or $D D \bar{H}$ is either of type G_{2}, with G_{2} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$, or of type $G_{2} G_{3}$, with G_{2} and G_{3} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}^{\prime}}$.

Proof. a) With the help of Fig. 3, we set: a chain-graph $T H_{2}$ is of type H_{5}; a chain-graph $T H_{3}$ is of type $H_{1} H_{1}$; a chain-graph $T H_{4}$ is of type $\bar{H}_{2} H_{1}$; a chaingraph $T H_{5}$ is of type $H_{1} H_{2}$; a chain-graph $T H_{7}$ is of type \bar{H}_{10}; a chain-graph $T H_{8}$ is of type $H_{6} H_{1}$; a chain-graph $T H_{9}$ is of type $\bar{H}_{2} H_{6}$; a chain-graph $T H_{10}$ is of type $H_{6} H_{2}$; a chain-graph $T H_{11}$ is of type $\bar{H}_{2} H_{7}$; a chain-graph $T H_{12}$ is of type $H_{6} H_{7}$; a chain-graph $T H_{13}$ is of type $H_{6} H_{6}$.

We also set: a chain-graph $D D H_{2}$ is of type H_{10}; a chain-graph $D D H_{3}$ is of type $\bar{H}_{6} H_{1}$; a chain-graph $D D H_{4}$ is of type $H_{7} H_{1}$; a chain-graph $D D H_{5}$ is of type $\bar{H}_{6} H_{2}$; a chain-graph $D D H_{7}$ is of type H_{12}; a chain-graph $D D H_{8}$ is of type $H_{11} H_{1}$; a chain-graph $D D H_{9}$ is of type $H_{7} H_{6}$; a chain-graph $D D H_{10}$ is of type $H_{11} H_{2}$; a chain-graph $D D H_{11}$ is of type $H_{7} H_{7}$; a chain-graph $D D H_{12}$ is of type $H_{11} H_{7}$; a chain-graph $D D H_{13}$ is of type $H_{11} H_{6}$. This proves the assertion.
b) Again with the help of Fig. 3, we set: a chain-graph $T \bar{H}_{3}$ is of type $H_{1} H_{1}$; a chain-graph $T \bar{H}_{4}$ is of type $H_{1} \bar{H}_{2}$; a chain-graph $T \bar{H}_{5}$ is of type $H_{1} H_{2}$; a chaingraph $T \bar{H}_{6}$ is of type $\bar{H}_{2} H_{2}$; a chain-graph $T \bar{H}_{7}$ is of type \bar{H}_{10}; a chain-graph $T \bar{H}_{8}$ is of type $H_{1} H_{6}$; a chain-graph $T \bar{H}_{9}$ is of type $H_{6} \bar{H}_{2}$; a chain-graph $T \bar{H}_{10}$ is of type $H_{1} H_{7}$; a chain-graph $T \bar{H}_{11}$ is of type $\bar{H}_{2} H_{7}$; a chain-graph $T \bar{H}_{12}$ is of type $H_{6} H_{7}$; a chain-graph $T \bar{H}_{13}$ is of type $H_{6} H_{6}$.

We also set: a chain-graph $D D \bar{H}_{3}$ is of type $\bar{H}_{6} H_{1}$; a chain-graph $D D \bar{H}_{4}$ is of type $\bar{H}_{6} \bar{H}_{2}$; a chain-graph $D D \bar{H}_{5}$ is of type $\bar{H}_{6} H_{2}$; a chain-graph $D D \bar{H}_{6}$ is of type $H_{7} H_{2}$; a chain-graph $D D \bar{H}_{7}$ is of type H_{12}; a chain-graph $D D \bar{H}_{8}$ is of type $\bar{H}_{6} H_{6}$; a chain-graph $D D \bar{H}_{9}$ is of type $H_{11} \bar{H}_{2}$; a chain-graph $D D \bar{H}_{10}$ is of type $\bar{H}_{6} H_{7}$; a chain-graph $D D \bar{H}_{11}$ is of type $H_{7} H_{7}$; a chain-graph $D D \bar{H}_{12}$ is of type $H_{11} H_{7}$; a chain-graph $D D \bar{H}_{13}$ is of type $H_{11} H_{6}$. This proves the second assertion.

Lemma 2.6 Let x be a right vertex of a subgraph G^{\prime} of $F(S)$ with an external neighbor y.
a) If G^{\prime} is of type H_{3}, y is either in a subgraph of type H_{1} of S or the internal vertex of a subgraph of $F(S)$.
b) If G^{\prime} is not of type H_{3}, y is either in a subgraph of type H_{1} of S, or a right vertex of a subgraph of type H_{2} of S, or a left vertex of a subgraph of type H_{6} of S, or the internal vertex of a subgraph of $F(S)$.

Proof. For the moment, G^{\prime} is of type not necessarily distinct from H_{3}. By Lemma 2.4, G^{\prime} is of type $G_{1} H^{\prime}$ with G_{1} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$ and with $H^{\prime} \in\{T, D D\}$. It was seen that y is in $W(S)$. Suppose first that y is a free left vertex of a subgraph H of S of type distinct from H_{1} and H_{6}. This yields the chaingraph $G^{\prime} H$. By Lemma 2.5.a, $H^{\prime} H$ is either of type G_{2}, with G_{2} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$, or of type $G_{2} G_{3}$, with G_{2} and G_{3} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$. It follows that $G^{\prime} H$ is either of type $G_{1} G_{2}$, with G_{1} and G_{2} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$, or of type $G_{1} G_{2} G_{3}$, with G_{1}, G_{2} and G_{3} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$. This implies that $G^{\prime} H$ is vertex-disjoint union of two or three subgraphs of type in \mathcal{H} but not in \mathcal{H}^{\prime}. If we replace G^{\prime} and H by these two or three subgraphs, we obtain a set S^{\prime} of vertex-disjoint subgraphs of type in \mathcal{H}, covering m vertices and with either $f\left(S^{\prime}\right)=f(S)-1$ or $f\left(S^{\prime}\right)=f(S)-2$, which, by minimality of $f(S)$, is not possible. So y cannot be a free left vertex of a subgraph of S not of type H_{1} or H_{6}.

Suppose now that y is a free right vertex of a subgraph H of S of type distinct from H_{1} and H_{2}. This yields the chain-graph $G^{\prime} \bar{H}$. By Lemma 2.5.b, $H^{\prime} \bar{H}$ is either of type G_{2}, with G_{2} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$, or of type $G_{2} G_{3}$, with G_{2} and G_{3} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$. It follows that $G^{\prime} \bar{H}$ is either of type $G_{1} G_{2}$, with G_{1} and G_{2} in in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$, or of type $G_{1} G_{2} G_{3}$, with G_{1}, G_{2} and G_{3} in $\mathcal{H} \cup \overline{\mathcal{H}}$ but not in $\mathcal{H}^{\prime} \cup \overline{\mathcal{H}}^{\prime}$. This implies that $G^{\prime} \bar{H}$ is the vertex-disjoint union of two or three subgraphs of type in \mathcal{H} but not in \mathcal{H}^{\prime}. If we replace G^{\prime} and H by these two or three subgraphs, we obtain a set S^{\prime} of vertex-disjoint subgraphs of type in \mathcal{H}, covering m vertices and with either $f\left(S^{\prime}\right)=f(S)-1$ or $f\left(S^{\prime}\right)=f(S)-2$, which, by minimality of $f(S)$, is not possible. So y cannot be a free right vertex of a subgraph of S not of type H_{1} or H_{2}.

