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ABSTRACT 

A 3 -graph is a cubic graph endowed with a proper edge colouring in three colours. 

Surfaces can be modelled by means of 3-graphs. We show how 3 -graphs can be used to 

establish the standard classification of sUrfaces by orientability and Euler characteristic. 

1. INTRODUCTION 

In [8], Tutte approaches topological graph theory from a combinatorial viewpoint. 
In particular, an entirely combinatorial approach to the classification of sUli'aces is given. 
He uses the idea of a premap, which is expressed in [6] as a special kind of 3-graph. In 

the next section, we define 3-graphs as cubic graphs endowed with a proper edge 

colouring in three colours. They are also studied in [3, 9] in the more general setting of 
n-graphs, a variation of the traditional simplicial complex approach to algebraic topology. 
In fact, the classification of surfaces in terms of 3-graphs is a direct consequence of the 
main theorem in [3], and is explicitly stated in [10]. Our purpose here is to show how the 
classification of surfaces by means of 3-graphs follows from Tutte's approach in [8] and 
the relationship between 3-graphs and premaps. We shall find that this approach provides 

a possible tool for proving theorems about cubic graphs with a proper edge colouring in 
three colours. Since most of this paper consists of reproving a known result, it may be 
classed as expository. 

Throughout this paper, the sum of sets is defined as their symmetric difference. 
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The graphs we consider lack loops, unless we indicate otherwise, but may have 

multiple edges. This paper is concerned only with finite graphs, those graphs G in which 

the vertex set VG and edge set EG are both finite .. Two distinct edges of a graph are said 
to be adjacent if they are incident on a common vertex. If T ~ EG, then we write G[TJ 

for the subgraph of G whose edge set is T and whose vertex set is the set of all vertices of 
G incident with at least one edge ofT. We sometimes write VT = VG[T] when no 
ambiguity results. 

A path P joining two vertices, a and b, in the same component of G is the edge set 
of a minimal connected subgraph of G containing a and b. If x and yare vertices or edges 
of a path P, then we denote by PIx, y] the edge set of the unique minimal connected 

subgraph of G[P] containing x and y. A circuit in G is the edge set of a non-empty 

connected subgraph in which each vertex has degree 2. If C is a circuit, the elements of 
VC are sometimes referred to as vertices of C. If v is a vertex in VC incident on edges el 

and e2 of C, then Cv denotes the path C {el' e2}' Thus if x, y E VC - {v}, then Cv[x, y] 

denoted the path in C which joins x and y and does not pass through v. The length of a 
path or circuit is its cardinality. 

2. 3-GRAPHS AND PREMAPS 

Let K be a cubic graph. A proper edge colouring of K is a colouring of the edges so 
that adjacent edges receive distinct colours. A 3-graph is defined as an ordered triple 
(K, P, 0) where K is a non-empty cubic graph endowed with a proper edge colouring P 

in three colours and 0 is an ordering of the three colours. We shall assume throughout 

that the three colours are red, yellow and blue. We write K = (K, P, 0) when no 
ambiguity results. The set obtained from EK by deletion of the edges of a specified 

colour is the union of a set of disjoint circuits, called bigons. Thus bigons are of three 

types: red-yellow, red-blue and blue-yellow. Following Lins[4, 5], we define a gem to be 
a 3-graph in which the red-blue bigons are quadrilaterals (circuits of length 4), called 
bisquares. A 2-cell embedding of a graph G, which may have loops, in a closed surface 

can be modelled by means of a gem (see [1, 4, 5, 7]). 

The relationship between gems and premaps is established in [6]. Let X be a set 

such that IXI is divisible by 4. Let e and ¢ be permutations on X satisfying the conditions 
(j2 = ¢2 = I and e¢ = ¢e, and suppose x, ex, ¢x, e¢x are distinct for each x E X. Let P be 
another permutation on X such that P e = ep - 1, and for each x let the orbits of P through 

x and ex be distinct. Then (X, e, ¢, P) defines a premap, M. Tutte also defines PL as the 

permutation group generated by a non-empty set L of permutations of X. Then the 
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premap M is a map if for each x E X and y E X there is a permutation n E p( 8, </J, P} such 

that nx = y. 

