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ABSTRACT:

Let G be a simple graph on n vertices having edge-connectivity «’(G) >
0. We say G is k-critical if «'(G) = k and k'’ (G - e) < k for every
edge e of G. We denote by ©(n,k) the set of all k-critical graphs on n
vertices. In this paper we prove that the maximum number of edges of a

graph G in €(n,k) to be: k(n-k) if n = 3k; and L% (n+k)® |, if k + 1

= n < 3k. Further, we characterise the extremal graphs in €(n,k).

1. INTRODUCTION

All graphs considered in this paper are undirected, finite, loopless
and have no multiple edges. For the most part our notation and
terminology follows that of Bondy and Murty [2]. Thus G is a graph
with vertex set V(G), edge set E(G), v(G) vertices, €(G) edges,
edge-connectivity «‘(G), and minimum degree &(G). Kn denotes the
complete graph on n vertices, Km,n the complete Dbipartite graph with

bipartitioning sets of order m and n; Cn a cycle of length n. The join

of disjoint graphs G and H, denoted by G v H, is the graph obtained by
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Joining each vertex of G to each vertex of H. However, we denote the
complement of G by G.

We say a graph G is k-critical if k’(G) = k and «’(G-e) < k for
every edge e of G. Observe that : every tree is l-critical; Cn is
2-critical; Klv Cn is 3-critical; Kn is (n-1)-critical; and Km, is
k-critical, where k = min{m,n}. For fixed positive integers n and k,
k-critical graphs on n vertices may not be unique. We denote by €(n,k)
the set of all k-critical graphs on n vertices. Let #(n,k) denote the
members of €(n,k) that have every edge incident to at least one vertex
of degree k.

Define B(n,k)} = €(n,k) - 4(n,k). We will establish that B(n,k} = ¢
for n = 2k + 1 and that B(n,k) # ¢ for n = 2(k+1). An edge e = xy of G
€ E(n,k) will be called a distinguished edge if dG(x) =z k + 1 and
dG(y) z k + 1. Thus every graph G in B(n,k) contains at least one
distinguished edge.

A graph G € €(n,k) is called edge-minimal (maximal) if there is no
other graph in €(n,k) having less (more) edges than G. We call G
r-semi-regular graph if every vertex of G has degree r except one which
has degree r + 1. We denote by H(n,t) a t-edge connected, t-regular
(semi-regular) graph on n vertices for nt even (odd). Clearly this
graph has [ gEA] edges.

In [3] we proved that if G € €(n,k) then 8(G) = k. We also proved
that G € €(n,k) if and only if there are exactly k edge-disjoint paths
Joining any two adjacent vertices of G. So it is obvious that for k
® 1, a graph G € ©(n,k) is edge-minimal if and only if G =
H(n,k). The edge-maximal members of ©(n,K) are not as easily

described. Indeed, their structure is much more complex.




In [3] we considered the problem of determining the maximum number
of edges for a graph G € 4(n,k). We proved that this number is equal
to : k(n-k) for n = 3k; and | % (n+k)? | ., for k + 1 =n < 3k. In this
paper we will prove that this result is true for an edge-maximal graph
in 8(n,k). We also prove that there is no distinguished edge in an
edge- maximal graph of ®{n,k) for k # 1. The edge-maximal graphs in

€(n,k) are completely characterised.
2. FUNDAMENTAL LEMMAS

We define an edge~cut of a graph G as a subset of E(G) of the form
(Vl,Vl), where V1 is a nonempty proper subset of V(G). A k-edge cut is
an edge cut of k elements.

Suppose G is a k-edge connected graph having two k-edge-cut sets,
say E1 and Ezu Removing E1 v} E2 from G yields a graph G’ having three
or four components. We will show that if G’ has four components then
every component is separated by a k-edge cut set from G; but if it has

three components then at least two of them are separated by k-edge cut

sets from G.

Lemma 2.1 : Let G be a k-edge connected graph on n vertices with

k-edge cuts E1 and Ez‘ If G - (E1 v Ez) consists of four components,

Gl, Gz’ G3 and GA, then for every i, 1 =i = 4, (Vi' Vi) is a k-edge

cut in G, where Vi = V(Gi)‘

Proof : Without loss of generality we assume that
E =((V, vV, V. uVv)
1 1 2 3 4
and

E =V vV, V. uV).
2 1 2 2 3



We let eij denote the number of edges in G between Gi and Gj (see

Figure 2.1).
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e + e + e
14 24 34
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Now (1) and (3), (2) and (4), (1) and (5), and (2) and (6) respectively

imply :
e Ze +e R (7)
12 23 24
e23 = e13 * €30 (8)
€3 = €1a * € (9)
and = + e (10)

e e
14 12 13




Since eij =z 0, inequalities (7) to (10) together imply that

e =1@e ==¢e =-¢e and hence e = e = 0. Now equations (1) and
12 23 34 14 13 24
(2) give 1
e =e = =e_ =z k.
14 23 12 34 2
This completes the proof of Lemma 2.1. o

Note that the above proof yields the following result.