Consider now the case where G^{\prime} is of type H_{3}, and suppose first that y is a free left vertex of a subgraph H of S of type H_{6}. Now $G^{\prime} H$ is a chain-graph of type $H_{1} \bar{H}_{8}$, and therefore $G^{\prime} H$ is vertex-disjoint union of two subgraphs, one of type H_{1} and the other of type H_{8} (which is in \mathcal{H}^{\prime} but not of type H_{3}). If we replace G^{\prime} and H by these two subgraphs, we obtain a set S^{\prime} of vertex-disjoint subgraphs of type in \mathcal{H} covering m vertices, with $f\left(S^{\prime}\right)=f(S)$ and $f_{3}\left(S^{\prime}\right)=f_{3}(S)-1$, which, by minimality of $f_{3}(S)$, is not possible. So y cannot be a free left vertex of a subgraph of S of type H_{6}. Suppose now that y is a free right vertex of a subgraph H of S of type H_{2}. Now $G^{\prime} \bar{H}$ is of type $H_{1} \bar{H}_{4}$, and therefore $G^{\prime} \bar{H}$ is the vertex-disjoint union of a subgraph of type H_{1} and of a subgraph of type H_{4} (which is in \mathcal{H}^{\prime} but not of type H_{3}). If we replace G^{\prime} and H by these two subgraphs, we obtain a set S^{\prime} of vertex-disjoint subgraphs of type in \mathcal{H} covering m vertices, with $f\left(S^{\prime}\right)=f(S)$ and $f_{3}\left(S^{\prime}\right)=f_{3}(S)-1$, which, by minimality of $f_{3}(S)$, is not possible. So y cannot be a free right vertex of a subgraph of S of type H_{2}. All this proves the assertions a) and b).

We state now:

Lemma 2.7 Let $F_{1}=G_{1} T_{1} G_{1}^{\prime}$ and $F_{2}=G_{2} T_{2} G_{2}^{\prime}$ be subgraphs of $F(S)\left(T_{1}\right.$ and T_{2} being the internal triangles).
a) A chain-graph $T T_{1} G_{1}$ is a subgraph of type in \mathcal{H}^{\prime}.
b) A chain-graph $G_{1}^{\prime} T$ is a subgraph of type in \mathcal{H}.
c) If $G_{1}^{\prime} G_{1}$ is a chain-graph, then the subgraph $G_{1}^{\prime} G_{1}$ is of type in H.
d) A chain-graph $G_{1}^{\prime} H$, where H is a chain-graph of type in $\left\{H_{1}, \bar{H}_{2}, H_{6}\right\}$, is a subgraph of type in \mathcal{H}^{\prime}.
e) If $G_{1}^{\prime} T_{2} G_{2}$ is a chain-graph, then the subgraph $G_{1}^{\prime} T_{2} G_{2}$ is of type in \mathcal{H}^{\prime}.

Proof. a) If F_{1} is of type H_{3}, G_{1} is a proper triangle, and then $T T_{1} G_{1}$ is a chaingraph of type $H_{3} \in \mathcal{H}^{\prime}$. If F_{1} is of type H_{4}, G_{1} is a diamond, and then $T T_{1} G_{1}$ is a chain-graph of type $\bar{H}_{4} \in \overline{\mathcal{H}}^{\prime}$. If F_{1} is of type H_{8}, G_{1} is a chain-graph $D D$ and then $T T_{1} G_{1}$ is a chain-graph of type $\bar{H}_{8} \in \overline{\mathcal{H}}^{\prime}$. If F_{1} is of type H_{9}, G_{1} is a diamond, and then $T T_{1} G_{1}$ is a chain-graph of type $\bar{H}_{4} \in \overline{\mathcal{H}}^{\prime}$. If F_{1} is of type H_{13}, G_{1} is a chaingraph $D D$ and then $T T_{1} G_{1}$ is a chain-graph of type $\bar{H}_{8} \in \overline{\mathcal{H}}^{\prime}$. These observations show that $T T_{1} G_{1}$ is a subgraph of type in \mathcal{H}^{\prime}.
b) If F_{1} is of type H_{3}, G_{1}^{\prime} is a proper triangle, and then $G_{1}^{\prime} T$ is a chain-graph of type $H_{1} \in \mathcal{H}$. If F_{1} is of type H_{4}, G_{1}^{\prime} is a proper triangle, and then $G_{1}^{\prime} T$ is a chain-graph of type $H_{1} \in \mathcal{H}$. If F_{1} is of type H_{8}, G_{1}^{\prime} is a proper triangle, and then $G_{1}^{\prime} T$ is a chain-graph of type $H_{1} \in \mathcal{H}$. If F_{1} is of type H_{9}, G_{1}^{\prime} is a $D D$, and then $G_{1}^{\prime} T$ is a chain-graph of type $\bar{H}_{6} \in \overline{\mathcal{H}}$. If F_{1} is of type H_{13}, G_{1}^{\prime} is a $D D$, and then $G_{1}^{\prime} T$ is a chain-graph of type $\bar{H}_{6} \in \overline{\mathcal{H}}$. These observations show that $G_{1}^{\prime} T$ is a subgraph of type in \mathcal{H}.
c) If F_{1} is of type H_{3}, G_{1}^{\prime} is a proper triangle, G_{1} is a proper triangle and then $G_{1}^{\prime} G_{1}$ is of type $H_{1} \in \mathcal{H}$. If F_{1} is of type H_{4}, G_{1}^{\prime} is a proper triangle, G_{1} is a diamond and then $G_{1}^{\prime} G_{1}$ is of type $\bar{H}_{2} \in \overline{\mathcal{H}}$. If F_{1} is of type H_{8}, G_{1}^{\prime} is a proper triangle, G_{1} is a double diamond and then $G_{1}^{\prime} G_{1}$ is of type $H_{6} \in \mathcal{H}$. If F_{1} is of type H_{9}, G_{1}^{\prime} is
a double diamond, G_{1} is a diamond and then $G_{1}^{\prime} G_{1}$ is of type $H_{7} \in \mathcal{H}$. If F_{1} is of type H_{13}, G_{1}^{\prime} is a double diamond, G_{1} is a double diamond and then $G_{1}^{\prime} G_{1}$ is of type $H_{11} \in \mathcal{H}$. These observations show that $G_{1}^{\prime} G_{1}$ is a subgraph of type in \mathcal{H}.
d) G_{1}^{\prime} is either a proper triangle or a double diamond. Suppose first that G_{1}^{\prime} is a proper triangle. Then a chain-graph $G_{1}^{\prime} H_{1}$ is of type $H_{3} \in \mathcal{H}^{\prime}$. A chain-graph $G_{1}^{\prime} \bar{H}_{2}$ is of type $\bar{H}_{4} \in \overline{\mathcal{H}}^{\prime}$. A chain-graph $G_{1}^{\prime} H_{6}$ is of type $\bar{H}_{8} \in \overline{\mathcal{H}}^{\prime}$. Suppose now that G_{1}^{\prime} is a double diamond. Then a chain-graph $G_{1}^{\prime} H_{1}$ is of type $H_{8} \in \mathcal{H}^{\prime}$. A chain-graph $G_{1}^{\prime} \bar{H}_{2}$ is of type $\bar{H}_{9} \in \overline{\mathcal{H}}^{\prime}$. A chain-graph $G_{1}^{\prime} H_{6}$ is of type $H_{13} \in \mathcal{H}^{\prime}$. So, the assertion is proved.
e) It is easy to see that we have $G_{1}^{\prime} \in\{T, D D\}$ and $G_{2} \in\{T, D, D D\}$. Then $G_{1}^{\prime} T_{2} G_{2}$ is of type in
$\{T T T, T T D, T T D D, D D T T, D D T D, D D T D D\}=\left\{H_{3}, \bar{H}_{4}, \bar{H}_{8}, H_{8}, \bar{H}_{9}, H_{13}\right\}$.
This proves the assertion.
Let $D_{F(S)}$ be the digraph whose vertex set is $F(S)$ and whose arcs are the couples $\left(H_{j}^{\prime}, H_{k}^{\prime}\right)$ such that there exists a free right vertex of H_{j}^{\prime} having the free internal vertex of H_{k}^{\prime} as neighbor. Observe that $D_{F(S)}$ could have loops. An important result is:

Lemma 2.8 The set $V(G) \backslash W(S)$ does not contain proper triangles.
Proof. Suppose the opposite, and then let T be a proper triangle of $V(G) \backslash W(S)$. Let x be a vertex of T. By Lemma 2.3.a, x is adjacent to the free internal vertex of a graph $G_{1} T_{1} G_{1}^{\prime}$ of $F(S)$ (so, x is adjacent to the free vertex of the internal triangle $\left.T_{1}\right)$. Let $G_{1} T_{1} G_{1}^{\prime}, \ldots G_{s} T_{s} G_{s}^{\prime}$ be a directed path of $D_{F(S)}$ starting from $G_{1} T_{1} G_{1}^{\prime}$ and of maximum length (see Fig. 4 when $s \geq 6$). Observe that the maximum length could be 0 .

