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Let G be a simple graph on n vertices having edge-connectivity 1(' (G) > 
O. We say G is k-critical if 1(' (G) :::: k and 1(1 (G - e) < k for every 
edge e of G. We denote by ~(n,k) the set of all k-critical graphs on n 
vertices. In this paper we prove that the maximum number of edges of a 

graph G in ~(n,k) to be: k(n-k) if n ~ 3k; and L ~ (n+k)2 J. if k + 1 

s n < 3k. Further, we characterise the extremal graphs in ~(n,k). 

1. INTRODUCTION 

All graphs considered in this paper are undirected, finite, loopless 

and have no multiple edges. For the most part our notation and 

terminology follows that of Bondy and Murty [2]. Thus G is a graph 

with vertex set V(G), edge set E(G), v(G) vertices, c(G) edges, 

edge-connectivity /(' (G), and minimum degree o(G). K denotes the 
n 

complete graph on n vertices, K the complete bipartite graph with 
m,n 

bipartitioning sets of order m and n; C
n 

a cycle of length n. The join 

of disjoint graphs G and H, denoted by G v H, is the graph obtained by 
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joining each vertex of G to each vertex of H. However, we denote the 

complement of G by G. 

We say a graph G is k-cri tical if 1(.' (G) = k and 1(.' (G-e) < k for 

every edge e of G. Observe that every tree is i-critical; C is 
n 

2-cri tical; Kv C is 3-cri tical; K is (n-l) -cri tical; and K is 
1 n n m,n 

k-critical, where k == min{m,n} . For fixed positive integers n and k, 

k-critical graphs on n vertices may not be unique. We denote by ~(n,k) 

the set of all k-critical graphs on n vertices. Let A(n,k) denote the 

members of ~(n,k) that have every edge incident to at least one vertex 

of degree k. 

Define BCn,k) ~(n,k) - A(n,k). We will establish that B(n,k) = ¢ 

for n s 2k + 1 and that 1:3(n,k) * ¢ for n ~ 2(k+l). An edge e = xy of G 

E ~(n,k) will be called a distinguished edge if dG(x) ~ k + 1 and 

dG(y) ~ k + 1. Thus every graph G in B(n,k) contains at least one 

distinguished edge. 

A graph G E ~(n,k) is called edge-minimal (maximal) if there is no 

other graph in ~ (n, k) having less (more) edges than G. We call G 

r-semi-regular graph if every vertex of G has degree r except one which 

has degree r + 1. We denote by H(n,t) a t-edge connected, t-regular 

(semi-regular) graph on n vertices for nt even (odd). 

nt 
graph has r 2 1 edges. 

Clearly this 

In [3] we proved that if G E ~(n,k) then o(G) = k. We also proved 

that G E ~(n,k) if and only if there are exactly k edge-disjoint paths 

joining any two adjacent vertices of G. So it is obvious that for k 

* 1, a graph G E ~(n,k) is edge-minimal if and only if G 

H(n,k). The edge-maximal members of ~(n,k) are not as easily 

described. Indeed, their structure is much more complex. 



In [3] we considered the problem of determining the maximum number 

of edges for a graph G E ~(n,k). We proved that this number is equal 

to : k(n-k) for n ~ 3k; and L ~ (n+k)2 J ' for k + S n < 3k. In this 

paper we will prove that this result is true for an edge-maximal graph 

in t;'(n,k). We also prove that there is no distinguished edge in an 

edge- maximal graph of t;'(n,k) for k * 1. The edge-maximal graphs in 

t;'(n,k) are completely characterised. 

2. FUNDAMENTAL LEMMAS 

We define an edge-cut of a graph G as a subset of E(G) of the form 

(V
1

,V
1
), where Vi is a nonempty proper subset of V(G). A k-edge cut is 

an edge cut of k elements. 

Suppose G is a k-edge connected graph having two k-edge-cut sets, 

say Ei and Removing El v from G yields a graph G' having three 

or four components. We will show that if G' has four components then 

every component is separated by a k-edge cut set from G; but if it has 

three components then at least two of them are separated by k-edge cut 

sets from G. 