We now show how to construct a gem K(M) that represents a premap M. Each 
element of X is represented by a vertex. For each x E X, let us draw a red edge joining x 
to ex, a blue edge joining x to ¢x and a yellow edge joining x to P&x. (See Figure 1.) It is 
shown in [6] that this construction yields a gem. 
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P8x.... ..e P8¢x 

'.~" .. ".,:"' .• ----., ... ~ ...... './ 
.............. _ ..... Red 

I I 
I I 
I I 

____ ..uBlue 8x, •• ¢8x 

.
....•..•.•..•..•••••••• . ............ . 
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Px ••..•.•.••. • ... , .• P¢x 

FIGURE 1 

Conversely for any gem K it is easy to construct a premap M for which K = K(M). 

X is the vertex set of K, and the red and blue edges determine the involutions 8 and ¢ 
respectively. Moreover, for any vertex x, Px is the unique vertex joined to 8x by a yellow 

edge. 
Evidently the premap M is a map if and only if K(M) is connected. 

Let M be a map. It is shown in [8, p.257] that the number of equivalence classes 

determined by p( 8</J, P} is either 1 or 2, where two objects are regarded as equivalent if 

some permutation in P(8</J, P} maps one onto the other. We call these equivalence classes 
the orientation classes of M. The premap Mis orientable if the number of orientation 
classes is 2, and non-orientable otherwise. The following lemma is proved in [5, 6] and a 

generalisation of it appears in [9]. 

LEMMA 1. A map M is orientable if and only if K(M) is bipartite. 

In general, we say a 3-graphis orientable if it is bipartite, and non-orientable 

otherwise. 
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We let B(K), Y(K), R(K) denote the sets of red-yellow, red-blue, and blue-yellow 
bigons respectively in a 3-graph K. Let r(K) be the total number of bigons in K. We 
define the Euler characteristic of K to be 

X(K) = r(K) 
IVKI 

2 . 

(See [1,5, 6].) The Euler characteristic of a map M is XCK(M)). 
Tutte [8] defines a surface as the class of all maps with a given Euler characteristic 

and given orientability character, provided that the class is non-empty. In our setting, such 

a class corresponds to a class of connected gems. However, we will work in the more 
general setting of 3-graphs and define a surface as the class of all connected 3-graphs 

with a given Euler characteristic and a given orientability character, provided that the class 

is non-empty. The main theorem of this paper classifies all such surfaces. It states that 
one 3-graph can be obtained from another by a finite number of "moves" if and only if 
they belong to the same surface, where the moves are the crystallisation moves of [3] and 
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are defined in the next section. 

3. DIPOLES 

Let v and W be a pair of adjacent vertices in a 3-graph K. Suppose that v and ware 
linked by one edge b, which is blue. Following Ferri and Gagliardi [3], we say that b is a 
blue 1-dipole if the red-yellow bigons A andB passing through v and w respectively are 
distinct. Let cI and c2 be the yellow edges incident on v and w respectively. Let al and a2 

be the red edges incident on v and w respectively. Let VI, v2, wI, w2 be the vertices other 
than v and w incident on Cl' aI' C2' a2 respectively. The cancellation of this blue I-dipole 
b is the operation of deletion of the vertices v and w followed by the insertion of edges c 

and a linking vl to wI and v2 to w2 respectively. (See Figure 2.) We denote the resulting 
3-graph by K - [b]. We observe that A and B have coalesced into one red-yellow bigon 
A'. The creation of a blue I-dipole is the inverse operation. Similar definitions can be 
made for red and yellow 1-dipoles. 