Fig. 4: A directed path of maximum length

Let y be a free right vertex of $G_{s} T_{s} G_{s}^{\prime}$. By maximality of s, y is not adjacent to the free internal vertex of a graph of $D_{F(S)}$, distinct for the graphs $G_{i} T_{i} G_{i}^{\prime}, 1 \leq i \leq s$. Furthermore y is not adjacent to the free internal vertex of a graph $G_{i} T_{i} G_{i}^{\prime}, 1 \leq i \leq s$ (because all the vertices of the triangles T_{i} have three neighbors distinct from y. By Lemma 2.3.a, y is not adjacent to a vertex of T. In view of Lemma 2.6, four cases remain:
Case 1: y is adjacent to a left vertex of the subgraph G_{s}.
When $s \geq 3$, by Lemma 2.7, $T T_{1} G_{1}, G_{1}^{\prime} T_{2} G_{2}, \ldots, G_{s-2}^{\prime} T_{s-1} G_{s-1}, G_{s-1}^{\prime} T_{s}$ and $G_{s}^{\prime} G_{s}$ are vertex-disjoint subgraphs of type in \mathcal{H}, and their union is $V(T) \cup \bigcup_{1 \leq i \leq s} V\left(G_{i} T_{i} G_{i}^{\prime}\right)$. Then $W(S) \cup V(T)$ would be a vertex-disjoint union of subgraphs of type in \mathcal{H}, which,
by maximality of m, is not possible.
When $s=1$ (this means that the directed path is reduced to a vertex), $T T_{1}$ and $G_{1}^{\prime} G_{1}$ are vertex-disjoint subgraphs of type in \mathcal{H} and then $W(S) \cup V(T)$ would be a vertex-disjoint union of subgraphs of type in \mathcal{H}, which, by maximality of m, is not possible.
When $s=2$, by Lemma 2.7 (a,b and c), $T T_{1} G_{1}, G_{1}^{\prime} T_{2}$ and $G_{2}^{\prime} G_{2}$ are vertex-disjoint subgraphs of type in \mathcal{H} and then $W(S) \cup V(T)$ would be a vertex-disjoint union of subgraphs of type in \mathcal{H}, which, by maximality of m, is not possible.
Case 2: y is adjacent to a vertex of a subgraph H of S of type H_{1}.
When $s \geq 2$, by Lemma 2.7, $T T_{1} G_{1}, G_{1}^{\prime} T_{2} G_{2}, \ldots, G_{s-1}^{\prime} T_{s} G_{s}$ and $G_{s}^{\prime} H$ are vertexdisjoint subgraphs of type in \mathcal{H} and then $W(S) \cup V(T)$ would be a vertex-disjoint union of subgraphs of type in \mathcal{H}, which is not possible by maximality of m.
When $s=1, T T_{1} G_{1}$ and $G_{1}^{\prime} H$ are vertex-disjoint subgraphs of type in \mathcal{H}, and then $W(S) \cup V(T)$ would be a vertex-disjoint union of subgraphs of type in \mathcal{H}, which, by maximality of m, is not possible.
Case 3: y is adjacent to a free right vertex of a subgraph H of S of type H_{2}.
When $s \geq 2$, by Lemma 2.7, $T T_{1} G_{1}, G_{1}^{\prime} T_{2} G_{2}, \ldots, G_{s-1}^{\prime} T_{s} G_{s}$ and $G_{s}^{\prime} \bar{H}$ are vertexdisjoint subgraphs of type in \mathcal{H} and then $W(S) \cup V(T)$ would be a vertex-disjoint union of subgraphs of type in \mathcal{H}, which, by maximality of m, is not possible.
When $s=1, T T_{1} G_{1}$ and $G_{1}^{\prime} \bar{H}$ are vertex-disjoint subgraphs of type in \mathcal{H}, and then $W(S) \cup V(T)$ would be a vertex-disjoint union of subgraphs of type in \mathcal{H}, which, by maximality of m, is not possible.
Case 4: y is adjacent to a free left vertex of a subgraph H of S of type H_{6}.
This is similar to the case 2 .
In any case, we get a contradiction, and so, the result is proved.
This lemma means that when $m<n, V(G) \backslash W(S)$ is a vertex-disjoint union of diamonds.

Lemma 2.9 There exists a set S of vertex-disjoint subgraphs $H_{j}^{\prime}, 1 \leq j \leq r$ of type in \mathcal{H}, covering m vertices, verifying conditions $C 1$ and C2, and such that for any diamond D of $V(G) \backslash W(S)$, the two D-external neighbors of its two free vertices are not in the same triangle of a subgraph of S of type $H_{2}($ condition $\mathbf{C} 3)$.

Proof. Consider a set S of vertex-disjoint subgraphs of type in \mathcal{H}, covering m vertices, verifying conditions C 1 and C 2 , and such that $V(G) \backslash W(S)$ has a minimum number s of diamonds D whose two D-external neighbors of its two free vertices are in the same triangle of a subgraph of S of type H_{2}. Suppose that $s \geq 1$. Then there exists a diamond D of $V(G) \backslash W(S)$ such that the free vertices of D are adjacent to the two free vertices of the triangle T_{1} of a subgraph $D_{1} T_{1}$ of S, of type H_{2}. Then $S^{\prime}=\left(S \backslash\left\{D_{1} T_{1}\right\}\right) \cup\left\{D T_{1}\right\}$ is a set of vertex-disjoint subgraphs of type in \mathcal{H}, covering m vertices, verifying conditions C 1 and C 2 , and there are $s-1$ diamonds of $V(G) \backslash W(S)$ satisfying the required conditions. By minimality of s, this is not possible. So $s=0$, and the result is proved.

3 Proof of Theorem 1.1.a

By hypothesis G is a connected claw-free cubic graph of order $n \geq 10$. We work on a set S of vertex-disjoint subgraphs $H_{j}^{\prime}, 1 \leq j \leq r$ of type in \mathcal{H}, covering m vertices, and verifying conditions C1, C2 and C3. We may suppose $m<n$ (for otherwise 1.1.a is proved).

Suppose that two diamonds D and D^{\prime} are adjacent to the same triangle of a subgraph G^{\prime} of type H_{2}. We denote then by $G^{\prime}\left(D, D^{\prime}\right)$ the graph obtained in this way (Fig. 5), and we say that it is a graph of type H_{14}.

Suppose now that a diamond D is adjacent to the triangles of two subgraphs G^{\prime} and G_{1}^{\prime} of type H_{2}. We denote then by $D\left(G^{\prime}, G_{1}^{\prime}\right)$ the graph obtained in this way (Fig. 5), and we say that it is a graph of type H_{15}. We observe that for a graph $G^{\prime}\left(D, D^{\prime}\right)$ we have $\gamma_{t}\left(G^{\prime}\left(D, D^{\prime}\right)\right)=6=\frac{2}{5} v\left(G^{\prime}\left(D, D^{\prime}\right)\right)$, and that for a graph $D\left(G^{\prime}, G_{1}^{\prime}\right)$ we have $\gamma_{t}\left(D\left(G^{\prime}, G_{1}^{\prime}\right)\right)=8=\frac{4}{9} v\left(D\left(G^{\prime}, G_{1}^{\prime}\right)\right)$.

