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Partially balanced incomplete block designs, PBIBDs, are designs 

for which the property of balance of BIBD is relaxed. They are 

based on an association scheme. We introduce the concept of 

generalized relative difference sets, generalizing the concept of 

relative difference sets introduced by A.T. Butson[2] in 1963. We 

obtain a PBIBD from a generalized relative difference set translating 

by cyclic automorphisms. 

On the other hand, certain amorphous association schemes over 

the extension rings of Z/4Z were classified[6]. In this paper, we 

give a necessary and sufficient condition for the existence of 

generalized relative difference sets associated with these amorphous 

association schemes which give rise to PBIBDs, under some conditions. 

In the last section, we give examples of generalized relative 

difference sets associated with amorphous association schemes of 



class 3 for the case when the degree of an extension of Z/4Z is 3 

and 4. 

1 Generalized Relative Difference Sets and PBIBDs 

A.T. Butson[2] introduced the concept of relative difference sets 

in 1963. Relative difference sets are useful for construction of 

Hadamard matrices and D-optimal designs. See Spence[12,13,14] and 

Koukouvinos, Kounias and Seberry [9]. 

We recall the definition of relative difference sets. 

Definition. Let G be an additive abelian group of order v and D be 

a subset of G containing k elements. Let H be a subgroup of G of 

order h. If for d =I=- 0, dEG, the number of pairs (r, s) such that d 

= r - s, r, s ED, has fixed values 

{~ when d(f..H, 
when dEH, 

then D is called a relative difference set. 

We extend this concept. 

Definition. Let G be an additive abelian group of order v and D be 

a subset of G containing k elements. Let Hi' H
2

, ... H t be subsets 

of G such that 

G = {O}UH1UH2U ... UH t , HinHj = 0, for i=l=-j. 

If for d 0, dEG, the number of pairs (r, s) such that d 

r, sED has fixed values 

when dEH
1

, 
when dEH

2
, 

when dEHt , 
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r - s, 



then D = R[k,A
1
,A

2 
, ... ,At;V] is called a generalized relative difference 

set. 

Partially balance incomplete block designs were introduced by 

Bose and Nair[2] in 1939. They are designs for which the property 

of balance of a BIBD is relaxed and based on an association scheme. 

We give the definition of association schemes first. 

Definition. Let X be a v-set and Ri' O~i~d, be subsets of XxX which 

satisfy 

(i) R
O

::{ (x, x) I xEX}, 

(ii) XxX:: ROU ... URd , RinRj:: ff (i=l=j), 

(iii) R~ = Ri' for some i' E{O,1, ... ,d} where R~ :: {(x, y) I (y, X)ER
i

}, 

(iv) for i,j,kE{O,1, ... ,d}, the number of zEX such that (x, Z)ER
i 

and 

(z, y)ER
j 

is constant whenever (x, y)ER
k

, This constant is 

k 
denoted by p ... 

'LJ 

Then :r :: (X, {Ri}O~i~d) is called an association scheme of class d on 

X. Furthermore, if 

k k 
(v) P

ij
:: P

J
.
i 

is satisfied, then :r is called a commutative association scheme of class 

d on X. An association scheme with the property 

i' :: i 

is called symmetric or Bose-Mesner type. 

Definition. Let X be a v-set and B
1

, .. "B
b 

be subsets of X with k 

elements which are called blocks, Assume that there exists an 

association scheme of class t on X. If Bp ... ,Bb satisfy 

(i) each element of X occurs in exactly r blocks, 

(ii) if (x, y)ER
i
, then the pair (x, y) occurs in Ai blocks, 



then :J3 = {B
1

, ... ,B
b

} is called a partially balanced incomplete block design 

and is abbreviated to a PBIBD. We denote this by PB[k, A1, ... , A t;v]. 

There are relations between the parameters of a PBIBD. 

Lemma 1. (i) vr = bk, 

d 
(ii) I:: k. A . = r(k - 1), 

i=l t t 

where k
i 

is the number of elements yEX such that (x, y)ER
i 

for fixed 

xEX. We call k i the valency of Ri' 

Theorem 2. Assume that there exists a PB[k, Al , ... , A t;v] over an additive 

abelian group and v = b. Moreover assume that every block Bl is a 

translate of Bl = {a
1 

, ... , a
k 

}, that is 

Bl = Bl + c = {a1+c ,a2+c, ... ,ak +c}, cEX. 