Lemma 2.1 : Let G be a k-edge connected graph on n vertices wi th 

k-edge cuts El and E2 If G - CEl v E2) consists of four components, 

cut in G, where Vi 

Proof Without loss of generality we assume that 

E (V v V2, V V V ) 
1 1 3 4 

and 

E (Vi v V
4

, V v V
3

) . 
2 2 



We let e.. denote the number of edges in G between G. and G. (see 
1J 1 J 

Figure 2.1). 

Figure 2.1 

Observe that 

k I Ell e + e + e + e 
13 14 23 24 

(1) 

and 

k = IE21 ::: e + e + e + e 
12 13 24 34 

(2) 

Further, since K' (G) = k we must have 

e + e + e ?! k 
12 13 14 

(3) 

e + e + e ?! k 
12 23 24 

(4) 

+ e + e ?! k 
23 34 

(5) 

and 
e + e + e ?! k 

14 24 34 
(6) 

Now (1) and (3), (2) and (4) , (1) and (5), and (2) and (6 ) respectively 

imply : 
e :?: e + e (7) 

12 23 24 

e :?: e + e (8) 
23 13 34 

e :?: e + e (9) 
34 14 24 

and e :?: e + e (10) 
14 12 13 



Since i2: 0, inequali ties (7) to (10) together imply that 

e 
23 

e and hence e e 
14 13 24 

o. Now equations (1) and 

(2) give 
e :::: e 

14 23 

1 
"2 k. 

This completes the proof of Lemma 2.1. o 

Note that the above proof yields the following result. 

Corollary 2.1 Let G be a k-edge connected graph wi th k-edge 

cuts and If G CE
1 

v E
2

) consists of four components, then k 

is even and E ~ 
1 

= ¢. Further, if k is odd G 

three components. 

Our next lemma considers the case when G 

and k is odd or even. 

E v 
1 

v E )consists of 
2 

o 

has 3 components 

Lemma 2.2 : Let G be a k-edge-connected graph on n vertices with 

k-edge cuts El and having t edges in common. If G - (E v E ) 
1 2 

consists of 3 components G
1

,G
2 

and G
3

, then t 
2 

k with equality 

holding only if (Vi' ) is a k-edge-cut set in G for each i, 1 sis 3, 

where Vi = VCGi )· Furthermore, if t < ~k then (Vi' ) is a k-edge cut 

set in G for exactly two of the i's. 

Proof Without loss of generality we assume that 

As in the above proof we let 

and E 
2 

e .. denote the number 
IJ 

between G
i 

and G
j 

(see Figure 2.2). Note that t = e 
13 

183 

of edges in G 



Figure 2.2 

We have e + e k and e + e k. hence e
12 

e 
23 12 13 

K' (G) = k we have 

and thus e = e 
12 23 

1 
~ 2: k. 

1· f 1 k th e 13 == 2 • en 

13 23 

e + e ~ k 
12 23 

This implies that 

e 
12 

e 
13 

e 
13 

1 
::5 2: k. 

Now since 

Furthermore, 

1 Observe that if e
13 

< 2:k, then e
12 

+ e
23 

> k. This completes the proof 

of the lemma. 0 

Our next lemma is essential for proving our main result. 

Lemma 2.3 : Let G be a graph on n vertices and let k be a positive 

integer less than n. If every edge of G is incident to at least one 

vertex of degree k or less, then G has at most c(n,k) edges, where 

c(n,k) 
{ 

k(n-k) 

L ~ (n+k)2 J 

if n ~ 3k 

(11 ) 

if k+l ::5 n < 3k 



Proof Let G be a graph on n vertices with every edge incident to at 

least one vertex of degree k or less. We denote by A = {v E V(G) 

and A V(G) - A. 

