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Let G be a simple graph with non-negative edge weights. Determining 
a minimum weight spanning tree is a fundamental problem that arises in 
network design and as a subproblem in many combinatorial optimization 
problems such as vehicle routing. In some applications, it is 
necessary to restrict the diameter of the spanning tree and thus one is 
interested in the problem : 

Find, in a given weighted graph G, a minimum weight 
spanning tree of diameter at most D. 

This problem is known to be NP-complete for D 2:: 4. In this paper we 
present a mixed integer linear programming formulation and discuss some 
solution procedures. 

1. INTRODUCTION 

Many combinatorial optimization problems involve determining a 

minimum weight restricted spanning tree as a subproblem. Papadimitriou 

and Yannakakis [7] discuss the complexity of such problems. In this 

paper we discuss the problem of determining a Minimum Weight Spanning 

Tree with Bounded Diameter D. We refer to this problem by MWST-D. The 

problem without the diameter restrictions can be solved very 

efficiently (see Gabow et al [4]). 

For the most part, our graph theory notation and terminology follows 

that of Bondy and Murty [2]. Let G = (V, E) denote a finite and 
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that G is connected and let IVI = n and lEI = m. Associated with every 

edge (x,y) of E, there is a non-negative weight w(x,y). The distance 

d(x,y) between two vertices x and y in G is the number of edges in the 

shortest (x,y) - path in G. The diameter d(G) of G is defined as the 

maximum distance in G; that is 

d(G) max {d(x,y)} . 
x,yeV 

The eccentricity e(x) of a vertex x in G is defined as the distance 

of a vertex furtherest away from x; that is 

e(x) max {d(x,u)} . 
ueV 

For a given spanning tree T of G, we define the weight weT) of T by 

weT) w(x,y) 

(x,y)eT 

For convenience we denote the edge set of T also by T. Let 

{T T is a spanning tree of G}. 

Then we may express our problem as 

The MWST-D Problem: Given a simple undirected graph G with 

non-negative edge weights and a positive integer D, find a minimum 

262 



weight spanning tree of diameter at most D. In otherwords, determine a 

* spanning tree T , if it exists, such that 

* weT ) min {weT) T.E SG and d(T) S D}. 

Garey and Johnson [5] have shown that the MWST-D problem is 

NP-complete for any fixed D ~ 4. The problem can be easily solved in 

polynomial time for D S 3. In this paper we provide a Mixed Integer 

Linear Programming (MILP) formulation of the MWST-D problem and discuss 

some solution procedures. The application of the MWST-D problem to 

network design is discussed in Caccetta [3]. 

2. MILP FORMULATION OF THE MWST-D PROBLEM 

We begin by making the following two simple observations. 

Observations : 

(i) For any tree T in SG' 

d(T) ~ max{2, d(G)}. 

(ii) If D < max {2, d(G)}, then the MWST-D problem is 

infeasible. 

In our formulation we extend the given undirected graph G = (V,E) to 

* * * a directed graph G = (V ,E as follows. We add three new vertices 

* and t so that V 
2 

Every vertex x of V is joined 

to s, t and t by directed edges (s;x), (x;t ) and (x;t
2

). 
1 2 1 

For every 



* in E . * Call the resulting directed graph G . Observe that the 

* indegree of s and the outdegrees of tl and t2 are zero. We make G a 

weighted digraph by extending the weights of G as follows. If (x,y) e 

* E then in G the directed edges (x,y) and (y,x) (we drop the arrow for 

* * convenience) have weights w (x,y) = w (y,x) = w(x,y). For x e V we set 

* w (s,x) 0 

and 

M, 

where M is a large positive number; M is chosen such that it exceeds 

the value of the largest weight in G. 

Associate a decision variable x .. for every directed edge (i, j) in 
lJ 

* * E and a real variable y i for every vertex i in V . We def ine the 

integer L by 

L 
{ 

L~DJ 

L~DJ + 3, otherwise. 

+ 2, if D is even 

This definition of L helps in developing a spanning tree having a root 

node with minimum eccentricity. We first present the formulation and 

then discuss its justification. 

Our MILP formulation is : 

Minimize Z w(i,j) x
ij 

(1) 

* (i,j)eE 

264 



subject to the following constraints. 

x .. a or 1, for i :;: j 
IJ 

L x si 1 

ieV 

x si + k~ xki 1 

k:;:i 

k~ x ik + x it1 + Xit2 ~ 1, 

k:;t:i 

* and (i,j) E E 

for all i E V 

for all i E V 

for all i E V 

(2) 

(3) 

(4) 

(5) 

(6) 

* for all i :;: j, (i, j ) eE ( 7 ) 

(8) 

Y - Ys :S L .~Xit t 1 IE 1 
(9) 

Yt - Ys 
:S LlDJ + 2 (10) 

2 

Now to the justification of our formulation. We begin wi th the 

following simple facts. 
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Fact 1: Constraint (3) permits exactly one of the x .'s to be equal to 
sJ 

1. 