Then Bl is a R[k,Al'".,A t ;V]. 

Proof, Let X = (X, {Ri}O~i~t) be an association scheme associated 

with PB[k, A
1

, ... ! A t;v]. Assume that a pair (0, d), d ¥= OEX, is contained 

in a relation R1. Then the pair (0, d) occurs in exactly Al blocks. 

Since every block is a translate of B
1

, there exist exactly Al pairs 

(a., a.) in block Bl such that 
t J 

ai+l=O, aj+l=d, lEX. 

Namely, it means that there exist exactly Al pairs (ai,a j ) in Bl 

such that d = a. - a .. We proceed similarly in the cases when a pair 
J t 

(0, d) is contained in R
2

, R
3

, , .. , Rt respectively. Thus we get Bl 

= R[k, Al , .•. , A t;v]. 

The converse of Theorem 2 is not always true. 

Theorem 3. Let D R[k, A1,.", A t;v] and X 
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association scheme over an additive abelian group. Assume that a pair 

(a, b) belongs to a relation Ri when d = a - b EH
i
, O~i~t. Then D and 

translates of D, Dl = D + c, cEX, become PB[k, A 1"'" A t;v]. 

Proof. There are exactly A 1 pairs (a, b) in D such that d a - b 

EH1' For these Al pairs (a, b), we have pairs (r, s), r = a + l, s 

b + l, where rand s belong to block Br That is, a pair (r, s) which 

belongs to a relation Rl occurs A 1 blocks. Proceeding similarly in 

cases when dEH 2' , .. , dEH
t
, we can get the result of the theorem. 

We call this generalized relative difference set associated with an 

association scheme X. 

2. Amorphous Association Schemes 

Let X = (X, {Ri}O~i~d) be a commutative association scheme. 

Definition. A partition A
O

,A
1

, ... ,A e of the index set {O,l, ... ,d} of the 

association relations is said to be admissible if AO = {OJ, Ai * 0, 

l~i~e and A\= Aj for some j l~i.j~e, where A'i ={a' I aEAi},R
a

, 

= {(x, y) I (y, x)ER a}' Let R A. = U a E A.R a' If (X, {R A JO:5::i:5::e) becomes 
t t t --

an association scheme, it is called a fusion scheme of X. X is defined 

to be amorphous if every admissible partition gives rise to a fusion 

scheme. 

Amorphous association schemes are closely related to Hadamard 

matrices. A.V. Ivanov[8] proved that if X is amorphous and symmetric, 

and class d is greater than 2, either T. = (X, R.) is a stongly regular 
t t 

graph of Latin square type for each i (i i= 0) or T. is of negative 
t 

Latin square type for each i (i i= 0). Moreover it was proved the 

converse is also true[6]. Goethals-Seidel[5] showed that the existence 



matrices with constant diagonal is equivalent to the existence of 

strongly regular graph of Latin square type or of negative Latin 

square type. In other words, there exist symmetric Hadamard matrices 

of order 4s
2 with constant diagonal if and only if there exists a 

symmetric amorphous association schemes and (X, R
i

) belongs to Ls 

(2s) or NL
s

(2s). Ito-Munemasa-Yamada[6] generalize the Goethals-Seidel's 

theorem partially by introducing the concept of nonsymmetric 

amorphous association schemes. 

There is another relation between Hadamard matrices and 

amorphous association scheme. A.A. Ivanov-Chuvaeva[7] showed 

certain amorphous association schemes of class 4 can be obtained 

from Hadamard matrices. 

3. An Extension Ring of Z/4Z. 

Let F GF(2) be a finite field with 2 elements and 

r.p (x) = X s 
+ a

1
x

S
-

1 
+ ... + as be a primitive polynomial of degree s over 

s s-l 
F. Let <!>(x) = x + a 1x + ... + as be a polynomial over Z4 = Z/4Z 

obtained from r.p (x) such that a i a
i 

(mod 2), l~i~s. There is a 

s 
unique polynomial <!>(x) whose root [ satisfies [2 -1 = 1. 