Corollary 2.1 : let G be a k-edge connected graph with k-edge
cuts E1 and Ez' If G - (E1 V] Ez) consists of four components, then k
is even and E1 n E2 = ¢. Further, if k is odd G - (E1 v} Ez)consists of

three components. o

Our next lemma considers the case when G - E1 u Ez has 3 components

and k is odd or even.

Lemma 2.2 : Let G be a k-edge-connected graph on n vertices with
k-edge cuts E1 and Ez having t edges in common. If G - (E1 v} Ez)
consists of 3 components G1,G2 and G3, then t = % k with equality
holding only if (Vi,vi) is a k-edge-cut set in G for each i, 1 =1 = 3,
where Vi = V(Gi)' Furthermore, if t < %k then (vi,Vi) is a k-edge cut

set in G for exactly two of the i’s.
Proof : Without loss of generality we assume that

E =(V, V.uV) and E = (V vV, V).
1 17 2 3 2 1 2’ '3

As in the above proof we let eij denote the number of edges in G

between G.l and Gj (see Figure 2.2). Note that t = e .
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Figure 2.2

k, hence e = e . Now since

We have e + e =k and e + e
12 13 13 23 12 23

k’ (G) = k we have

12 23

and thus e = e B4 1 k. This implies that e = l k. Furthermore,
12 23 2 13 2
ife = 1 k, then
13 2
_ 21
€2 T €13 T 85 T 3K

Observe that if e, < % , then e, + €, > k. This completes the proof
of the lemma. . o

Our next lemma is essential for proving our main result.

Lemma 2.3 : Let G be a graph on n vertices and let k be a positive

integer less than n. If every edge of G is incident to at least one

vertex of degree k or less, then G has at most e£(n,k) edges, where
k(n-k) , if n = 3k

e(n,k) = (11)
L%(n+k)2_|, if k+1 =n < 3k




Proof : Let G be a graph on n vertices with every edge incident to at
least one vertex of degree k or less. We denote by A = {v € V(G)

dz(v) =k} and A =V(G) - A. Let [A| = n_ and |A| = n,=n -
n,. Since every vertex x of G in K, has degree at least k+1, and

E(G[A]) = ¢, we have n = k+1.

If n1 = n-k, then n, = n-n z k, so the maximum number of edges of G
is obtained when there is no edge e = xy of G such that X,y € A. Hence

e(G) = nlk = (n-k)k .
If n1 = n-k, then n, = k. Simple counting gives

e(G) = nl(n-nl) + | n, (k—n+nl) ]

N

= | nl(n—nl) + nl(k - n+n1) ]

=lea) | = g(n)
For n = 3k, é(nl) is a decreasing function of n, and so

max -~
n, (g(niJ}

L gnk) |

(n-k)k

Since é(nl) is monotonically increasing when n = L E%E and

monotonically decreasing when n1 E [ 9%5 ], we have for n < 3k,

max

n
i

(6)Y = max { g(| BX |y, g 2k 1)y

Lg i00?
Now since

(n+k)? - 8k(n-k) = (n-3k)2 = 0

and k(n-k) is integer, we have

L & 0? | = k(nk)
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Therefore

k(n-k) , if n = 3k s
e(G) =
L%(n+k)2 |, if k*1 =n < 3k .
This completes the proof of Lemma 2.3. o
The following result was proved in [3]. It is actually a special

case of Lemma 2.3.

Corollary 2.2 : If G € 4(n,k), then the maximum number edges of G is

e€(n,k), where e€(n,k) is given by (11). , o
Our next result considers the class B(n,k).

Lemma 2.4 : Let G € B(n,k) = €(n,k) - 4(n,k). Then

7 , if k=2,
v(G) =

2(k+1) , otherwise .

Furthermore, this bound is sharp.