Fig. 5: Graphs $G^{\prime}\left(D, D^{\prime}\right)$ of type H_{14} and $D\left(G^{\prime}, G_{1}^{\prime}\right)$ of type H_{15}

For a diamond D having a free vertex adjacent to the free internal vertex of a subgraph $G^{\prime \prime}$ of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$, we denote by $D \rightarrow G^{\prime \prime}$ the graph whose vertex set is $V(D) \cup V\left(G^{\prime \prime}\right)$ and whose edges are those of D and $G^{\prime \prime}$ and the edge between D and the internal triangle of $G^{\prime \prime}$. This yields three graphs which are drawn in Fig. 6. A graph $D \rightarrow H_{4}$ will be a graph of type H_{16}, a graph $D \rightarrow H_{9}$ will be a graph of type H_{17}, and a graph $D \rightarrow H_{13}$ will be a graph of type H_{18}. The total domination numbers of these graphs are $\gamma_{t}\left(D \rightarrow H_{4}\right)=6=\frac{3}{7} v\left(D \rightarrow H_{4}\right)$, $\gamma_{t}\left(D \rightarrow H_{9}\right)=8=\frac{8}{19} v\left(D \rightarrow H_{9}\right)$ and $\gamma_{t}\left(D \rightarrow H_{13}\right)=10=\frac{10}{23} v\left(D \rightarrow H_{13}\right)$.

Now, we suppose that S is such that the maximum number of vertex-disjoint subgraphs $G^{\prime}\left(D, D^{\prime}\right)$, with D and D^{\prime} in $V(G) \backslash W(S)$ and G^{\prime} in S, of type H_{2}, is maximum (condition C4). We denote by p this maximum. If $p>0$, let $G_{1}\left(D_{1}, D_{1}^{\prime}\right), \ldots, G_{p}\left(D_{p}, D_{p}^{\prime}\right)$ be p vertex-disjoint subgraphs of type H_{14} with D_{i}, D_{i}^{\prime} in $V(G) \backslash W(S)$ and G_{i} in S, of type H_{2}.

Let q be the maximum number of vertex-disjoint subgraphs $D\left(G^{\prime}, G_{1}^{\prime}\right)$, with D in

Fig. 6: Graphs $D \rightarrow H_{4}, D \rightarrow H_{9}$ and $D \rightarrow H_{13}$
$V(G) \backslash W(S)$, and $G^{\prime}, G_{1}^{\prime}$ in S, of type H_{2}, and vertex-disjoint with the subgraphs $G_{i}\left(D_{i}, D_{i}^{\prime}\right), 1 \leq i \leq p$. If $q>0$, let $D_{i}^{\prime \prime}\left(G_{i}^{\prime}, G_{i}^{\prime \prime}\right), 1 \leq i \leq q$ be a family of such subgraphs.

Let t be the maximum number of vertex-disjoint subgraphs $D \rightarrow G^{\prime}$, with D in $V(G) \backslash W(S), G^{\prime}$ in S of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$, vertex-disjoint with the subgraphs $G_{i}\left(D_{i}, D_{i}^{\prime}\right), 1 \leq i \leq p$, and with the subgraphs $D_{i}^{\prime \prime}\left(G_{i}^{\prime}, G_{i}^{\prime \prime}\right), 1 \leq i \leq q$. If $t>0$, let $D_{i}^{3} \rightarrow G_{i}^{3}, 1 \leq i \leq t$ be a family of such graphs. We state:

Claim 3.1 The vertex-disjoint subgraphs, defined above, use all the diamonds of $V(G) \backslash W(S)$.

Proof. Suppose that there exists a diamond \mathcal{D} of $V(G) \backslash W(S)$ which is not used. Suppose that there exists a free vertex of \mathcal{D} adjacent to the free internal vertex of a subgraph H of S, of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$. Since for $1 \leq i \leq t$, the free internal vertex of G_{i}^{3} has degree 3 in the subgraph $D_{i}^{3} \rightarrow G_{i}^{3}, H$ is none of the subgraphs G_{i}^{3}, $1 \leq i \leq t$. But then, the $D_{i}^{3} \rightarrow G_{i}^{3}, 1 \leq i \leq t$, and $\mathcal{D} \rightarrow H$, would form a family of $t+1$ subgraphs $D \rightarrow G^{\prime}$, with D in $V(G) \backslash W(S), G^{\prime}$ in S of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$, vertex-disjoint with the subgraphs $G_{i}\left(D_{i}, D_{i}^{\prime}\right), 1 \leq i \leq p$ and with the subgraphs $D_{i}^{\prime \prime}\left(G_{i}^{\prime}, G_{i}^{\prime \prime}\right), 1 \leq i \leq q$, which is not possible. So each of the two free vertices of \mathcal{D} is not adjacent to the free internal vertex of a subgraph of S of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$. Then, by Lemma 2.3.b, there exists a free vertex of \mathcal{D}, say x, adjacent to a free right vertex of a subgraph H of S, of type H_{2}.

We claim that the \mathcal{D}-external neighbor z of the other free vertex y of \mathcal{D}, is in $W(S)$. Indeed, suppose the opposite. Then z is a free vertex of a diamond \mathcal{D}^{\prime} of $V(G) \backslash W(S)$, vertex-disjoint with \mathcal{D}. But then, since $\mathcal{D}^{\prime} \mathcal{D} \bar{H}$ is a subgraph of type $H_{9}, S^{\prime}=(S \backslash\{H\}) \cup\left\{\mathcal{D}^{\prime} \mathcal{D} \bar{H}\right\}$ is a set of vertex-disjoint subgraphs of type in \mathcal{H}, covering $m+8$ vertices, which, by maximality of m, is not possible. So z is in $W(S)$ and then necessarily z is a free right vertex of a subgraph H^{\prime} of S, of type H_{2}. Since S verifies condition C3 (see Lemma 2.9), the subgraphs H and H^{\prime} are vertex-disjoint. Clearly, since for $1 \leq i \leq p$, all the vertices of the triangles of the subgraphs G_{i} are of degree 3 in $G_{i}\left(D_{i}, D_{i}^{\prime}\right), H^{\prime}$ and H are vertex-disjoint with
the subgraphs $G_{i}, 1 \leq i \leq p$. Then the subgraph $\mathcal{D}\left(H, H^{\prime}\right)$, of type H_{15} is vertexdisjoint with the subgraphs $G_{i}\left(D_{i}, D_{i}^{\prime}\right), 1 \leq i \leq p$. If one of the subgraphs H and H^{\prime}, say H , is a subgraph G_{i}^{\prime} or $G_{i}^{\prime \prime}, 1 \leq i \leq q$, then $H\left(\mathcal{D}, D_{i}^{\prime \prime}\right)$ would be a graph of type H_{14}, vertex-disjoint with the subgraphs $G_{i}\left(D_{i}, D_{i}^{\prime}\right), 1 \leq i \leq p$, which, by maximality of p, is not possible. So H^{\prime} and H are vertex-disjoint with the graphs G_{i}^{\prime} and $G_{i}^{\prime \prime}, 1 \leq i \leq q$. But then the subgraph $\mathcal{D}\left(H, H^{\prime}\right)$, of type H_{15}, vertex-disjoint with the subgraphs $G_{i}\left(D_{i}, D_{i}^{\prime}\right), 1 \leq i \leq p$, is also vertex-disjoint with the subgraphs $D_{i}^{\prime \prime}\left(G_{i}^{\prime}, G_{i}^{\prime \prime}\right), 1 \leq i \leq q$, which is again impossible (by maximality of q). Consequently, all the diamonds of $V(G) \backslash W(S)$ are used, and the result is proved.

The cited subgraphs and the remaining subgraphs of the set S form a set S^{\prime} of vertex-disjoint subgraphs of type in $\mathcal{H}_{1}=\mathcal{H} \cup\left\{H_{14}, H_{15}, H_{16}, H_{17}, H_{18}\right\}$ and whose union is $V(G)$. Since for $H \in S^{\prime}$ we have $\gamma_{t}(H) \leq \frac{4}{9} v(H)$, it is easy to see that this implies $\gamma_{t}(G) \leq \frac{4}{9} n$. So Theorem 1.1.a is proved.