The ring $ = Z 4[ [] is an algebraic extension of Z 4 and has the 

radical:P 2$. The residue class field $/:P is isomorphic with an 

extension K GF(2
s

). We can take the Teichmuller system 3' 

2s _2 
{0,1, f, ... , [ } as a set of representatives of $/:P. 

Therefore an arbitrary element a of $ is uniquely represented 

as 

a = a ° + 2 a 1 a 0' alE 3' • 

All the regular elements $ * of $ forms a multiplicative group of 

order 2
s

(2
s 
-1), 
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When we put a 0 = r (a), then r is a homomorphism of :R * into 

the cyclic group M generated by f. The kernel of r is the group 

(; of principal units, namely of elements of the form 1 + 2/3, /3 E g. 

More precisely, r is given as 

For a principal unit e = 1 + 2/3 we can regard fJ as an element of 

K. For 1 + 2l, 1 + 2mE &, we have 

(1 + 2l)(1 + 2m) = (1 + 2(l+m», l,mEK. 

Hence the group (; is an elementary abelian group of order 2$ and 

isomorphic with the additive group of K. 

Thus :R * is a direct product of M and (;. That is, an arbitrary 

element a of :R * is uniquely represented as 

a = fm e = fm(1 + 20,), e E&, e-1EfP, aEK. 

4. Multiplicative Characters and Additive Characters of fR. 

For any element a = a
O

+2a
1 

E 5(, we define the element a f as 

f 2 2 
a =a

O
+2a

1
, 

Hence f is a ring-automorphism of 5(, and we call this the Frobenius 

automorphism. The set of elements of 5( invariant under the Frobenius 

automorphism f is identical with Z 4' 

Definition. We define the relative trace from 5( to Z 4: 

2s -2 

S 5(/Z a = a + a
f + ... + a

f 
4 

A multiplicative character X of 5( * is defined by 

x(afJ) = x(a)x(fJ), 



and each value of X (a) is a 2
s

(2
s 

-1)-th root of unity. We extend 

X as the character of :R by defining X (a) = 0, for any element a 

in jJ. We call this the multiplicative character of:R. The principal 

character X 0 of :R is defined by X O( a) = 1, for any element a in 

:R*. 

2 
We treat multiplicative characters X of :R which satisfy X X 0' 

Since X 2( f) = 1 and (2, 2
s 

-1) = 1, we have X (f) = 1, and X induces 

a character of 8. Hence we can regard a multiplicative character 

X of :R as an additive character of K, because 8 is isomorphic with 

the additive group of K. 

Lemma 4. All additive characters ¢ l of a finite filed K are given as 

follows: 

S la 
¢ (a) = (-1) KIF , for lEK 

l 

where SKI F is the relative trace from K to F. 

Thus the multiplicative character X X l of :R which satisfies 

2 
X = X 0 is given by 

Next we consider additive characters of :R. 

Lemma 6. All the additive characters A. f3 of :R are represented as 

S :RIZ f3 a 
A. f3 ( a) = i 4 for f3 E:R 

where i is the primitive fourth root of unity. 
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Proof. See [17]. 

Next we define three kinds of Jacobi sums associated with 

multiplicative characters over fR. 

Definition. For multiplicative characters X l and X m' we define three 

kinds of Jacobi sums: 

J(X z Xm) = L XZ(a)x (1- a), 
, aEj{ m 

J 2(xl' Xm) = I: x l (a)x m (2 - a), 
aEj{ 

JO(X l ' X ) = I: xl(a)x (-a). 
m a Ej{ m 

The following theorem gives explicit forms of Jacobi sums. 

Theorem 6. For the multiplicative character X l and X m such that 

X l' X m' X l+m * X 0' we get 

(1) 

(3) 

s s 
J(x O' XO) = 2 (2 -2), 

J( X l' X 0) = 0, 

s s 
JO(X O' XO) = 2 (2 -1), 

JO(X l ' XO) = 0, 

J O( X l' Xl) = X l( _1)2
s
(2

s 
-1), 

JO(Xl' Xm) = O. 

Proof. See [17]. 

29 

(2) 

J 2( X 0' X 0) = 2
s

(2
s 
-1), 

J 2( X l' X 0) = 0, 

s 
J 2(xl' Xl) = -x l <-1)2, 

J 2( X l' X m) = 0, 



The following thoerem on character sum is useful. 