Proof : By definition, the graph G € B(n,k) contains a distinguished
edge e, say. Now let E‘1 be a k-edge cut of G containing e,- Let G1
and G2 be the components of G - E1 and suppose that {V(Gi)| =n; , i=
1,2. Without loss of generality suppose n1 = nz; We will show that n1
z k+l1. In fact, since e, is a distinguished edge of G joining G1 and

G2, there is a vertex, x say, of G1 in G with dG(x) =z k+1. Since G is

k-critical then 8(G) = k. Hence

Z dG(v) = n1k+1 .
veG
1
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Now if n1 = k, we have

Z dg(v) = Z dGiv) + K
veG veG1

1A

nl(ni—l) + k

1A

k(nl-l) + k= nlk ,

contradicting the above fact. Hence n, z k+l.
Now since n, = n , we must have

2(k+1)

=]
I
=]
+
=]
\4

For k = 2, a straight forward case analysis establishes that, the
graph G formed from K3 and C4 by adding two edges Jjoining a vertex of
K3 and two nonadjacent vertices of C4, is the member of B(n,k) with the
smallest number of vertices. This establishes the lower bound on v(G).
For k # 2 we establish the sharpness of this bound by construction.

For k odd, we construct the graph G € B(2k+2,k) as follows. Take
G1 = K1 v H(k,k-2). Since k(k-2) is odd, there is a vertex, x say, of
H(k,k-2) with dH(x) = k-1. We form G by taking two copies G; and GZ
of G1 and adding a perfect matching between the vertices of H’ and H”

with x’x” an edge in this matching. Observe that G is a k-critical

graph, on 2(k+1) vertices, and dG(x’) dG(x”) = k+1. So x'x” is a
distinguished edge of G. Thus G € B{(n = 2k+2,k).

For k even, k # 2, we construct the graph G € B(2k+2,k) as follows.
Take G1 = Ez \ Kk—l’ and denote the vertices of Kz by x and y. Let G2
= Kz v H(k-1,k-3). Since (k-1)(k-3) is odd there is a vertex, z say,

of H(k-1,k-3) with dH(z) = k-2. Form the graph G from G1 and G2 by

joining z to x and y, and joining all other vertices of H to exactly
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one of x or y so that x and y have the same degree in G. Observe

that G is a k-critical graph on 2k+2 vertices, with
= = [ k-1 - =

d;(x) = d;(y) = [ 5= 1+ k-1 2z k+#1 and dG(Z) = k+2, Therefore

G € B(n =2k+2,k). This completes the proof of the lemma. o

Lemma 2.5 : For positive integers n and k with k > 1 let

% n(n-1) , if 1 =n=k
a(n,k) =
e(n,k) s otherwise.

where e€(n,k) is given by (11). If n = k+1, then

a(nl,k) + a(nz,k) + k = a(n1 +n, k) (12)
unless k+1 = n1 < 3k-1 and n2 = 1 in which case

1
a(nl,k) + a(nz,k) + §k = a(n1+n2,k)

Proof : We define the function
f(nl,nz,k) = a(nl,k) + a(nz,k) + k.
We consider two cases according to the value of nf

Case (a): n =z 3k

If n, = 3k, then

f(nl,nz,k) = k(nl—k) + k(nz—k) + k

(n, +n, - kXk - %% - k)

< (n1 +n, - k)k = a(n1+ nz,k)

This proves the lemma for the case n, = 3k.

If k+1 = n2 < 3k, then
_ _ 1 2
fln,n,k) =k(n-k) + [ sn+x)° ] +k

= k(n, - k) +%(n2+k)2+k




_ 1 2
= a(n1 + nz,k) + §(n2 + k)T + k nzk .
Now it is a simple algebraic exercise to show that

1 2
3 (n2+ k) +k - nzk <0 .
Hence

f(n ,n_,k) < aln, + n_,k) for k + 1 =n_ < 3k .
1’2 1 2 2

The only remaining case is n_ = k .

For n2 = k, we have

—— — 1 -
f(nl,nz,k) = k(n1 k) + 5 n2(n2 1) + k

1
= a(n1 + né,k) t 5 nz(n2 1) + k ~ kn2

Now for n2 = k the function

h(nz,k) = nz(n2 - 1) + k - kn2

N} =

is monotonically decreasing in n,. Hence

h(nz,k) = h(1,k) = 0 .
Therefore

f(n1’n2’k) = a(n1+ nz,k)

with equality possible only if n,

]
-

Case (b): k+1s= n, < 3k .
We may assume that n, < 3k as otherwise we can, by interchanging n,
and n,, apply the above argument.

If n, z k + 1, then

1 2 1 2
f(n1,n2,k) |_§(n1 + k) _l + |_§(n2 + k) J + k

iA

[é{(n1+k)2+(n2+k)2}+kj



n_ = 3k. In this case

We first consider the case when n1 + 5

a(n1 + né,k) = k(n1 +n, - k). Now the function

h(n_,n_k) = = {(n, + k)% + (n_ + k)% +k - k(n +n_ - k)
1 2 1 2 1 2

00 =

is for k + 1 = n, < 3k, monotonically decreasing in n, so it is maximum

when n2 is as small as possible. Hence, since n2 =2k +1

max B
n {h(nl,nz,k)} = h(nl. k + 1, k)

!
|

213 {(n, + K2+ 2k + D% + k - k(n + 1)

=5 (o, - 3k)% - (2k - 102 + 2} .