4 Proof of Theorem 1.1.b

Now G is a connected claw-free cubic graph of order $n \geq 20$. We work on the sets S and S^{\prime} (obtained from S) described in Section 3. We recall that S is a set of vertex-disjoint subgraphs of G, of type in $\mathcal{H}=\left\{H_{1}, \ldots, H_{13}\right\}$, verifying conditions $\mathbf{C 1}, \mathbf{C} 2, \mathbf{C} 3$, and that S^{\prime} is a set of vertex-disjoint subgraphs of type in $\mathcal{H}_{1}=$ $\mathcal{H} \cup\left\{H_{14}, H_{15}, H_{16}, H_{17}, H_{18}\right\}$, covering $V(G)$. We also recall that S^{\prime} is such that the number p of subgraphs of S^{\prime} of type H_{14} is maximum (condition C4).

We denote by α the maximum number of the subgraphs $G_{1} G_{2}$ with G_{1} in S^{\prime}, of type H_{3}, and G_{2} in S^{\prime}, of type H_{1}. We say that such subgraphs are of type H_{19} (see Fig. 7)

Fig. 7: Subgraph of type H_{19}

Let $S_{19}^{\prime \prime}$ be a set of α such subgraphs. For a subgraph G^{\prime} of $S_{19}^{\prime \prime}$, we have $\gamma_{t}\left(G^{\prime}\right)=$ $6=\frac{2}{5} v\left(G^{\prime}\right)<\frac{10}{23} v\left(G^{\prime}\right)$. The new subgraphs of $S_{19}^{\prime \prime}$, the remaining subgraphs of type H_{1} or H_{3}, and all the other subgraphs of S^{\prime}, form a set $S^{\prime \prime}$ of vertex-disjoint subgraphs of type in $\mathcal{H}_{2}=\mathcal{H}_{1} \cup\left\{H_{19}\right\}$, covering all the vertices of G. For $1 \leq i \leq 19$, we denote by $S_{i}^{\prime \prime}$ the set of the subgraphs of S of type H_{i}, and $s_{i}^{\prime \prime}$ is the cardinality of $S_{i}^{\prime \prime}$. We may suppose that $S^{\prime \prime}$ is such that the number $s_{19}^{\prime \prime}$ of the subgraphs of type H_{19} is maximum.

We observe that for a subgraph $H \in S^{\prime \prime}$, not of type H_{3} or H_{15}, we have $\gamma_{t}(H) \leq$ $\frac{10}{23} v(H)$, with equality if H is of type H_{18}. If H is of type H_{3} or H_{15}, we have $\gamma_{t}(H)=\frac{4}{9} v(H)>\frac{10}{23} v(H)$. So the critical subgraphs of $S^{\prime \prime}$ are those of type H_{3} and H_{15}.

Suppose that there exists a subgraph $H=T_{1} T_{2} T_{3}$ of $S_{3}^{\prime \prime}$, such that the neighbors of the free end-vertices of H are not external. Then the free end-vertices a, b, c and d of H are of degree 2 in the subgraph G^{\prime} of G, induced by the five free vertices of H. The degree in G^{\prime} of the free internal vertex e of H is at most 1 , and since the sum of the degrees in G^{\prime} of the five vertices of G^{\prime} is even, e is of degree 0 in G^{\prime}. This means that e has an H-external neighbor. But now, by considering an edge between T_{1} and $T_{3}, H^{\prime}=T_{1} T_{3} T_{2}$ is a subgraph of type H_{3}, and the free internal vertex of H is a free right vertex of H^{\prime} having an external neighbor. Thus, we may assume, even if it means replacing a subgraph of type H_{3} by another subgraph of type H_{3} with the same vertices, that for every subgraph H of $S_{3}^{\prime \prime}$, there exists at least a free end-vertex of H having an H-external neighbor. Let x be a free end-vertex of a subgraph $T_{1} T_{2} T_{3}$ of $S_{3}^{\prime \prime}$, having an external neighbor y. Without loss of generality, we may suppose that x is in T_{3}. By Lemma 2.6.a, y is either in a subgraph of S of type H_{1}, or the free internal vertex of a subgraph of S of type in \mathcal{H}^{\prime}. Since y is not contained in a subgraph of S, of type H_{2}, y cannot be a vertex of a subgraph of $S^{\prime \prime}$, of type H_{14} or H_{15}. We also observe that y cannot be a vertex of a subgraph of $S_{1}^{\prime \prime}$ (for otherwise, we would have subgraphs of type H_{19} in extra). If $H=T_{1}^{\prime} T_{2}^{\prime} T_{3}^{\prime} T_{4}^{\prime} T_{5}^{\prime}$ is a subgraph of $S_{19}^{\prime \prime}$ with $T_{1}^{\prime} T_{2}^{\prime} T_{3}^{\prime}$ in S^{\prime}, of type H_{3}, and $T_{4}^{\prime} T_{5}^{\prime}$ in S^{\prime}, of type H_{1}, then by Lemma 2.6.a, y cannot be a vertex of T_{1}^{\prime} or T_{3}^{\prime}. We claim that y cannot be either a vertex of T_{5}^{\prime}. Indeed, suppose the opposite. Then $\left(S \backslash\left\{T_{1} T_{2} T_{3}, T_{1}^{\prime} T_{2}^{\prime} T_{3}^{\prime}, T_{4}^{\prime} T_{5}^{\prime}\right\}\right) \cup\left\{T_{1} T_{2}, T_{3} T_{5}^{\prime}, T_{4}^{\prime} T_{3}^{\prime}, T_{2}^{\prime} T_{1}^{\prime}\right\}$ is a set of vertex-disjoint subgraphs of type in \mathcal{H}, covering m vertices, but with $f(S)-2$ subgraphs of type in \mathcal{H}^{\prime}, which, by minimality of $f(S)$, is not possible. So y cannot be a vertex of T_{5}^{\prime}. Since the free internal vertex of a subgraph G^{\prime} of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$ has degree 3 in a subgraph $D \rightarrow G^{\prime}$ of $S^{\prime \prime}, y$ cannot be a vertex of a subgraph of $S^{\prime \prime}$ of type in $\left\{H_{16}, H_{17}, H_{18}\right\}$.

In conclusion, we may state that if a free end-vertex of a subgraph of $S_{3}^{\prime \prime}$ has an external neighbor, this external neighbor is either the free internal vertex of a subgraph of $S^{\prime \prime}$, of type in $\mathcal{H}^{\prime}=\left\{H_{3}, H_{4}, H_{8}, H_{9}, H_{13}\right\}$, or a free vertex of one of the triangles T_{2} and T_{4} of a subgraph $H=T_{1} T_{2} T_{3} T_{4} T_{5}$ of $S_{19}^{\prime \prime}$.

We denote by Ω the set of the subgraphs of $S^{\prime \prime}$, of type in $\left\{H_{4}, H_{8}, H_{9}, H_{13}, H_{19}\right\}$, with a free internal vertex adjacent to a free end-vertex of a subgraph of $S_{3}^{\prime \prime}$. We put $W_{1}=\left(\bigcup_{H \in S_{3}^{\prime \prime}} V(H)\right) \cup\left(\bigcup_{H \in \Omega} V(H)\right)$, and we state:
Claim 4.1 We have $\gamma_{t}\left(G\left[W_{1}\right]\right) \leq \frac{10}{23} v\left(G\left[W_{1}\right]\right)$.
Proof. Let β be the number of the free end-vertices of the subgraphs of $S_{3}^{\prime \prime}$ having a free internal vertex of a subgraph of $S^{\prime \prime}$, of type in $\left\{H_{4}, H_{8}, H_{9}, H_{13}, H_{19}\right\}$, as external neighbor. We denote by $S_{3,1}^{\prime \prime}$ the set of the subgraphs of $S_{3}^{\prime \prime}$ whose free internal vertex has a free end-vertex of a subgraph of $S_{3}^{\prime \prime}$ as external neighbor, and $s_{3,1}^{\prime \prime}$ is its cardinality.