Lemma 7. 

when a E5(*, 

L: X l(fJ) X m (a - (3) = 

f3E5(* 

when aEJ' and a =1= 0, 

when a = 0. 

Proof. See [17J. 

6 Amorphous Association Schemes over $. 

Now we consider association schemes over 5(.. Let X = (5(, 

{R a} a E 5() be the association scheme for which (f3, r) E 5(. X 5( is in 

R a if f3 - r = a. Let E a be a coset by M in 5(. containing 1 + 2a, 

namely t~e direct product of M and a principal unit c. = 1 + 2a: 

E = {fm c. = fm(l + 2a), m=O, ... ,2s -2, aEK}. 
a 

For a subgroup H of the additive group K, form a subgroup M(l + 

* 2H) = U a EHE a of 5(. • Denote the coset of M(l + 2H) by C a M(l + 

2(H+a». We fuse the association relations of X to form 

R
O 

= {( a, a) I a E 5(. }, 

R2 = U a E J'_{O}R a' 

Ra = U aEC R a · 
a 

(1) 

Let us introduce a nondege:lerate symmetric bilinear form on K 

over F by 

(a, b) = S K/Fab 

For a subgroup H of K, H.L denotes the orthogonal complement of 

H , i.e. 

.L 
H = {aEK I S K/F(a, b) = ° for all bEH}. 

Notice that -1 = 1 + 2· 1 E (; and so -M(l + 2(H+ a» = M(l + 2(H + a + 1», 

i.e. -C = C l' This means Rt = R 1 for aEK/H. Therefore X
H 

is 
a a+ a a+ 
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symmetric if and only if 1EH. Furthermore notice that <1>1-, the 

orthogonal complement of the subspace spanned by 1, is the set of 

isotropic elements in K, since (l, l) = SK/Fl2 = SK/Fl = (1, 0, 

Theorem 8. For a subgroup H of K, let X H be the association scheme 

over J( with association relation given by (1). Then X H is symmetric 

and amorphous if and only if H1- is totally isotropic subspace of K. 

Proof. See [6]. 

7. Characteristic Functions 

s-1 Let D be a subset of K containing 2 elements, not necessarily 

a subgroup. We give a necessary and sufficient condition that the 

union 2J M(1 + 2D) becomes a generalized relative 

difference set associated with the amorphous association scheme 

over J( in Theorem 8. So we can obtain PBIBDs over amorphous 

association schemes translating by cyclic automorphisms. 

Lemma 9. The characteristic function fa ( a) of E a is given by 

f (a) = 2-
s L x

l
(1 + 2a)x

l
(a). 

a lEK 

From this Lemma, we obtain the characteristic function F( a) of 

M(1 + 2D), a direct product of M and the set of principal units 

determined by a subset D of K, as 

-s 
F(a) = 2 L wlxl(a), 

where w l = L X l(1 + 2a). 
aED 

lEK 

We define the group Q = {x
g

, gE J(} isomorphic with J( by the 

relation xgxg' = xg+g', Moreover we define the element ~(x) of the 
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group ring Q Z by 

a -s a 
3'(x) = L: F(a)x = 2 L: L: wlxl(a)x . 

aE5C aE5ClEK 

8. Main Theorem 

We have to verify 

-1 s-l s a a 
:J«x):J«x ) = 2 (2 -1) + AO L x + L: A L: x • 

aE5'* aEK/H aaE5C 

We represent the left-hand side of the relation above by using 

Jacobi sums. 

-1 
:J«x):J«x ) 2-s L: L: W

l
X

l
(/3)x/3 .2-s L: L: W X ('l)x-'l 

/3 E 5ClEK 'l E 5CmEK m m 

2-
2s L: L: wlw L: L: X

l
(/3)X ('l)x/3-'l, 

lEKmEK m/3 E5C 'lE5C m 

Putting /3 - 'l = a, we have 

-1 -2s a 
:J«x):J«x ) = 2 L: L: wlw L L: x

l
(/3)x (/3-a)x • 

lEKmEK m aE5C /3E5C m 

Denote the multiplicative group of K by K* and 5' - {O} by 5' *. 