n
1

• Since every vertex x of G in A, has degree at least k+l, and 

E(G[A]) =~, we have n ~ k+l. 
1 

If n
1 

s n-k. then n2 n-n
1 

~ k, so the maximum number of edges of G 

is obtained when there is no edge e xy of G such that x,y E A. Hence 

If n
1 

~ n-k, then n
2 

s k. Simple counting gives 

1 c(G) s n (n-n ) + l - n (k-n+n) J 
1 1 2 1 1 

= l g (n ) J = g (n ) 
1 1 

For n ~ 3k, g(n ) is a decreasing function of n and so 
1 1 ' 

Since g(n) 
1 

max 
n 

1 

is monotonically 

l g(n-k) J 

(n-k)k 

increasing when n 
1 

l n;k J 
monotonically decreasing when n ~ r n+k 1 we have for n < 3k 

1 2' , 

Now since 

max 
n 

1 

(n+k)2 - 8k(n-k) 

and k(n-k) is integer, we have 

l 1 2 8" Cn+k) J ~ 

185 

k(n-k) . 

and 



Therefore 

c(G) ~ { 
1 2 J L g(n+k) , if k+l S n < 3k . 

k(n-k) if n 1!:: 3k 

This completes the proof of Lemma 2.3. o 

The following result was proved in [3]. It is actually a special 

case of Lemma 2.3. 

Corollary 2.2 If G E A(n,k), then the maximum number edges of G is 

c(n,k), where c(n,k) is given by (11). o 

Our next result considers the class ~(n,k). 

Lemma 2.4 Let G E ~(n,k) = ~(n,k) - A(n,k). Then 

{ 

7 
v(G) 1!:: 

2(k+1) 

, if k = 2 

, otherwise 

Furthermore, this bound is sharp. 

Proof By definition, the graph G E ~(n,k) contains a distinguished 

edge e
l

, say. Now let El be a k-edge cut of G containing e
l

. Let G 
1 

and G
2 

be the components of G - El and suppose that IV(Gi)1 = n i ' i = 

1,2. Without loss of generality suppose n
l 

S n
2

. We will show that n 
1 

1!:: k+l. In fact, since e
l 

is a distinguished edge of G joining G
1 

and 

G
2

, there is a vertex, x say, of G
1 

in G with dGex) 1!:: k+l. Since G is 

k-critical then o(G) = k. Hence 

186 

n k+l 
1 



Now if n
1 

S k, we have 

~ dG(v) ~ dG(v) + k 

veG veG 1 

1 1 

S n
1 

(n
1
-1) + k 

S ken -1) 
1 

+ k 

contradicting the above fact. Hence n ~ k+l. 
1 

Now since n
2 

~ n
1 

' we must have 

n = n + n ~ 2 (k+1) . 
1 2 

nk 
1 

For k = 2, a straight forward case analysis establishes that, the 

graph G formed from K3 and C
4 

by adding two edges joining a vertex of 

K3 and two nonadjacent vertices of C
4

, is the member of B(n,k) with the 

smallest number of vertices. This establishes the lower bound on v(G). 

For k * 2 we establish the sharpness of this bound by construction. 

For k odd, we construct the graph G e B(2k+2,k) as follows. Take 

G
1 

= Kl v H(k,k-2). Since k(k-2) is odd, there is a vertex, x say, of 

H(k,k-2) with dH(x) = k-l. We form G by taking two copies G I and Gil 
1 1 

of G
1 

and adding a perfect matching between the vertices of H' and H" 

with XIX" an edge in this matching. 

graph, on 2(k+l) vertices, and dG(x / ) 

distinguished edge of G. Thus G e B(n 

Observe that G is a k-critical 

dG(x") = k+1. SO XIX" is a 

2k+2,k) . 

For keven, k * 2. we construct the graph G e B(2k+2,k) as follows. 