0] =

Since for k + 1 = n < 3k, we have (n1 - 3k)2 = (1 - 2k)2 we conclude

that
max

_ 1 _ 2 _ _ 2
n,n {h(nl,nz,k)} =3 {1 2k) (2k 1)° + 2}

A

ST

Thus we have

T+ 02 (n, + K + k - kin_ +n_ - k) s

#>)

Now since a(n1 + nz,k) = k(n1 *n, - k) is an integer, we have

L, +10%+ (n +10* +k ] -k (o +n -k =o.
Hence

f(nl,nz,k) = a(n1 + nz,k)

This completes the proof for the case n1 + n, z 3k.

We now consider the case n1 + n2 < 3k. For this case we have
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1 2
aln + nz,k) = |_—§(n1 +n, + k) |

The function

[

_ 2 2 _1 2
h(ni,nz,k) = = ((n1 + k)© o+ (n2 + k)°) + k 3 (n1 o+ k)

o]

2
{k® + 8k - 2n1n2}
k% + 8k - 2(k + 1)?)

{- ¥* + 4k - 2}

00|~ 00|~ 0Of+=> 00]

(as k = 3).

(Note that this case does not happen for k = 2). Again as f(n1’nz’k)

and a(n1 + nz,k) are integers

f(nl,na,k) - a(n1 + nz,k) <0
as required.

The only remaining case is o, = k. We have

1 2 1
fn,n, k) = [ 5(n +K)° ] +5n(n - 1) +k

1 2 1
= —8—(n1 + k)% o+ 5 nz(n2 - 1) + k.
Now
k(n1+ n, - k), 11”)n1 +n, = 3k

aln, + n_,k) =
1 2 1 5
L §(n1 +n, o+ k)“ ], otherwise

We first consider the case r11 + n2 z 3k. Then the function

1 2 1 _ _ B
h(nl,nz,k) = §(n1 + k)® 4 5 nz(n2 1) + k l-:(n1 +n, k)

is, for 1 = n2 = k, monotonically decreasing . in n2. Thus, since

n 23k -n =1,
2 1



max _ _
n (h(nl,nz,k)) = h(nl, 3k n, k)

1 2 2 -
3 (Sn1 - (22 - A‘l)n1 + 17k° - 4k}

= h(ni,k) )
and
o {An,k)} = max {R(k+1, k), H(3k-1, k)}
1
= h{k+1, k)
1. _ 47
= g(-12k + 9) < - 1
Hence

f(nl,nz,k) < a(n1+ nz,k)

Now we consider the case n1 + nz < 3k.

The function

h(nl,nz,k)

1 2 1
§(n1 MR —nz(nz

1 2
5 1)+k——8—(n1+nz+k)

00| W

2 1
n2~z(n1+k+2)n2+k

is, for k + 1 = Hence

n < 3k, monotonically decreasing in nl.k
max _
n, {h(nl,nz,k)} = h(k+1,n2, k)
3 2 1
=gh, - Z(Zk+3)n2 + k

=0 for n2=2.

Thus for n, z 2 we have proved the lemma.

The only remaining case is n, = 1 and k+1 = n < 3k-1. For this

case we have
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1 2
aln +n,k) = | gl + 1+ K)* §
and

' _q 1 2
f(n,n k) = [§(n1 +K)°] + k.
Now consider
£%(n .n,k) = £(n_,n_k) - =k
1'72° 1°2’ 2

1 C 2 1
=[-8—(n1+k)j+§k

1 2 1
s g (ﬂ1 + k) + ‘zk.
We have
_1 2,1 1 2
h(nl,nz.k) = §(n1 + k)© + ik 8(n1 + 1 + k)
o1 1 1
=gk -gln vk +g
1 1 1
5§k'°4‘(2k+1)+-8~<0
Hence

* p .
f (nl,nz,k) = a(n1+ nz,k) as required.
This completes the proof of the lemma.

Lemma 2.6 : For 3 = k+l sni<3k,i=1,2

c(n1,k) + e(nz.k) + 2k = e(n1 +n, + 1,k) (13)
where e(n,k) is given by (11).
Proof : Let
h(nl.nz,k) = ‘:(n1’k) + e(nz.k) + 2k - e(n1 +‘ n, + 1,k).

We distinguish two cases acpording to the value of n +n, + 1.

Case (a) : n +mn,+ 1 =3k .