From Lemma 7, we obtain 

(a) 

(b) 



(c) 

aE:P* 

a x , 

-2s a 
2 I: I: wlw m I: x l x m (a)x m (-l)J(x l , Xm)x 

lEK mEK a EJl* 

= 2-2S{w~ I: X
O
(a)X

O
(-l)J(x

O
' Xo)xa 

aEJl* 
a 

+ I: I: WlW m I: x l x m (a)x m (-l)J(xl' Xm)x } 

lEK*mEK* aEJl* 
m=ll 

2s - 1(2s - 1_1) I: x a 

aEJl* 

+ 2-
s I: I: wzw I: XlX (a)x (-l)x

Z 
(_l)x

a
. 

* *m *m m m 
lEK mEK a EfR 

m=ll 

Therefore, 

9(x)9(x -1) = 2s - 1(2s _1) + 2s-\2s - 1_1) 

aE:P* aEfR* 

where 1'1 = L: I: wzw I: xz<a)x (a)x (-l)x l (-l)x
a

. 
* *m * m m m 

lEK mEK a EJl 
m=ll 

Denote the coefficient of x a , a = fm(l + 20), by r a' 

r 
o I: I: W l W m X l ( a ) X m ( a ) X m ( -1) X lm ( -1) 

lEK* mEK* 
m=ll 

S K/Fm(l+l) S K/F(l+m)o 
I: I: wlw (-1) (-1) 

* * m lEK mEK 
m=ll 

Lemma 10. r 0 = r 0+1' 

a -s 
x +2 1'1, 

(2) 

Proof. Replacing 0 of the equation (2) by 0+1, we can easily obtain 

the result. 

The subset J) = M(l + 2D) becomes a generalized relative difference 

set associated with an amorphous association scheme over Jl if and 
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only if r a+h = r a for every aEK and for every hEH, 

When we put k = l + m, the equation (2) is equivalent to 

S K/Fk(m+a) 
r = E E W k W (-1) , 

a * * -m m 
kEK mEK 

m=l=k 

Extending this sum to contain the cases k 0, m o and m 

we have 

k, 

S k(m+a) S ka 
E E W W (-1) K/F =r + 2s- 1 E (-1) K/F w

k
(1 + x

k
(-1». 

kEKmEK k-m m a kEK 

SK/Fkm 
Furthermore we put uk = E W k W (-1) , we obtain 

mEK -m m 
S ka 

r = E (-1) K / F u _ 2s 

a kEK k 
E 

kEK 

S K/Fk=O 

SK/Fka 
(-1) wk' 

Observe that E 
kEK 

S ka 
(-1) K/F uk=O, since r 

a 

S K/Fk=1 

10. Hence 

r a+1 from Lemma 

r 
a 

S K/Fka s 
(-1) (u -2 W )= 

k k 

S ka 
(-1) K/F V 

k 

Theorem 11. Let D be a subset of K containing 2
s

-
1 

elements and H be 

a subgroup of K which satisfies the condition of Theorem 8. The subset 

s-l s 2s 
:J) = M(l + 2D) becomes a R[2 (2 - 1);A

a
,A

b 
p .. ;2 ], a, bEK/H, associated 

with X H if and only if 

S K/Fkb 
E (-1) = 0 for all k such that kE <1>.1. and k~HJ... 

bED 
b~(D+k) 

Then the multiplicity is given by 

Aa = 2s-\2S - 1_1).,.. E (_l)SK/F
ka 

kEH.1. 
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* s-1 s Proof. The subset 2) = M(1 + 2D) in fR becomes R[2 (2 - 1); A. a' A. b , ... ; 

22s] associated with :r H if and only if 

1 a+h = 1 a ' VaEK, VhEH. 

Let 7r = <1>..L = {h I S K/Fh = O}. 

S K/F(a+h)k S K/Fka 
la+h - fa = I: (-1) V - I: (-1) Vk kE 7l k kE 7l 

It implies 

S ka S kh 
I: (-1) K/F (1 - (-1) K/F )V. 

kE 7l k 

S ka 
I: (-1) K/F Vk=O. 

kE 7l 

k~H..L 

From the orthogonality relations of characters, we have 

Vk = O. 

for all k such that kE 7l and k~H..L. Hence 

f a 

S ka 
I: (-1) K/F V

k
. 

kEH..L 

We transform uk to a simpler form. 