cancellation 

creation 

FIGURE 3 

r
1 

I C 

i wl 

Now suppose that v and ware linked by two edges a and b coloured red and blue 
respectively. Following Ferri and Gagliardi [3], we say that {a, b} is a red-blue 2-dipole 
if the yellow edges cI and c2 incident on v and w respectively are distinct. Let cI link v 
and vI and let c21ink wand WI' The cancellation of this red-blue 2-dipole is the operation 
of deletion of the vertices v and w followed by the insertion of an edge c linking vI to WI' 

(See Figure 3.) We denote the resulting 3-graph by K - [a, b]. We observe that c1 and c2 
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have coalesced into one yellow edge c. The creation of a red-blue 2-dipole is the inverse 

operation. Similar definitions can be made for red-yellow and blue-yellow 2-dipoles. 

We note that the yellow edge cl is a yellow I-dipole in K and that the 3-graph 

K - [cd is isomorphic to K - [a, b]. Hence cancellation or creation of a 2-dipole is in fact 

a special case of a I-dipole cancellation or creation. 

A f.1-move is a cancellation or creation of a I-dipole. Two 3-graphs are f.1-equivalent 

if one can be obtained from the other by a finite sequence of /-i-moves. It is shown in [3] 

that two 3-graphs are equivalent if and only if the corresponding surfaces are 

homeomorphic. Thus the following theorem is equivalent to the classification of surfaces, 

due to Dehn and Heegaard [2]. Our proof is essentially theirs translated into the setting of 

coloured graphs. A similar proof in terms of premaps appears in [8J. The proof of the 

necessity appears as Lemma 2, and the proof of the sufficiency appears in Sections 4 and 

5. 

THEOREM 1. Two connected 3-graphs K and.l are f.1-equivalent if and only if they 

have the same Euler characteristic and orientability character. 

LEMMA 2. If two connected 3-graphs K and.l are f.1-equivalent, then they belong to 

the same surface. 

Proof. We may assume that I is obtained from K by cancellation of a l-dipole. We 

will show that XCK) X(J) and that K is bipartite if and only if I is bipartite. Indeed, in a 

I-dipole cancellation the number of bigons drops by one and the number of vertices by 

two. Therefore 

xC!) r(J) 
IVII 

2 

r(K) 
IVKI 
2+1 

= XCK). 

Now assume that K is bipartite. Therefore, one may colour the vertices of K black 

or white so that adjacent vertices receive distinct colours. Evidently v and w receive 
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distinct colours, as do vI and wI' and v2 and w2' Hence we conclude that J is bipartite. 
Similarly K is bipartite if J is bipartite. 0 

We conclude this section by describing another operation on 3-graphs called 
cancellation of a red-blue bigon. This operation is in fact a pair of dipole cancellations. 

Suppose Y to be a red-blue bigon of length 4 in a 3-graph K. Label the edges and 
vertices incident on Yas in Figure 4a. If b is a blue I-dipole then let K' = K - [b]. (See 
Figure 4b.) Let a' denote the red edge of K' that links v' and w'. If [a', b' ] is a red-blue 
2-dipole then let Kif = K' [a', b' ]. (See Figure 4c.) We say that K" is obtained from K 

by cancellation of the red-blue bigon Y. Let c and c' denote the yellow edges that link VI 

and WI' and v2 and w2' respectively. The inverse operation is described as splitting c and 
c' to create the red-blue bigon Y. By definition K and Kif are ,u-equivalent. 

• VI V2 ,. 

~~'t -; -b]"( 
w[--- w' 

•.... ~.~... "'~~ ...• 
a) b) 

FIGURE 4 

4. REDUCED AND UNITARY 3-GRAPHS 

The 3-graph with two vertices is trivial. 

C) 

We assume given a connected 3-graph K. Suppose K has at least two red-yellow 
bigons. Since K is connected there must exist a blue I-dipole in K. Cancelling this dipole 

reduces the number of red-yellow bigons by one. Proceeding inductively, we obtain a 
connected 3-graph which has exactly one red-yellow bigon. Similarly, we reduce to I the 
numbers of blue-yellow and red-blue bigons by red I-dipole and yellow I-dipole 
cancellations. The resulting 3-graph is a reduced 3-graph of K, and has just 3 bigons, one 

of each type. Note that a reduced 3-graph of K is ,u-equivalent to K. 