Let $H=T_{1} T_{2} T_{3}$ be a subgraph of $S_{3,1}^{\prime \prime}$. There exists a subgraph $H^{\prime}=T_{1}^{\prime} T_{2}^{\prime} T_{3}^{\prime}$ of $S_{3}^{\prime \prime}$, vertex-disjoint with H, such that the free vertex of T_{2} is adjacent to a free endvertex of H^{\prime}. Without loss of generality, we may suppose that this free end-vertex is in T_{3}^{\prime}. Since a vertex of T_{1} cannot be adjacent to a vertex of T_{3} (for otherwise we
could replace the subgraphs H and H^{\prime} of type H_{3} by the subgraphs $T_{1}^{\prime} T_{2}^{\prime}, T_{3}^{\prime} T_{2}$ and $T_{1} T_{3}$, of type H_{1}), we deduce that the four end-vertices of H have external neighbors. Let β^{\prime} denote the number of the free end-vertices of the subgraphs of $S_{3}^{\prime \prime}$ having an external neighbor. We have $\beta^{\prime} \geq 4 s_{3,1}^{\prime \prime}+s_{3}^{\prime \prime}-s_{3,1}^{\prime \prime}$, that is $\beta^{\prime} \geq 3 s_{3,1}^{\prime \prime}+s_{3}^{\prime \prime}$. Since the free internal vertex of a subgraph of $S_{3,1}^{\prime \prime}$, has exactly one free end-vertex of a subgraph of $S_{3}^{\prime \prime}$ as external neighbor and since a free end-vertex of a subgraph of $S_{3}^{\prime \prime}$ has at most one external neighbor, we deduce that the number of the free end-vertices of the subgraphs of $S_{3}^{\prime \prime}$ having a free internal vertex of a subgraph of $S_{3}^{\prime \prime}$ as external neighbor, is equal to $s_{3,1}^{\prime \prime}$. We have then $\beta^{\prime}=\beta+s_{3,1}^{\prime \prime}$, and from the above inequality, we deduce $\beta \geq s_{3}^{\prime \prime}+2 s_{3,1}^{\prime \prime}$.

For $i \in\{4,8,9,13,19\}$, let β_{i} be the number of the free end-vertices of the subgraphs of $S_{3}^{\prime \prime}$ having a free internal vertex of a subgraph of $S_{i}^{\prime \prime}$, as external neighbor. Let β_{19}^{\prime} be the number of the subgraphs of $S_{19}^{\prime \prime}$ having one free internal vertex adjacent to a free end-vertex of a subgraph of $S_{3}^{\prime \prime}$ and let $\beta_{19}^{\prime \prime}$ be the number of the subgraphs of $S_{19}^{\prime \prime}$ having two free internal vertices adjacent to two free end-vertices of subgraphs of $S_{3}^{\prime \prime}$. For $i \in\{4,8,9,13\}$, the number of the subgraphs of $S_{i}^{\prime \prime}$ whose free internal vertex is adjacent to a free end-vertex of a subgraph of $S_{3}^{\prime \prime}$ is β_{i}. We have then $\beta=\beta_{4}+\beta_{8}+\beta_{9}+\beta_{13}+\beta_{19}^{\prime}+2 \beta_{19}^{\prime \prime}$. The orders of the graph-chains H_{3}, $H_{4}, H_{8}, H_{9}, H_{13}$ and H_{19} are, respectively, $9,10,14,15,19$ and 15 . We then get $v\left(G\left[W_{1}\right]\right)=9 s_{3}^{\prime \prime}+10 \beta_{4}+14 \beta_{8}+15 \beta_{9}+19 \beta_{13}+15 \beta_{19}^{\prime}+15 \beta_{19}^{\prime \prime}$

Since the subgraphs of type $H_{3}, H_{4}, H_{8}, H_{9}, H_{13}$ and H_{19} have total dominating sets with respectively $4,4,6,6,8$ and 6 vertices, we deduce:

$$
\begin{equation*}
\gamma_{t}\left(G\left[W_{1}\right]\right) \leq 4 s_{3}^{\prime \prime}+4 \beta_{4}+6 \beta_{8}+6 \beta_{9}+8 \beta_{13}+6 \beta_{19}^{\prime}+6 \beta_{19}^{\prime \prime} \tag{4.1}
\end{equation*}
$$

The inequality:

$$
\begin{align*}
& 4 s_{3}^{\prime \prime}+4 \beta_{4}+6 \beta_{8}+6 \beta_{9}+8 \beta_{13}+6 \beta_{19}^{\prime}+6 \beta_{19}^{\prime \prime} \leq \\
& \quad \frac{10}{23}\left(9 s_{3}^{\prime \prime}+10 \beta_{4}+14 \beta_{8}+15 \beta_{9}+19 \beta_{13}+15 \beta_{19}^{\prime}+15 \beta_{19}^{\prime \prime}\right) \tag{4.2}
\end{align*}
$$

is equivalent to the inequality:

$$
\begin{equation*}
2 s_{3}^{\prime \prime} \leq 12 \beta_{19}^{\prime}+12 \beta_{19}^{\prime \prime}+8 \beta_{4}+2 \beta_{8}+12 \beta_{9}+6 \beta_{13} . \tag{4.3}
\end{equation*}
$$

We have $\beta \geq s_{3}^{\prime \prime}+2 s_{3,1}^{\prime \prime}$; hence

$$
\begin{equation*}
2 s_{3}^{\prime \prime} \leq 2 \beta \tag{4.4}
\end{equation*}
$$

Since $\beta=\beta_{4}+\beta_{8}+\beta_{9}+\beta_{13}+\beta_{19}^{\prime}+2 \beta_{19}^{\prime \prime}$, it is easy to see that

$$
\begin{equation*}
2 \beta \leq 12 \beta_{19}^{\prime}+12 \beta_{19}^{\prime \prime}+8 \beta_{4}+2 \beta_{8}+12 \beta_{9}+6 \beta_{13} . \tag{4.5}
\end{equation*}
$$

From (4.4) and (4.5), we deduce (4.3) and (4.2). From (4.1) and (4.2), we deduce $\gamma_{t}\left(G\left[W_{1}\right]\right) \leq \frac{10}{23} v\left(G\left[W_{1}\right]\right)$, and the claim is proved.

If $S_{15}^{\prime \prime}=\emptyset$, Theorem 1.1.b is proved. So we suppose that $S_{15}^{\prime \prime} \neq \emptyset$ and then let $H=D_{1,1} T_{1,1} D_{1,2} T_{1,2} D_{1,3}$ be a subgraph of $S_{15}^{\prime \prime}\left(D_{1,2}\right.$ is the diamond not in $\left.W(S)\right)$. Now H has two free end-vertices (one in $D_{1,1}$ and one in $D_{1,3}$). We claim that
these two free end-vertices are not adjacent. Indeed, suppose the opposite. Then $\left(S \backslash\left\{D_{1,1} T_{1,1}, D_{1,3} T_{1,2}\right\}\right) \cup\left\{D_{1,2} T_{1,1}, T_{1,2} D_{1,3} D_{1,1}\right\}$ would be a set of vertex-disjoint subgraphs of type in \mathcal{H}, covering $m+4$ vertices, which is not possible. So the two free end-vertices of H are not adjacent, and since G is connected of order $n \geq 20$, at least one of them has an H-external neighbor. Without loss of generality, we may suppose that the free vertex x of $D_{1,3}$ has an H-external neighbor y (which is in $W(S)$, by Lemma 2.3.b). We state:

Claim $4.2 y$ is either the free internal vertex of a subgraph H^{\prime} of $S^{\prime \prime}$ of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$, or a free right vertex of a subgraph H^{\prime} of $S^{\prime \prime}$ of type H_{2}.