S km 
uk = I: w w ( -1) K / F 

mEK m k-m 

SK/Fmb SK/F(k-m)c SK/Fkm 
I: I: (-1) I: (-1) (-1) 

mEKbED cED 
S K/Fkc S K/Fm(b-c+k) 

I: I: (-1) I: (-1) . 
bEDcED mEK 

S K/Fm(b-c+k) 
The sum I: (-1) = 2

s 
only if c = b + k, and it is equal 

mEK 

to 0 otherwise. Hence 

S k S bk 
uk = 2s (-1) K/F I: (-1) K/F 

bEDn(D+k) 
s 

Substituting this to V k = uk - 2 W k' we have 

3!) 



S bk S kb 
2s I: (-1) KIF - 2s L: (-1) KIF 

bEDn(D+k) bED 

Thus 

I: 
bED 

b~(D+k) 

S KIFbk 
(-1) . 

S KIFak 
(-1) L: 

bED 
b~ (D+k) 

This leads to the multiplicity. 

Corollary 12. The subset J) is a (22s ,2s-\2s - 1),2s - 1(2s - 1 - 1» difference 

set if and only if 

S bk 
(-1) KIF = 0 

for all kE 1[. 

Proof. Assume that V k = 0, that is V k = O. Then it can be easily 

2s s-l s s-l s-l 
proved that ::J) becomes a (2 , 2 (2 - 1), 2 (2 - 1» difference 

set from Theorem 11. Now we assume J) is a (22s, 2s -\2s - 1), 2s -\2s - 1 - 1» 

difference set. Then for all aEK, 

ra 
S ka 

I: (-1) KIF V =0 
k 

kEH.l.. 

must be satisfied. From the orthogonality relation of characters, V k 

= 0 for all kEH.l... The assumption implies that V k = 0 for all k 

such that kE 1[, and k~H.l... So we get the result. 

Hadamard matrices can be constructed from these difference sets 

over :R. 

10. Generalized Relative Difference Sets Associated with Amorphous 

Association Schemes of Class 3 over !R. 
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* amorphous association scheme X = (fR, {OJ, fP ,RO' Ra) of class 3 for 

the cases s = 3 and s = 4. We have only to verify that either r a 

= r ° or r a = - r ° is satisfied for all aEK and for the subset D 

which satisfies a necessary and sufficient condition of Theorem 11. 

It is equivalent to verify that either 

S bk 

L 1J
k 

= L L (-1) KIF = ° 
bED kEH.l kEH.l. 

S KIFka = 1 
S k = 1 b~(D+k) 

KIF a 

or 
S bk 

L 1J = L L (-1) KIF = ° 
k 

kEH.l. kEH.l. bED 

S k = 0 b~(D+k) 
SKIFka = ° KIF a 

must be satisfied for every aEK, where H is a subgroup of K of 

index 2 which satifies the condition of Theorem 8. 

When reduced by the equivalence relation based on translations, 

we obtain the following generalized relative difference sets over 

fRo Denote a primitive element of K by g. The primitive polynomial 

is given by x
3 = x

2 + 1 for s = 3 and x4 = x + 1 for s = 4. 

The case s = 3. 

A subgroup which gives rise 

to an amorphous association 

scheme of class 3: 

2 3 0, 1, g , g 

5 0, 1, g, g 

4 6 0, 1, g , g 

Generalized relative 

difference sets: 

4 3 5 to, 1, g, g } to, g, g , g } 

2 4 235 to, 1, g , g } to, g , g , g } 

256 to, 1, g, g } to, g, g , g } 
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The case s = 4. 

A subgroup which gives rise to an association scheme of class 3 

Generalized relative difference sets 

0, 1, 2 4 5 8 10 g, g , g , g ,g , g 

0, 1, 3 4 6 7 12 
0, 2 3 4 7 9 10 14 g, g , g , g, g , g g g, g, g , g , g , g 

0, 1, 
3 4 6 9 11 

0, 2 3 5 7 9 14 g, g, g, g, g, g g, g , g , g , g, g , g 

0, 1, 
3 4 7 11 13 0, 4 5 6 8 11 12 13 g, g, g, g , g , g g g , g , g , g , g , g 