We have
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1 2 1 2
hin,n k) = [ g +K" ]+ |50 +K°]+2

-(nl*n2+1—k)k

A
|

1 ‘ 2 2
8((nl+k) +(n2+k))+2k k(n1+n2+1—k)

= h ("1"“2']‘)?
The function. ﬁt“ﬂ“g'“ is, for k+#1 = n < 3k, monotonically
decreasing in n. So it is maximum when n_ is as small as

possible. Hence, since n, = k+1

max {h(ni.r}z,k)}

n
1

h(k+1, n,.k)

[}

1 2 2
§((2k +1)° + (n2 + k)%)

"+2k-—k(n2+2)

1 2 2
§{(n2 3k) (2k 1) + 2} .
Now for k + 1. = n, < 3k, we can show that
(n, - 3)% = (1 - 2007 .
Hence we have

max {fi(n,n_,k) = 2{(1-2K)% - (2k-1)% + 2) =

n_,n
1’72

ol N

Since h(ni,nz,k) is an integer, we conclude that h(nl,nz,k) =0 .

This proves the lemma for this case.

Case (b) : n1+n2+1<3k.

Note that this case occurs only when k > 3. Here we have
h(n_,n_k) = [l(n +x)% ]+ [l(n + k)
1’72’ 8 1 8 2

+2k'-[%(n1+n2+1+k)2j .




Consider the function
Aln,n k) =s {(n +K)2+ (n_+X)% - (n +n_+1+Kk?3+2k
1’72’ 8 1 2 1 2

2
(-2(n1+n2)—2n1n2+k + 14k - 1} .

00} =

Since ﬁ(nl.nz,k) is a monotonically decreasing function in n_, and

n, z k+1, we have

max (h(nl,nz,k)} = h(nl,k+1,k)

n
2

= %{kz + 12k - 3 - 2(2+K)n}

= %{ - k% + 6k - 7} (since n < 3k)

[

00f

(as (k = 4).

Consequently h(nl,nz,k) = 0, as required. This completes the proof of

Lemma 2.6. s}

3. MAIN RESULTS

The following terminology 1is wuseful in the proof of our main
theorem. Let G € 6(n,k). For a subset U of V(G) we write (U, U)
for the number of edges between U and U.

When €(U,U) = k we call U a segment of G (note that U is also a

segment). A consequence of Lemmas 2.1 and 2.2 is the following result.

Lemma 3.1: If A and B are two segments such that B n A # ¢, then

either A € B or B n A is a segment. [}



For X < V(G) we denote the subgraph of G induced by the vertices in

X by G[X].

Theorem 3.1 : Let G be an edge maximal graph in €(n,k). Then

k(n-k), if n 2z 3k ,
e(G) =
| sn#0® |, if k#l S n < 3k .

Proof : If G has no distinguished edge, then the result coincides with
Corollary 2.2 and we have nothing to prove. So suppose G contains
at least one distinguished edge.

Choose a k-edge cut E1 containing a distinguished edge, e, say,
such that G - E1 contains a component, G1 say, having no distinguished
edge. That such an E1 and e, exists follows from Lemmas 2.1 and 2.2.
Let G2 be the other component of G - E1 and let n, = |V(Gi)|’ i=1,2.
As in the proof of Lemma 2.4, since G1 and G2 each contain a vertex of
degree k+1 we have n = k+1 and n, =z k+l1. Since G1 has no
distinguished edge of G, we have by Lemma 2.3, C(G1) = e(nl,k). Now if

C(GZ) = e(nz,k), then

e(G) = 8(G1) + e(GZ) + k

1A

e(nl,k) + c(nz.k) + k

A

e(n1 + nz,k) (Lemma 2.5)

= ¢(n,k) ,

as required. Thus we may assume that e(Gz) > s(nz,k). Then, by Lemma
2.3, G2 contains at least one distinguished edge.

Our strategy is to partition the vertices of G2 into sets and then
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apply Lemmas 2.5 and 2.6 to count the edges of G. Observe that if e’
is a distinguished edge of G in G2 and E’ is a k-edge cut of G
containing e’, then by Lemma 3.1 there exists a segment S’ such
that S’ n V(G1) = ¢. Further, Lemmas 2.1 and 2.2 ensure that we can
choose e’ and E’ such that G[S’] contains no distinguished edge of G.
Note that |S’| = k+1 and by Lemma 2.3 e(G[S’]) = e(|S’|, k).

Let T denote the largest segment of G such that T n V(Gl) = ¢ and
€(GIT]) = e(|T|,k). That such a T exists follows from the
existence of S’. Since c(Gz) > e(nz,k), T # V(Gz)' Let T = V(Gz)\T.