LEMMA 3. IfK is a connected 3-graph thenx(K) ~ 2. Moreover (lX(K) = 2 then K 

is bipartite and the only reduced 3-graph of K is trivial. 

93 



BONNINGTON AND LITfLE 

Proof. Let K' denote a reduced 3-graph of K. Since K and K' are ,u-equivalent, we 

have X(K) = X(K'). Furthermore 

X(K') 
IVK'I 

r(K')- -2-

::; 2 

since all 3-graphs have at least 2 vertices. If X(K) = X(K') = 2 then IVK'I = 2, and K' is the 
trivial 3-graph. Since the trivial 3-graph is bipartite, we have that K is bipartite by Lemma 

2.0 

The combinatorial sphere is the class of all connected 3-graphs with Euler 

characteristic 2, and all 3-graphs in it are called planar. Thus the trivial 3-graph is planar. 
A connected 3-graph K is unitary if IB(K)I = IR(K)I = 1. Hence reduced 3-graphs 

are unitary. 

LEMMA 4. A connected 3 -graph K is ,u-equivalent to the trivial 3-graph or a 

unitary gem. 

Proof. Let K' denote a reduced 3-graph of K. If K is planar then K' is the trivial 

3-graph by Lemma 3 and we are done. Hence we assume otherwise. Let B denote the 
red-yellow bigon in K' and let Y be the red-blue bigon in K'. If Y is a digon (a circuit of 

length 2), then each yellow edge incident on Y is a yellow I-dipole, a contradiction. If Y is 

a bisquare, then K' is a unitary gem and we are done. In the remaining case, let al and a2 

be red edges of Y both adjacent to a common blue edge b. Let PI and P 2 be the two paths 

of B - {aI, a2}' Clearly there exist yellow edges cl E PI and c2 E P2, and therefore we 

split cl and c2 to create a red-blue bisquare Y l' Let K" denote the resulting graph. 
Evidently b is a blue I-dipole in K", and therefore we cancel it to obtain a unitary 3-graph 

U. The red-blue bigon in V corresponding to Y has one blue edge less than Y. Proceeding 

inductively we obtain a unitary 3-graph V' where the red-blue bigon corresponding to Y 
is a bisquare. However V' is a unitary gem since all new red-blue bigons created were 

bisq uares. 0 

Let us now study the case in which the surface is not the combinatorial sphere. 

Starting with an arbitrary 3-graph, we change it by ,u-moves, as in Lemma 4, into a 

unitary gem U. 
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Let B be the one red-yellow bigon in U. Let Y be an arbitrary red-blue bigon of U. 

Label the edges and vertices incident on Y as in Figure 4a. If w' E V (B v{ v, w]) then we 

say that Y is a cross-cap of B. (See Figure 5.) It is an assembled cross-cap of B if there 

exists a subpath of B with just two red edges, both in Y. If Y is not a cross-cap then it is a 

cap of B. 

~ .••. " ..... 
{ 

. 
: 
\ 

"""'###1".111 

FIGURE 5 
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Suppose there exist two caps X and Y of B. Again we label the edges and vertices 

incident on Y as in Figure 4a. If IX (\ Bw'[v, w]1 1 then we say that X and Yare bound in 
B, and {X, Y} is a handle of B. (See Figure 6.) Such a handle is assembled if there exists 

a subpath of B with just four red edges, all in X u Y . 

I 
T 
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Y 
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FIGURE 6 
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LEMMA 5. A given unitary gem U is p-equivalent to another unitary gem J for 

which all the cross-caps are assembled. 