0, 1, 
3 4 9 12 13 0, 3 7 8 9 10 14 g, g, g, g, g , g g, g , g, g , g , g , g 

0, 1, 
2 3 6 7 8 12 

0, 2 3 4 6 10 13 14 g, g , g , g, g, g g g , g , g , g , g , g 

0, 1, 
2 3 6 8 9 11 0, 2 3 5 6 13 14 g , g , g , g , g , g g, g , g , g , g , g , g 

0, 1, 
2 3 7 8 11 13 0, 3 4 5 6 8 13 14 g , g , g, g, g , g g , g , g , g , g , g , g 

0, 1, 2 3 8 9 12 13 0, 3 6 8 10 13 14 g, g , g , g, g , g g, g , g , g , g , g , g 

0, 1, 3 5 6 7 10 12 0, 2 3 4 10 11 12 14 g, g , g, g, g , g g , g , g , g , g , g , g 

0, 1, 
3 5 6 9 10 11 0, 2 3 5 g11, g 12 14 g, g , g, g , g , g g, g , g , g , , g 

0, 1, 3 5 7 10 11 13 
0, 3 4 5 8 g11, 12 14 g, g, g , g , g , g g , g , g , g , g , g 

0, 1, 
3 5 9 10 12 13 

0, 3 8 10 11, 12 14 g, g , g , g , g , g g, g , g , g , g g , g 
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s 4 (continued), 

0, 1, 2 3 6 8 13 14 
g, 9 , 9 , g, 9 , 9 

0, 1, 2 7 0, 4 5 6 8 10 14 
g, g, g, , , g, g, g, 9 , 9 , 9 , 9 

0, 1, 2 8 9 10 12 0, 3 4 5 8 10 13 
g, 9 , g, 9 , 9 , 9 g, g, 9 , 9 , g, 9 , 9 

0, 2 3 4 6 7 9 0, 1, 3 5 9 11 14 
g, g, 9 , 9 , 9 , 9 , 9 g, 9 , 9 , g, 9 , 9 

0, 2 3 4 6 g11, 12 0, 1, 5 6 9 g11, 13 
g, g, g, 9 , g, 9 g, 9 , 9 , g, 9 

0, 2 4 7 9 13 14 0, 1, 3 5 7 12, 14 
g, g, 9 , 9 , 9 , 9 , 9 g, 9 , 9 , g, 9 9 

0, 2 4 11 12 13 14 0, 1, 5 6 7 g12, 13 
g, g, 9 , 9 , 9 , 9 , 9 g, g, 9 , g, 9 

0, 1, 2 7 8 9 11 12 
9 , 9 , 9 , 9 9 , 9 

0, 1, 2 3 5 6 8 0, 2 4 5 9 10 11 
g, 9 , g, 9 , 9 , 9 g, g, 9 , g, g, 9 , 9 

0, 1, 2 5 8 13 14 0, 2 4 5 7 10 12 
g, 9 , g, 9 , 9 , 9 g, 9 , g, g, g, 9 , 9 

0, 3 4 7 8 11 14 0, 1, 6 7 9 10 14 
g, 9 , 9 , 9 , 9 , 9 , 9 g, 9 , g, g, 9 , 9 

0, 3 4 8 9 12 14 0, 1, 3 7 9 10 13 
g, 9 , g, g, 9 , 9 , 9 g, 9 , 9 , g, 9 , 9 

0, 4 6 7 8 11 13 0, 1, 6 10 11 12 14 
g, 9 , 9 , 9 , 9 , 9 , 9 g, 9 , 9 , 9 , 9 , 9 

0, 4 6 8 9 12 13 0, 1, 3 10 11 12 13 g, g, 9 , g, g, 9 , 9 g, g, 9 , 9 , 9 , 9 

0, 3 5 10 11 12 14 
1, 9 , 9 , 9 , 9 , 9 , 9 

0, 1, 2 3 6 9 14 0, 3 4 5 7 9 11 
g, 9 , g, 9 , 9 , 9 g, g, g, g, 9 , 9 , 9 

0, 2 4 8 10 11 14 0, 1, 5 6 7 8 10 g, 9 , 9 , 9 , 9 , 9 , 9 g, 9 , 9 , 9 , 9 , 9 

0, 1, 3 4 6 8 9 14 0, 4 5 7 9 12 14 
9 , g, 9 , 9 , 9 , 9 g, g, g, g, g, 9 , 9 

0, 1, 2 6 9 11 12 0, 3 4 5 6 11 13 g, g, g, g, 9 , 9 g, 9 , g, 9 , g, 9 , 9 

0, 1, 2 7 11 12 13 0, 4 5 6 12 13 14 g, 9 , 9 , 9 , 9 , 9 g, 9 , g, g, 9 , 9 , 9 

0, 2 3 4 8 10 12 0, 1, 5 8 9 10 13 g, 9 , 9 , 9 , 9 , 9 , 9 g, 9 , 9 , 9 , 9 , 9 
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s == 4 (continued). 