Fact 2: Consider a solution of constraints (2) to (6). Restriction to 

the edges wi th x .. = 1 gives rise to directed paths from s to t or t 
IJ 1 2 

such that every vertex in these paths has indegree one (constraint (4)) 

and outdegree at least one (constraint (5)). Further, there may be 

some directed cycles not involving sand t. Figure 2.1 below 

illustrates the restriction of a solution of (2) to (6) to the 

* edges of G with xij = 1 for the case when Xit = 0 for every ieV. 
1 

* Figure 2.1 : Subgraph of G as a solution of (2) to (6) 

Fact 3: In an optimal solution of the MILP (1) to (10) we have 

* x .. 
IJ 

for (i,j) eE . 
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* Fact 3 follows from the choice of w (i,t
1

) = w*(i,t
2

) = M, a large 

positive number, and the objective of minimizing the function (1). 

Having observed some simple facts, we next establish two important 

lemmas. 

Lemma 2.1: Consider a solution of constraints (2) to (7). Restriction 

* of this solution to the edges of G with x .. = 1 gives rise to directed 
IJ 

paths from s to tl or t2 such that every vertex in these paths has 

indegree one and outdegree at least one. Further, there are no 

directed cycles. 

Proof : In view of Fact 2 we need only establish that there is no 

* directed cycle in the subgraph of G formed by taking the edges of 

* G with x ij = 1. Suppose (jl,j2, ... ,jk,jk+l = jl) is a directed cycle 

such that 

x. 1, for 1 :s r :s k. 
J r jr+l 

From (7) we have 

y. - y. + 1 :s 0 
J 1 J 2 

y. - y. + 1 :s 0 
J 2 J 3 
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eliminate directed cycles. D 

Lemma 2.2: Suppose D is even. Consider a solution of constraints (2) 

to (10). * Restriction of this solution to the edges of G with x .. = 1 
lJ 

gives rise to directed paths from s to t2 such that every path has at 

most (L-l) internal vertices. 

Proof: Suppose P 

such that 

(i 
o 

x .. 
1 1 

r r+l 

Then from (7) we have 

Adding these yields 

1, 

Ys -

Yi 
-

1 

t 2) is a directed path 

for 1 :$ r :$ K. 

Yi + 1 :$ a 
1 

Yi 
+ 1 :$ a 

2 

+ 1 :$ a 

+ K + 1 :$ O. 
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Observe that since D is even constraint (8) forces 

ieV. Now using (10) we get 

K + 1 :5 

X 

L 

it 
1 

a for every 

and hence K :5 L - 1. Thus the path P has at most L - 1 internal 

vertices. D 

When D is odd we can, using the constraints (8) to (10) and the method 

of proof of Lemma 2.2, establish: 

Lemma 2.3. Suppose D is odd. Consider a solution of constraints (2) 

to (10). Restriction of this solution to the edges of G* with x .. = 1 
lJ 

gives rise to directed paths from s to tl or t2 such that every path to 

t
1
(t

2
) has at most L - 1 ( L - 2) internal vertices. Moreover, there 

can be at most one directed path from s to t
1

. D 

Consider an optimal solution (x .. ,y.) to the MILP problem (1) to (10). 
lJ 1 

* Define a directed graph G' = (V ,E/) where 

* E' {(1,j) (i,j)eE and xij 
1}. 

Figure 2.2 illustrates the structure of G' for the case when x
it 

= 0 
1 

for all ieV. 
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root level 
1 

level 
2 

Figure 2.2: The structure of G' 

level 
(k-l) 

Lemmas 2.1, 2.2 and 2.3 together with Facts 1 to 3 yield the following 

theorem. 

* Theorem 2.1: The graph G' (V ,E') defined above is a collection of 

directed paths from s to tl or t 2such that : 

(a) Vertex s has outdegree one; 

(b) Every vertex of V has indegree one and outdegree at 

least one; 

(c) Every directed path from s to tl or t2 has at most (L-1) 

internal vertices. 
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(d) For D odd, every directed path from s to t2 has at most (L-2) 

internal vertices. Moreover, there is at most one path 

from s to t . 
1 

o 

Consider an optimal solution (x .. , y.) to the MILP problem (1) to 
IJ 1 

(10) and the graph G' defined above. Denote by T' the graph G'- s-t
1

-

t
2

. Clearly T' is a spanning subgraph of G. In fact, it follows from 

the above discussion that if we ignore direction, then T' is a spanning 

tree of G. We now prove that d(T') ~ D. 

Theorem 2.2: d(T') ~ D. 

Proof: In G' let K denote the number of internal vertices in the 

longest directed path from s to tl or t
2

. Clearly d (T') ~ 2 (K-l) . 