Proof. Let B be the one red-yellow bigon in U and let Y be an unassembled cross­

cap. Label the edges of B incident on vertices of VY as in Figure 7a. Split d and d' to 
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create a red-blue bigon X and let VI denote the resulting gem. (Figure 7b.) In V', a and a l 

belong to distinct red-yellow bigons. Hence we may let V" denote the gem obtained by 
cancelling Y in VI. (Figure 7c.) Clearly IB(U")I = IB(V)I = 1 and IR(V")I = IR(V)I = 1. It 
is also clear that X is an assembled cross-cap in V". Moreover, no assembled cross-cap 
in V has been lost; the red edges of such a cross-cap are in B - {c, a, d, cl , aI, dl }. 

By this procedure we can reduce to the case in which every cross-cap of V is 
assembled. 0 

a) 

b) 

c) 
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LEMMA 6. Let V be a unitary gem with all cross-caps assembled. Then all caps in 

U are bound. 

Proof. Suppose there exists an unbound cap Yin V. Label the vertices and edges 
adjacent to Y as in Figure 4a. Since there is no blue edge in V that has terminal vertices in 

both VBv[v', w'] and VBAv, w], band b' must belong to distinct blue-yellow bigons. 

This contradicts the fact that V is unitary. 0 

Consider our unitary gem in which all cross-caps are assembled. Then Lemma 6 

tells us that either the red-blue bigons are all assembled cross-caps or there are two red­
blue bigons that constitute a handle. The next lemma deals with the assembly of handles. 

LEMMA 7. By afznite sequence afp-moves, we can convert a given unitary gem 

into one in which each red-blue bigon is an assembled cross-cap or a member of an 

assembled handle. 

Proof. Suppose there exists a handle {X, Y} in U. The following uses the notation 

in Figure 8a. Split d2 and d4 to create a red-blue bigon Wand let VI denote the resulting 

gem. (See Figure 8b.) In VI, a 1 and a3 are in distinct red-yellow bigons, and so the 
operation of cancellation of a red-blue bigon is applicable to X. We apply it, and let U2 

denote the resulting graph. (See Figure 8c.) In V 2 let c5 denote the yellow edge adjacent 

to a4 other than c4' Let bs denote the blue edge of W adjacent to cs, and let ds denote the 
yellow edge other than c5 adjacent to b5. Split Cs and d5 to create a red-blue bigon Z and 
let V3 denote the resulting gem. (See Figure 8d.) In V 3, a2 and a4 are in distinct red­
yellow bigons, and so the operation of cancellation of a red-blue bigon is applicable to Y. 
We apply it and let V' denote the resulting gem. (See Figure 8e.) 

The above process transforms U into another unitary gem V'. The handle {X, Y} 

has been replaced by the assembled handle {W, Z}. Any assembled cross-cap or other 

assembled handle of B has edges in B - (aI' c l , dl' a2' C2' d2, a3, c], d], U4' c4' d4 ), and 
is preserved. 

By repetition of the operation just described, we can replace unassembled handles 
by assembled ones until we have a unitary gem of the kind required. (No red-blue bigons 
will be left over, by Lemma 6.) 0 
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LEMMA 8. By afinite sequence of p-moves we can convert a given unitary gem into 

one in which all red-blue bigons are assembled cross-caps or all red-blue bigons are 

members of assembled handles. 

Proof. We may suppose our unitary gem V already in the form specified in 

Lemma 7. Suppose it to have at least one assembled cross-cap and at least one assembled 

handle. Then the situation arising is depicted in Figure 9a. This displays a handle {X, Y} 

immediately followed by a cross-cap Z. Split c and d to create a red-yellow bigon Wand 

let VI denote the resulting graph. (See Figure 9b.) In VI, al and a2 are in distinct red­

yellow bigons, and so the operation of cancellation of a red-blue bigon is applicable to Z. 

We apply it, and let U2 denote the resulting graph. (See Figure 9c.) In V2 split c' and d' to 

create a red-blue bigon V, and let U3 denote the resulting gem. (See Figure 9d.) In V3, a4 

and a6 are in distinct red-yellow bigons, and so the operation of cancellation of a red-blue 

bigon is applicable to X. We apply it, and let V4 denote the resulting graph. (See Figure 

ge.) 