If €(G[T'] = a(|T"},k), then

e(G) = €(G) + €(GIT]) + e(GIT']) + 2k
= aln k) +a(|T|,k) + a(|T"|,k) + 2k
= a(n1 + |T| + |T'],k)  (Lemmas 2.5 & 2.6)
= g(n,k),
as required. Hence we may assume that e(G[T’],k) > a(|T’|,k). The

definition of a(n,k) then implies that |T’| z k+l. We now partition
the set T’.

We can find a distinguished edge e of G in G[T’] and a segment S1
of G such that e is in the cut (Sl,§1), S, n V(G1) = ¢ (so s, nT = 5,
nT’) and G [S1 n T] does not contain a distinguished edge. That this

can be done follows from lemmas 2.1, 2.2 and 3.1. Continuing in this

way we partition T’ into sets B1’B2""’Bt such that
i-1
B =S nT, B, =(\ U s)nT
1 1 i i J
J=1

and each subgraph G[Bi] contains no  distinguished edge of G1”

1G7



Hence, by Lemma 2.3, S(G[Bi] = 8(|Bi|’k) when IBil z k+1. Obviously
1 .

e(G[Bi]) = E’Bil(lBi! -1). Hence e(G[Bi]) = a(lBi|,k) for every i. If

]Bi] z k+1 for some i, with no loss of generality say i=1, then since

V@G| + |T| + [B | = 3(k+1), we have by Lemma 2.5

t
e(G) = e(G) + e(GIT]) + e(GIB] + 2k + } e(GIB;]) + (t-1)k
i=2
t
=a([VEG)| + |T| + B[,k + } a(|B |, k) + (t-1)k
i=2
=a(viG)| + |T| + |B| + ... + [B.|.Kk)

it

e(n,k),

as required. Thus assume that IBi' = k for every i. Then B, is not a

segment. Now by Lemma 3.1 T ¢ 51 and S1 =Tvu Bl.
Suppose that ]Bi[ z 2 for some i. With no loss of generality let

]Bll z 2, Then

e(GIT v B 1)

LA

e(GI[T],k) + ¢ (G[Bll,k) + k

1A

a(|T|, k) + a(|B [,k) + k

A

a(|T v Bll,k) (Lemma 2.5)

contradicting the choice of T as T v B1 is a segment of G. Thus

IBi| = 1 for each i and further no B, is a segment.

i Hence, since

|T"| = k+1, t = 2. By Lemma 3.1, S, U B, is a segment of G. Now since

]Bl v, le ='2 we have
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i

e(G[S1 v le) e(GIT v B1 v BZ])

A

e(GI[T]) + e(G[B1 V] BZ}) + k

A

a(|T|,k) + a(|B uB|,k) +k

1A

a(|T| + |B1 v le,k) , (Lemma 2.5)

it

a(|TuB UBJ,k) =al] S uB|,k),

contradicting the choice of T. This completes the proof of the

theoren. o

In the following result we will prove that an edge maximal graph in
€(n,k#1) can not have a distinguished edge. We will make use of the

following remarks in the proof of our result.

Remark 3.1 : It can be shown that equality in (12) holds only if one

of the following conditions is satisfied :

(i) n = 3k-1 and n, = 1; for every k
(ii) n =n = k+1 and 2 sk=4
(iii) n = k+1 and n, = 2; for every k
(iv) n =4 and n =k =3
1 2
(v) n = k+2 and n, =2; k is odd.

Remark 3.2 : Equality in (13) holds only if n

]
=4

= k+1 and
2

Theorem 3.2 : For k # 1, there is no edge-maximal graph in €(n,k)

having a distinguished edge.

ERele)



Proof : Let G € €(n,k), k # 1, be a graph containing a distinguished
edge. To prove the theorem it is sufficient to show that G has less
than €(n,k) edges, where e(n,k) is given by (11).

As in the proof of Theorem 3.1, we select a k-edge cut E1 containing
a distinguished edge e such that G - E1 contains a component, G1
say, having no distinguished edge. Let G2 be the other component
of G - E and let n, = [V(G)|, i = 1,2. Since E  contains a
distinguished edge, then n1 = k+1, and of course n2 z k+1.

Since G1 has no distinguished edge of G Lemma 2.3 implies

£(G1) = e(nl,k). Consequently, if c(Gz) = e(nz,k) then

e(G) = 8(G1) + e(Gz) + k
= s(nl,k) + s(nz,k) + Kk,

= c(n1 + nz,k) = e(n,k). (Lemma 2.5)

Since k = 2 and n, z k+1 for i=1,2, it follows from Remark 3.1
that the above holds with equality only when n = n2 = k+1 and
2 =k = 4. Since e(k+1,k) ='L %(2k+1){] = %k(k+1), we conclude

that G = G = K . Now since there are k edges between G and G we

1 2 k+1 1 2
can assume, without loss of generality, that G1 contains two vertices,
v, and v, say, Jjoined to vertices in Gz' But then, since K'(Gl) = k,
there are at least k+1 edge-disjoint (VI’VZ) - paths in G,
contradicting the fact that G is k-critical. Hence £(G) < e£(n,k) when
e(Gz) < e(nz,k).