Proof. $\mathfrak{S}=\left(S \backslash\left\{D_{1,3} T_{1,2}\right\}\right) \cup\left\{D_{1,2} T_{1,2}\right\}$ is a set of vertex-disjoint subgraphs of \mathcal{H} covering m vertices, verifying conditions C1, C2, C3, C4, and $D_{1,3}$ is not in $W(\mathfrak{S})$. Clearly, y which is in $W(S)$ is also in $W(\mathfrak{S})$. By Lemma 2.3.b (applied to \mathfrak{S}), y is either the free internal vertex of a subgraph H^{\prime} of \mathfrak{S} of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$ (and H^{\prime} is also in S), or a free right vertex of a subgraph H^{\prime} of \mathfrak{S} of type H_{2} (and H^{\prime} is also in S). Since the free internal vertex of a subgraph G^{\prime} of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$ has degree 3 in a subgraph $D \rightarrow G^{\prime}$ of $S^{\prime \prime}$, we know that y cannot be a vertex of a subgraph of $S^{\prime \prime}$, of type in $\left\{H_{16}, H_{17}, H_{18}\right\}$. Since the free right vertices of a subgraph G^{\prime} of type H_{2} have degree 3 in a subgraph $G^{\prime}\left(D, D^{\prime}\right)$ of $S^{\prime \prime}$, it follows that y cannot be a vertex of a subgraph of $S^{\prime \prime}$, of type H_{14}.

We claim that y cannot be a free vertex of a subgraph $H^{\prime}=D_{1,1}^{\prime} T_{1,1}^{\prime} D_{1,2}^{\prime} T_{1,2}^{\prime} D_{1,3}^{\prime}$ of $S^{\prime \prime}$, of type H_{15}. Indeed, suppose the opposite. Then y is necessarily the free vertex of one of the proper triangles of H^{\prime}, say $T_{1,2}^{\prime}$. Consider the p vertex-disjoint subgraphs $G_{i}\left(D_{i}, D_{i}^{\prime}\right), 1 \leq i \leq p$, of type H_{14}, with D_{i}, D_{i}^{\prime} in $V(G) \backslash W(S)$ and G_{i} in S, of type H_{2}. Clearly, for $1 \leq i \leq p$, the diamonds D_{i}, D_{i}^{\prime} are in $V(G) \backslash W(\mathfrak{S})$ and G_{i} is in \mathfrak{S}, of type H_{2}. Denote by $H^{\prime \prime}$ the subgraph $D_{1,3}^{\prime} T_{1,2}^{\prime}$ of S of type H_{2}. We observe that $H^{\prime \prime}\left(D_{1,3}, D_{1,2}^{\prime}\right)$ is a subgraph of type H_{14} with $D_{1,3}, D_{1,2}^{\prime}$ in $V(G) \backslash W(\mathfrak{S})$ and $H^{\prime \prime}$ in \mathfrak{S}, of type H_{2}, vertex-disjoint with the subgraphs $G_{i}\left(D_{i}, D_{i}^{\prime}\right), 1 \leq i \leq p$. By maximality of p this is impossible, and consequently, y cannot be a free vertex of a subgraph of $S^{\prime \prime}$ of type H_{15}. In conclusion, y is either the free internal vertex of a subgraph H^{\prime} of $S^{\prime \prime}$ of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$, or a free right vertex of a subgraph H^{\prime} of $S^{\prime \prime}$ of type H_{2}, and so the result is proved.

When y is the free internal vertex of a subgraph H^{\prime} of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$, we get a subgraph $H \rightarrow H^{\prime}$. If H^{\prime} is of type H_{4}, we call it a subgraph of type H_{20}, if H^{\prime} is of type H_{9}, we call it a subgraph of type H_{21}, and if H^{\prime} is of type H_{13}, we call it a subgraph of type H_{22} (see Fig. 8). When y is a free right vertex of a subgraph H^{\prime} of $S^{\prime \prime}$, of type H_{2}, we get a chain-graph $H \bar{H}^{\prime}$, and we call it a subgraph of type H_{23} (Fig. 8). For a graph G^{\prime} of type in $\left\{H_{20}, H_{21}, H_{22}, H_{23}\right\}$, we have $\gamma_{t}\left(G^{\prime}\right)<\frac{10}{23} v\left(G^{\prime}\right)$.

We state also:
Claim 4.3 Let $H=D_{4} T_{4}$ be a subgraph of $S^{\prime \prime}$ of type H_{2}. The two free right vertices of H cannot be both adjacent to two end-vertices of two distinct subgraphs of $S^{\prime \prime}$ of type H_{15}.

Fig. 8: Graphs H_{20}, H_{21}, H_{22} and H_{23}

Proof. Suppose the opposite. Then there exist two vertex-disjoint subgraphs $D_{1} T_{1} D_{2} T_{2} D_{3}$ and $D_{1}^{\prime} T_{1}^{\prime} D_{2}^{\prime} T_{2}^{\prime} D_{3}^{\prime}$ of $S^{\prime \prime}$, of type H_{15}, such that the free vertex of D_{3} is adjacent to a free vertex of T_{4} and the free vertex of D_{3}^{\prime} is adjacent to the other free vertex of T_{4}.

Then $\mathfrak{S}=\left(S \backslash\left\{D_{3} T_{2}, D_{3}^{\prime} T_{2}^{\prime}\right\}\right) \cup\left\{D_{2} T_{2}, D_{2}^{\prime} T_{2}^{\prime}\right\}$ is a set of vertex-disjoint subgraphs of type in \mathcal{H}, covering m vertices and verifying conditions $\mathrm{C} 1, \mathrm{C} 2$ and C 3 . But then the number of the vertex-disjoint subgraphs $G^{\prime}\left(D, D^{\prime}\right)$, with D and D^{\prime} in $V(G) \backslash$ $W(\mathfrak{S})$ and G^{\prime} in \mathfrak{S}, of type H_{2}, is at least $p+1$ (because $H\left(D_{3}, D_{3}^{\prime}\right)$ is such a subgraph), which, by maximality of p, is not possible. So the result is proved.

Let u be the maximum number of vertex-disjoint subgraphs of type in $\left\{H_{20}, H_{21}\right.$, $\left.H_{22}, H_{23}\right\}$, using subgraphs of $S^{\prime \prime}$ of type in $\left\{H_{15}, H_{4}, H_{9}, H_{13}, H_{2}\right\}$.