0, 1, 5 6 7 9 10 13 
9 , 9 , 9 , 9 , 9 , 9 

0, 1, 2 3 5 10 11 0, 2 4 5 6 8 9 
g, 9 , g, 9 , 9 , 9 g, 9 , 9 , 9 , 9 , 9 , 9 

0, 4 9 10 11 12 13 0, 1, 3 6 8 12 13 g, 9 , g, 9 , 9 , 9 , 9 g, 9 , 9 , 9 , 9 , 9 

0, 3 4 9 10 13 14 0, 1, 3 7 8 9 12 
g, g, 9 , g, 9 , 9 , 9 g, 9 , g, 9 , 9 , 9 

0, 4 6 7 10 11 12 0, 1, 6 8 11 13 14 g, 9 , 9 , g, 9 , 9 , 9 g, 9 , g, 9 , 9 , 9 

0, 3 4 6 g7, 10 14 0, 1, 7 8 9 11 14 
g, 9 , 9 , g, 9 , 9 g, 9 , 9 , 9 , 9 , 9 

0, 1, 2 5 10 12 14 0, 2 4 5 7 8 13 
g, 9 , 9 , 9 , 9 , 9 g, 9 , 9 , 9 , 9 , 9 , 9 

0, 1, g, 3 4 7 9 14 
9 , 9 , 9 , 9 , 9 

0, 1, 2 0, 5 7 8 10 g, 9 , , , , , , , 9 , 9 , 9 , 9 

0, 1, 2 4 10 11 13 0, 2 4 5 8 9 10 14 g, 9 , g, 9 , 9 , 9 9 , 9 , g, 9 , g, 9 , 9 

0, 2 3 6 8 9 13 0, 1, 2 3 5 6 11 14 g, 9 , 9 , g, 9 , 9 , 9 g, g, 9 , 9 , 9 , 9 

0, 2 3 8 9 11 12 0, 1, 2 5 6 7 9 11 g, g, 9 , g, g, 9 , 9 9 , 9 , 9 , 9 , 9 , 9 

0, 2 6 7 8 13 14 0, 1, 2 3 5 12 13 14 g, g, g, g, 9 , 9 , 9 g, g, 9 , 9 , 9 , 9 

0, 2 7 8 11 12 14 0, 1, 2 5 7 9 12 13 g, g, 9 , 9 , 9 , 9 , 9 9 , 9 , 9 , 9 , 9 , 9 

0, 1, 4 6 11 12 13 
g, 9 , g, 9 , 9 , 9 

0, 1, 2 3 4 5 9 0, 2 5 6 8 10 11 g, 9 , 9 , 9 , 9 , 9 g, g, 9 , 9 , 9 , 9 , 9 

0, 1, 2 4 5 7 14 0, 2 5 8 10 12 13 
9 9 , 9 , 9 , 9 , 9 g, 9 , 9 , g, 9 , 9 , 9 

0, 2 3 4 6 8 12 14 0, 1, 2 3 6 7 10 13 g, 9 , 9 , 9 , 9 , 9 , 9 9 , 9 , 9 , g, 9 , 9 

0, 2 3 4 8 11 13 14 0, 1, 2 6 9 10 13 14 g, 9 , 9 , g, 9 , 9 , 9 9 , g, g, 9 , 9 , 9 

0, 2 4 6 7 8 9 12 0, 1, 2 3 7 10 11 12 g, 9 , 9 , g, 9 , 9 , 9 9 , g, g, 9 , 9 , 9 

0, 2 4 7 8 9 11 13 0, 1, 2 9 10 11 12 14 
9 , 9 , 9 , 9 , 9 , 9 , 9 9 , 9 , 9 , 9 , 9 , 9 
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