Assume then that e(Gz) > c(nz,k). Then G2 contains at least one

distinguished edge. As in the proof of Theorem 3.1, let T be the
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largest segment of G such that T n V(Gx) = ¢ and e(GIT]) = (|T|,k).
Let T/ = V(Gz)\T. Now T’ # ¢ since e(GZ) > e(nz,k). As in the proof

of Theorem 3.1, if €(G[T’] = a(|T’|,k), then

e(G)

1A

8(G1) + €(G[T]) + e(GIT']) + 2k

1A

a(nl,k) +a(|T|.k) + a(|T|,k) + 2k.
If |T’| =z 2, then by Lemma 2.5
e(G) = a(n,k) + a(|T| + |T’|,k) + k .

Since n = k+1 and |T| + |T'| = k+3 we have by Lemma 2.5 and Remark 3.1
aln k) + a(|T| + |T"],k) + k
<aln + |T| + |T7],k),
and hence

e(G) < a(n1 + |T| + |T']|,k) = e(n,k),

as required.

Consider now |T’| = 1. Then a(|T’|,k) = 0, and hence

e(G)

A

a(nl,k) +a(|T|,k) + 2k.

If n_ = 3k or |T|
1

4

3k, then by Lemma 2.5 and Remark 3.1,

a(nl,k) +a(|T|,k) + 2k < a (n1 + |T| + 1,Kk).

Hence

€(G) < aln + [T| + 1,k) = e(n,k),
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as required. So suppose that n < 3k and |T| < 3k. Then, by Lemma 2.6
aln,k) + a([T|,k) + 2k = aln + |T[ + 1,k)

with equality holding only if n = [T[ = k+1 and 2 = k = 5 (by Remark
3.2). As before, since a(k+l,k) = %k(k+1), G = GIT] =K . Let v
be the single vertex T’. Since dG(v) z k+1 (= 3), v is joined to at
least two vertices, say x and y in the same segment G1 or T of G. But
then, there are at least k+1 edge-disjoint (x,y) - paths in G,

contradicting the criticallity of G. Consequently
e(G) <aln + [T| +1,k)
= a(n,k) = e(n,k),

as required. This completes the proof of the theorem for the case

e(GIT']) = a(|T’],%x).
Now suppose that e(G[T’1) > a{|T’|,k). Then |T] = k+1. As in the
proof of Theorem 3.1, we partition T’ into sets B1’Bz""’B such that

t
each subgraph G[Bi] contains no distinguished edge of G and hence

e(GIB;] = a(|B,|,k).

If |B1| =z k+1 for some i, say i=1, then

t
€(G) = €(G) + e(GIT]) + e(GIB1) + 2k + } e(GIB,]) + (t-1)k
i=2
t
=al k) +a(|T]k +a(B[,k) + 2k + § a([B,],k) + (t-1)k
i=2
t
=am k) +a(|T]+ [B|.k) + k + | a(|B],k) + (t-1)k
i=2

(Lemma 2.5).
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Since n = k+1 and |T| + [B1| z 2(k+1), then by Lemma 2.5 and Remark

3.1 we have

aln,k) + a(|T| + [B[,k) + k <aln + |T| + |B|.,K),

and hence since n + |T| + |B1| = 3(k+1),

t
e(G) <aln,+ |T| + |B |, k) + } a(|B],k) + k(t-1)
i=2

=< a(n,k) = ¢(n,k), (Lemma 2.5)

as required.

Finally, when IBiI = k for every i, 1 =< i = t, the desired
contradiction is obtained by applying the arguement wuse for the
corresponding case in the proof of Theorem 3.1. This completes the

proof of the Theorem. s}

Before proceeding to the characterisation, we need to describe the
following graphs. Let H’(n,r) be a r-regular ( r-semi-regular )
graph on n vertices for even (odd) n.