Let $G_{1} \rightarrow G_{1}^{\prime}, \ldots, G_{k} \rightarrow G_{k}^{\prime}, G_{k+1} \bar{G}_{k+1}^{\prime}, \ldots, G_{u} \bar{G}_{u}^{\prime}$ be a family of u vertex-disjoint subgraphs with G_{i} in $S_{15}^{\prime \prime}$ for $1 \leq i \leq u, G_{i}^{\prime} \in S^{\prime \prime}$ of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$ for $1 \leq i \leq k$, and G_{i}^{\prime} in $S_{2}^{\prime \prime}$ for $k+1 \leq i \leq u$. We claim that this family use all the subgraphs of $S_{15}^{\prime \prime}$. Indeed, suppose that there exists a subgraph H of $S_{15}^{\prime \prime}$ which is not used. It was seen (Claim 4.2) that there exists a subgraph H^{\prime} of $S^{\prime \prime}$, of type in $\left\{H_{2}, H_{4}, H_{9}, H_{13}\right\}$, forming with H a subgraph $G^{\prime \prime}$ of type in $\left\{H_{20}, H_{21}, H_{22}, H_{23}\right\}$. It is easy to see that if H^{\prime} is of type in $\left\{H_{4}, H_{9}, H_{13}\right\}$, it is distinct from the subgraphs $G_{i}^{\prime}, 1 \leq i \leq k$ (an internal vertex has at most one external neighbor) and that if H^{\prime} is of type H_{2}, it is distinct from the subgraphs $G_{i}^{\prime}, k+1 \leq i \leq u$ (by Claim 4.3). But then $G_{1} \rightarrow G_{1}^{\prime}, \ldots, G_{k} \rightarrow G_{k}^{\prime}, G_{k+1} \bar{G}^{\prime}{ }_{k+1}, \ldots, G_{u} \bar{G}^{\prime}{ }_{u}$ and $G^{\prime \prime}$ are $u+1$ vertex-disjoint subgraphs of type in $\left\{H_{20}, H_{21}, H_{22}, H_{23}\right\}$, using subgraphs of $S^{\prime \prime}$ of type in $\left\{H_{15}, H_{4}, H_{9}, H_{13}, H_{2}\right\}$, which, by maximality of u, is not possible. So, all the subgraphs of $S_{15}^{\prime \prime}$ are used. Since the vertices of $G\left[W_{1}\right]$ are either vertices of subgraphs of type in $\left\{H_{3}, H_{19}\right\}$, or vertices of subgraphs of type in $\left\{H_{4}, H_{8}, H_{9}, H_{13}\right\}$ with the free internal vertex adjacent to a free end-vertex of a subgraph of type H_{3}, the u cited subgraphs are vertex-disjoint with the subgraph $G\left[W_{1}\right]$. The subgraph $G\left[W_{1}\right]$, the subgraphs $G_{1} \rightarrow G_{1}^{\prime}, \ldots, G_{k} \rightarrow G_{k}^{\prime}, G_{k+1} \bar{G}^{\prime}{ }_{k+1}, \ldots, G_{u} \bar{G}^{\prime}{ }_{u}$ and the remaining subgraphs of $S^{\prime \prime}$ form a set $\mathfrak{S}^{\prime \prime}$ of vertex-disjoint subgraphs whose covering G and for $H \in \mathfrak{S}^{\prime \prime}$, we have $\gamma_{t}(H) \leq \frac{10}{23} v(H)$. It is easy to see that this implies $\gamma_{t}(G) \leq \frac{10}{23} n$, and consequently Theorem 1.1.b is proved.

5 To reach or not to reach

Consider a connected claw-free cubic graph G of order $n \geq 10$. It was seen that $\gamma_{t}(G) \leq \frac{4}{9} n$ holds, and that if $n \geq 20$, we have $\gamma_{t}(G) \leq \frac{10}{23} n<\frac{4}{9} n$. Consequently, if we want $\gamma_{t}(G)=\frac{4}{9} n$, necessarily $n=18$ and necessarily also, G is a vertex-disjoint union of subgraphs of type H_{3} or H_{15}. If there are no subgraphs of type H_{15}, there are no diamonds, and then we have $\gamma_{t}(G) \leq \frac{2}{5} n<\frac{4}{9} n$ (see [4]), and therefore the bound is not reached. Consequently, there are subgraphs of type H_{15}, and as a subgraph of this type has 18 vertices, G has a subgraph of type H_{15} as spanning subgraph, and the two free end-vertices of this spanning subgraph are not adjacent. This yields two possible graphs (Fig. 9), and it is easy to verify that the bound is effectively reached by these two graphs. In conclusion, the first upper bound is reached only for the two graphs of Fig. 9.

Now we will prove that the second bound is not reached; in other words, we will prove that for any connected claw-free cubic graph G of order $n \geq 20$, we have $\gamma_{t}(G)<\frac{10}{23} n$.

Suppose that there exists a connected claw-free cubic graph G of order $n \geq 20$, with $\gamma_{t}(G)=\frac{10}{23} v(G)$. Within the notation already used, we deduce:

- $S^{\prime \prime}$ has no subgraphs of type in $\left\{H_{1}, H_{2}, H_{5}, H_{6}, H_{7}, H_{10}, H_{11}, H_{12}, H_{14}, H_{15}\right.$,

Fig. 9: The graphs G with $\gamma_{t}(G)=\frac{4}{9} v(G)$
$\left.H_{16}, H_{17}\right\}$. Consequently, the subgraphs of $S^{\prime \prime}$ are of type in $\left\{H_{3}, H_{4}, H_{8}, H_{9}\right.$, $\left.H_{13}, H_{18}, H_{19}\right\}$.

- Necessarily we have $\gamma_{t}\left(G\left[W_{1}\right]\right)=\frac{10}{23} v\left(G\left[W_{1}\right]\right)$, and then all the large inequalities (4.1)-(4.5) are equalities. It follows that $\beta_{19}^{\prime}=\beta_{19}^{\prime \prime}=\beta_{4}=\beta_{9}=\beta_{13}=0$, and then $S^{\prime \prime}$ has no subgraphs of type in $\left\{H_{4}, H_{9}, H_{13}, H_{19}\right\}$ (because for such a subgraph H we have $\left.\gamma_{t}(H)<\frac{10}{23} v(H)\right)$. So the subgraphs of $S^{\prime \prime}$ are of type in $\left\{H_{3}, H_{8}, H_{18}\right\}$.
- We have $s_{3,1}^{\prime \prime}=0$, and then $s_{3}^{\prime \prime}=\beta=\beta_{8}$. This means that each subgraph of type H_{3} has exactly one end-vertex having an external neighbor, and this external neighbor is the free-internal of a subgraph of type H_{8}. This gives the graph in Fig. 10 that we call graph of type H_{24}.

Fig. 10: Graph of type H_{24}

We conclude that G is vertex-disjoint union of subgraphs of type H_{18}, H_{24} and H_{8}. But as $\gamma_{t}\left(H_{8}\right)<\frac{3}{7} v\left(H_{8}\right)$ and $\gamma_{t}(H)=\frac{10}{23} v(H)$ for a subgraph H of type in H_{18} or H_{24}, G is the vertex-disjoint union of subgraphs of type H_{18} or H_{24}.

Since G is connected of even order, there exists a subgraph G^{\prime} of G whose vertex set is is the union of the vertex sets of two vertex-disjoint subgraphs H and H^{\prime} of type H_{18} or H_{24} and whose edges are those of H and H^{\prime} and a single edge between a free vertex of H and a free vertex of H^{\prime}. A simple verification (but a little long), shows that in any case we have $\gamma_{t}\left(G^{\prime}\right)<\frac{10}{23} n$, which implies $\gamma_{t}(G)<\frac{10}{23} n$.

We finish with:
Open problem. For an integer $k \geq 2$, we denote by \mathcal{G}_{k} the set of the connected claw-free cubic graphs G with $v(G) \geq 2 k$, and we put $f_{t}(k)=\sup \left(\frac{\gamma_{t}(G)}{v(G)}, G \in \mathcal{G}_{k}\right)$.
Q1. For given $k \geq 2$, are there graphs $G \in \mathcal{G}_{k}$ such that $\gamma_{t}(G)=f_{t}(k) \times v(G)$?
Q2. It is easy to see that the sequence $f_{t}(k), k \geq 2$, converges. What is the value of $\lim _{k \rightarrow+\infty} f_{t}(k)$?

In this paper we have proved that $f_{t}(5)=\frac{4}{9}$ and $f_{t}(10) \geq \frac{10}{23}$. We have $f_{t}(2)=$ $f_{t}(3)=f_{t}(4)=\frac{1}{2}$. For $k \geq 2$, we have $\frac{1}{3} \leq f_{t}(k)$ and $f_{t}(k+1) \leq f_{t}(k)$. This justifies the convergence.

Acknowledgements

Many thanks to the referees for their help.

References

[1] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total dominationin in graphs, Networks, 10 (1980), 211-219.
[2] T. W. Haynes, S. T. Hedetniemi end P. J. Slater (Eds), Fondamental on domination in graphs, Marcel Decker, Inc., New York, 1998.
[3] T. W. Haynes, S. T. Hedetniemi end P. J. Slater (Eds), Domination in graphs: Advanced topics, Marcel Decker, Inc., New York, 1998.
[4] O. Favaron, M. A. Henning, Bounds on total domination in claw-free cubic graphs, Discrete Math. 308 (2008), 3491-3507.
[5] M. A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math. 309 (2009), 32-63.
[6] M. A. Henning, J. Southey, On a conjecture on total domination in claw-free cubic graphs, Discrete Math. 310 (2010), 2984-2999.