Take G
1 

= K2 V Kk-
1

, and denote the vertices of K2 by x and y. Let G
2 

= K2 v H(k-l,k-3). Since (k-l)(k-3) is odd there is a vertex, Z say, 

of H(k-l,k-3) with dH(z) = k-2. Form the graph G from G
1 

and G
2 

by 

joining z to x and y, and joining all other vertices of H to exactly 

1R7 



one of x or y so that x and y have the same degree in G. Observe 

that G is a k-cri tical graph on 2k+2 vertices, with 

( ) () r k2-1 1 dG x = dG Y = + k-1 2: k+1 and 

G E ~(n =2k+2,k). This completes the proof of the lemma. 

Lemma 2.5 For positive integers nand k with k > 1 let 

1 

{ 

2 n(n-I) 

a(n,k) = 
dn,k) 

if 1 :s n :s k 

otherwise. 

where c(n,k) is given by (11). If n
1 

2: k+1, then 

a(n
1
,k) + a(n

2
,k) + k :s a(n

1 
+ n

2
, k) 

unless k+1 :s n < 3k-1 and n = 1 in which case 
1 2 

Proof We define the function 

We consider two cases according to the value of n
1

. 

Case (a): 

Ifn 
2 

n 2: 3k 
1 

2: 3k, then 

f(n
1
,n

2
,k) = kCn

1
-k) + kCn

2
-k) + k 

(n + n - k)k - (k2 
- k) 

1 2 

This proves the lemma for the case n
2 

2: 3k. 

If k+1 :s n
2 

< 3k, then 

Therefore 

o 

(12) 



Now it is a simple algebraic exercise to show that 

Hence 

! (n + k)2 + k - n k < 0 , 
822 

The only remaining case is n2 s k , 

For n S k, we have 
2 

a(n + n
2
,k) + ! n (n - 1) + k - kn 

1 2 2 2 2 

Now for n s k the function 
2 

h(n
2
,k) = ! n (n - 1) + k - kn 

222 2 

is monotonically decreasing in n
2

, Hence 

Therefore 

with equality possible only if n
2 

= 1, 

Case (b): k + 1 s n < 3k , 
1 

We may assume that n
2 

< 3k as otherwise we can, by interchanging n
1 

and n2, apply the above argument. 

If n
2 

~ k + 1, then 



We first consider the case when n + n ~ 3k. In this case 
1 2 

a(n
1 

+ n
2

,k) = k(n
1 

+ n
2 

- k). Now the function 

is for k + 1 ~ n2 < 3k, monotonically decreasing in n2 so it is maximum 

when n2 is as small as possible. Hence, since n2 ~ k + 1 

- 1 {( + k)2 + (2k + 1)2} + k - ken + 1) - 8 n 1 1 

Since for k + 1 ~ n < 3k, we have (n - 3k)2 ~ (1 - 2k)2 we conclude 
1 1 

that 

Thus we have 

1 {en + k)2 + (n + k)2} + k - ken + n - k) ~ -41 
81212 

Now since a(n
1 

+ n2,k) = k(n
1 

+ n
2 

- k) is an integer, we have 

Hence 

This completes the proof for the case n
1 

+ n
2 

~ 3k. 

We now consider the case n + n < 3k. For thi s case we have 
1 2 

190 



The function 

h(n
1
,n

2
,k) = ! {en + k)2 + (n + k)2} + k - ! (n + n + k)2 
81281 2 

= ! {k2 + 8k - 2n n } 
8 1 2 

~ ~ {k2 + 8k - 2(k + 1)2} 

= ! {- k2 
+ 4k - 2} 

8 

~ ! (as k O!:: 3). 
8 

(Note that this case does not happen for k 2) . Again as [(n
1

, n
2
,k) 

and a(n
1 

+ n
2
,k) are integers 

as required. 