Let n and k be two integers with 2 = k+1 = n < 3k. We define

n+k+1
n = L 2 ]

and,for n > k+1 , we construct the graph G’ such that

G =K vHI(On, k+n -n).
n-n 1 1

1

If nl(k +n - n) is even, then we define G: = G’; otherwise we define



#* —
G1 = G’ - {e}, where e = xy € E(G’) with x € V(Kn_n ) and y eV(H’(nl,k
1

+ n - n)) such that dH,(y) = k—n+nl+1. For n=k+1, we take G:= H(n,k).

n+k+1

5 1> if n = 3k - 2(2i-1), where

Now we define n = [
1
L= 1,2, .., (2ks1),

#*
We construct the graph G2 as follows :

* ~ N * - ~ N -
G =H(n ,k) , if n=n, and G, =K_~ v H (n ,k+#n-n) , if n > n .
2 1 1 2 n-n, 1 1 1

Now for
n=2i-%k+ 1; k+1=1i=2k-~-1
or
n =21 - k; k+2=1=s1i=x2k~-1; 1iis odd,
let
n, - L n+§-1 |

#* ¥#*
We define G3 = G if gl(k - n + gl) is even and G3 =G - {e} if

Ql(k - n + gl) is odd where e = xyeE(G), such that x e V(Kn—n ) and
=1

y € V(H') with dG(y) =k + 1,
* % *
Observe that for k + 1 = n < 3k the graphs G1’ G2 and G3, are
in the class «(n,k) and have | %(n+k)zj edges and hence are

edge-maximal in the class «(n,k).

Our next result provides us a characterisation of the

edge-maximal graph in €(n,k).
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Theorem 3.3 : G is an edge-maximal graph in &(n,k), k # 1 if and only
if

(1) G = Kk,n—k , if n= 3k
s s * e
(i1) G = Kk,n—k or G =G, , if n = 3k-1
s * * -
(ii1) G = Kk,n—k or G = G1 or G = G2 , if n = 3k-2
#* *
(iv) G=G1 orG=G2 , if n =3k - 2 (2i-1),
i =2,3,...,7(2k+)
* #*
(v) G=GlorG=G3,ifn=21~k+1,k+1$is2k-1
orn=2i -k, iis odd, k + 2 =i =2k -1
#*
(vi) G = G1’ otherwise.
Proof : Let G be an edge-maximal graph in ®(n,k); k # 1. Then by

Theorem 3.2, G has no distinguished edge and so G € «(n,k). In other
words, every edge e of G is incident to at least one vertex of degree
k. Since G € €(n,k), then 8(G) = k. Now let G € «(n,k). We denote by
X = {v e V(G) : d;(v) = k} and X = V(G\X. Let |X| =n and n, =
Iil =n-n. Now since every vertex v of G in X has dG(V) > k, and G

e «(n,k), n = k+l.

If n1 = n-k then it is obvious that

e(G) = nlk = g(nl)

Clearly
max (g(nl)) = gln-k) = k(n-k)
n
1
Now n, = n-k, if and only if n,=n- n = k and so Kk,n—k is the only



edge-maximal graph for the case n1 = n-k.

If n, = n-k, then n,=n-n = k simple counting gives :

1 .
n, (n—ni) + [ §nl(k -n nl)] , if n1(k - n+n1) even

e(G) =

1 .
nl(n Snp) -1 [ §n1(k -n + n1)], if nl(k n+nl) odd.

That is
€(G) =g ) =n(n-n)+| %nl(k =) |

Since for n = 3k, g(nl) is decreasing in noxn - k we have

il

max {g(nl)} gln - k)

n
1

(n - K) k + | 2(nk)(0) |

i

(n-k)k.

Again for this case Kk n-k achieves this bound. Now for n < 3k,

n+k-1
> |

Thus the maximum of g(nl) is

it is easy to verify that g(nl) is increasing in n for n = L

n+k+1 J

and decreasing in n_for n =z |
1 1 2

attained when

_ n+k+1
n = L 2 J

Some simple algebra gives

gl L n+k+1

S0 = | im0

#*
Observe that the graph G achieving this bound is G1 .

n+k-1 J

5 we have

Now when n = |
1

g(| 25 ) = | fme)? |

-~



only if n=2i-%k+1 for k+1=1i=2k~-1o0rn=2i-%k for
’ *
k + 2 =1 = 2k -~ 1 and i is odd. So for this case the graph G3

achieves this bound. It can be shown that

g2 ) = | L o? |

*
only if n = 3k - 4i+2, i = 1,2,...,%(2k+1). Clearly for this case G2

achieves this bound. Now since
(n-3k)% = (n+k)? - 8k(n-k) = 0
and k(n-k) is integer, we have
| 2(n+0)? | = k(n-k)
8
for n < 3k, with equality holding only if n = 3k-1 or n = 3k-2. So for

this case if G is an edge maximal then G could be Kk n—-k

This completes the proof of the Theorem 3.3. a]

as well.

Note that for k = 1, every tree on n vertices belongs to 6(n,k),
having n~1 edges. Thus it is obvious that every tree on n vertices is

an edge-maximal graph in €(n,1).
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