Since 2(K 1) < D when K < L-l we need only consider the case K = 

L - 1. For this case 2(K - 1) = D whenever D is even. When D is odd 

and K = L - 1 Theorem 2.1(c) and Cd) implies that 

, 
d (T) ~ (K 1) + (K - 2) 2L 5 D o 

Given any spanning tree T of G with d(T) ~ D, we can construct a 

feasible solution (x .. ,y.) to the MILP problem (1) to (10). The 
IJ 1 

procedure is as follows. 

Step 1: Set x .. 
IJ 

a for every (i,j) eE. 

Step 2: Find the eccentricity e(j) for every jeV. 



lI! * Step 3: Find i such that e(i ) min {e(j)}. 
jeV 

* 
Step 4: Set X si* = 1, x = 0 for all j "* i , Y = 0, sj s 

* 
Yi * = 1. Vertex i is said to be labelled. 

Step 5: Choose a labelled vertex i (this means that Y
i 

is fixed) 

and carry out the following steps : 

Step 6: 

Step 7: 

(i) If (i,j)eT and j is not yet labelled, then set 

x .. = 1 and y. 
IJ J 

Yi + 1. Vertex j is now labelled. 

(ii) If there does not exist any j such that (i,j)eT 

and j is not labelled, then set Xit = 1. 
2 

Repeat Step 5 until all vertices of G are labelled. 

Let I = {i : y. = max {Y.}} 
1 jeV J 

If III ~ 2, then set Yt 
1 

* 
If III = 1, say I = {i } 

max {y.}, x1.*t 
ieV-i* 1 1 

= 0 and Yt = max {y.} 
2 ieV 1 

then set Yt Yi*' 
1 

1 and xi*t = o. 
2 

+ 1. 

Now it is only a simple exercise to verify that the set {xij ' y i} 

defined by the above procedure satisfy the conditions (2) to (10) and 

thus constitutes a feasible solution to the MILP problem (1) to (10). 

This together with the earlier results, establishes the following 

theorem. 
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Theorem 2.3 

problem. 

The MILP formulation (1) to (10) solves the MWST-D 

Cl 

3. SOLUTION PROCEDURES 

MILP problems have been the focus of considerable attention since 

the development of the Simplex Algorithm for solving linear programming 

problems. This is indeed evident from the vast li terature that has 

accumulated over this time. It is not our intention to discuss the 

many algorithms that have been proposed to solve MILP problems. 

Rather. we give a brief discussion on how our MILP problem can be 

solved. 

Exact solution procedures for MILP problems are usually extensions 

of the Branch and Bound methods for the Travelling Salesman problem 

(TSP); for a detailed discussion of such methods we refer to the book 

edited by Lawler et al [6]. In general, the branch and bound method 

for an optimization problem involves the decomposition of the given 

problem into a number of smaller sized subproblems. The important 

components of this procedure are branching, bounding and searching 

strategies. 

The branching strategy dictates the manner in which a given problem 

is decomposed into two or more subproblems. The bounding strategy 

provides a bound on the objective function value with respect to a 

given subproblem. A level tree structure is constructed by 

representing every subproblem P by a node and linking a subproblem to 

its decomposed problems generated by applying the branching strategy to 

P. The search strategy determines how this tree is constructed by 

identifying the sequence of creating branches from the root node. 



Further, it determines how much of the tree is actually constructed 

before an optimum solution is identified. We now discuss the branch 

and bound method for our problem. 

Using our earlier notation, we may write our MWST-D problem as 

min {weT)} 
TeSG 

d(T)==D 

A node of the branch and bound tree structure represents a restricted 

problem based on the subgraph G' = (V,E') of G (note E' c E). That is 

min {weT)} 
TeS

G
, 

d(T)==D 

The root node, of course, corresponds to G itself; that is the original 

problem. A node of the tree can be recognized by G' or SG'. 

The lower bound associated with G' is determined as follows. First 

determine, using Kruskal's algorithm, the minimum weight spanning tree 

T' of G'. Obviously 

w(T') == min {weT)} 
TeSG, 

d(T)==D 

Thus weT') is a lower bound associated with the node corresponding to 

G'. If d(T') == D, then 

w(T' ) min {w(T)} 
TeSG, 

d(T)==D 
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and so node G' can be fathomed and the best known solution can be 

updated. If, on the other hand, d(T') > D, then the node G' will be 

maintained in the set of active nodes until either it is fathomed or 

its branches are created. 

Among the set of all active nodes, the one with the least lower 

bound is chosen for further branching. Suppose we want to create 

branches of node G' with d(T') > D. Let u, v E V be two vertices such 

that d
T

, (u, v) = d(T'). 

(u, v) - path in T'. 

Let P = (u = uo,U1, ... ,Uk = v) be the unique 

We create k branches of node G' as follows. 

Branch i will correspond to the graph Gi = G' - (ui_1,u
i

), 1 ~ i ~ k. 

The computational performance of the above procedure as well as a 

number of the methods including heuristic are currently under 

investigation. In fact, we are looking at a more general class of 

problems, the so called vehicle routing problem (see Achuthan and 

Caccetta [1]). We intend to report on the computational results in a 

subsequent paper. 
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