At this stage we still have a unitary gem U 4' We have an assembled cross-cap V, an 

unassembled cross-cap Y and a cap W. The original assembled handles and cross-caps 

which have edges in P are preserved. 

Our next step is to replace the cross-cap Y by an assembled cross-cap, as in Lemma 

S. The assembled cross-caps and handles of U4 are clearly preserved. The red-blue bigon 

W is transformed into another cross-cap by Lemma 6. Finally, we assemble this cross­

cap, too. We thus obtain a unitary gem, still of the form in Lemma 7, but with one handle 

fewer and two more cross-caps. Repetition of the above procedure leads us to a unitary 

gem in which all red-blue bigons are cross-caps. 

Only if all red-blue bigons in V belong to assembled handles is the above 

procedure inapplicable. Hence the lemma follows. 0 

5. CANONICAL GEMS 

Let us define a canonical3-graph as either the trivial 3-graph or a unitary gem U in 

which Y(U) consists entirely of assembled cross-caps or members of assembled handles. 

The trivial 3-graph is orientable and so is a unitary canonical 3-graph whose red­

blue bigons are members of handles. The genus of such a 3-graph is the number of 

handles that it contains. The genus of the trivial 3-graph is defined to be zero. On the 

other hand, a unitary canonical 3-graph whose red-blue bigons are cross-caps is non-
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orientable. The cross-cap number of such a 3-graph is the number of cross-caps that it 

contains. 

We observe that an orientable canonical 3- graph can be constructed with an 

arbitrary nonnegative integer as genus, and that a non-orientable one can be constructed 

with an arbitrary positive integer as cross-cap number. There are no other possibilities. 

Hence we have the following lemma. 

LEMMA 9. There is at most one orientable canonical3-graph with given genus and 
one non-orientable canonical3-graph with given cross-cap number. 0 

LEMMA 10. An orientable canonical 3-graph of genus g has Euler characteristic 
2 2g. A non-orientable canonical 3-graph of cross-cap number k has Euler 
characteristic 2 - k. 

Proof This follows from the fact that the number of red-blue bigons is 2.15 in the 

first case and k in the second. 0 

LEMMA 11. There is exactly one canonical3-graph on each surface. 

Proof By Lemmas 4 and 8 there exists a canonical 3-graph on each surface. Its 

uniqueness follows from Lemmas 9 and 10. 0 

LEMMA 12. Let K and J be 3-graphs on the same surface. Then K and J are J.1-

equivalent. 

Proof Let V be the canonical 3-graph on the surface. Then each of K and .J can be 

transformed into V by a sequence of J.1-moves by Lemmas 4 and 8. The lemma 

follows. 0 

Theorem 1 now follows from Lemmas 2 and 12. The genus of an orientable 

canonical gem is also called the genus of its surface, and of any other 3-graph on that 

smface. Likewise, the cross-cap number of an non-orientable canonical gem is also called 

the cross-cap number of its surface, and of any other 3-graph on that surface. A surface 

is called orientable or non-orientable according as the 3-graphs on it are orientable or 

non-orientable. We can now say that there is just one orientable surface whose genus 

is a given nonnegative integer g, and just one non-orientable surface whose cross-cap 

number is a given positive integer k, and moreover there are no other surfaces. 
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6. CONCLUSION 

We have established the classification of surfaces by means of simple operations 
(dipole cancellations and creations) on 3-graphs. These operations enabled us to reduce 
any given 3-graph to a simple canonical form. This observation provides us with a 

possible approach to proving results about cubic graphs with a proper edge colouring in 
three colours: first prove the required result for the canonical forms, and then prove that 

the result is preserved under the dipole cancellation and creation operations. 
We would like to mention that Vince (private communication) has a similar 

method for obtaining the classification of surfaces. It is of interest to note that his 

canonical 3-graphs are different from ours. 
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