The only remaining case is n
2 

~ k. We have 

1( + k)2 + ! n (n - 1) + k. ~ '8 n1 2 2 2 

Now 

if n 
1 

+ n 
2 

O!:: 3k 

otherwise 

We first consider the case n + n O!:: 3k. Then the function 
1 2 

is, for 1 ~ n
2 

~ k, monotonically decreasing in n . 
2 

Thus, since 



and 

= ! {Sn2 - (22k - 4)n
1 

+ 17k2 - 4k} 
8 1 

= hen .k) • 
1 

m~x {h(n1k)} = max {h(k+l. k), h(3k-l, k)} 
1 

= h(k+l. k) 

= ~(-12k + 9) < - 1~ 

Hence 

Now we consider the case n + n < 3k. 
1 2 

The function 

is, for k + 1 ~ n
1 

< 3k, monotonically decreasing in n
1

• Hence 

~ 0 for n ~ 2. 
2 

Thus for n2 ~ 2 we have proved the lemma. 

The only remaining case is n2 = 1 and k+l ~ n
1 

< 3k-l. For this 

case we have 

192 



and 

Now consider 

L 1 2J 1 = g(n
1 

+ k) + Zk 

We have 

= !k - !(n + k) + ! 
2 "1 8 

1 1 1 
~ Zk - i(2k + 1) + g < 0 

Hence 

f*(n ,n .k) ~ a(n + n ,k) as required. 
1 2 1 2 

This completes the proof of the lemma. o 

Lemma 2.6: For 3 ~ k+l ~ n i < 3k , i = 1.2 

€(n ,k) + €(n ,k) + 2k ~ €(n + n + 1.k) 
1 2 1 2 

(13) 

where €(n,k) is given by (l1L 

Proof: Let 

h(n
1
,n

2
,k) = €(n ,k) + €(n ,k) + 2k - €(n + n + 1.k). 

1 2 1 2 

We distingu~sh two cases according to the value of n
1 

+ n
2 

+ 1. 

Case (a) : n + n + 1 i!: 3k . 
1 2 

We have 
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1 2J II 2J l 8 (n
1 

+ k) + 8 (n2 + k) + 2k 

- (n
1 

+ n
2 

+ 1 - k)k 

~ i {(n
1 

+ k)2 + (n2 + k)2} + 2k - k(nl + n2 + 1 - k) 

decreasing in n
1

• So it is maximum when nl is as small as 

possible. Hence. since nl ~ k+l 

max {h(nl ,n2,k)} = h(k+l, n
2
,k) 

n
l 

= i{(2k + 1)2 + (n
2 

+ k)2} 

+ 2k - k(n2 + 2) 

1 2 2 = S{(n
2 

- 3k) - (2k - 1) + 2} . 

Now for k + 1 ~ n2 < 3k. we can show that 

Hence we have 

max {hCnl .n2.k) = iHl-2k)2 - (2k-02 + 2} = i 
n

l
·n

2 

Since hCn
1
,n2,k) is an integer, we conclude that h(n

1
,n2t k) ~ 0 . 

This proves the lemma for this case. 

Case (b) : n + n + 1 < 3k. 
1 2 

Note that this case occurs only when k > 3. Here we have 

+ n + 
2 



Consider the function 

h{nl.n~.k) = ! {en + k)2 + (n + k)2 - {n + n + 1 + k)2} + 2k 
~ 812 1 2 

Since h{n
1
.n

2
,k) is a monotonically decreasing function in n2, and 

n2 ~ k+1. we have 

max {hen ,n ,k)} = hen ,k+1,k) 
1 2 1 

n 
2 

= !{k2 + 12k - 3 - 2(2+k)n } 
8 1 

s ~{ - k2 
+ 6k - 7} (since n

1 
< 3k) 

1 s '8 (as (k ~ 4). 

Consequently h(n
1
,n2,k) s 0, as required. This completes the proof of 

Lemma 2.6. o 

3. MAIN RESULTS 

The following terminology is useful in the proof of our main 

theorem. Le t G E f5 (n • k) . For a subset U of V{G) we write c(U,U) 

for the number of edges between U and U. 

When c (U. U) = k we call U a segment of G (note that U is also a 

segment). A consequence of Lemmas 2.1 and 2.2 is the following result. 

Lemma 3.1: If A and B are two segments such that B Ii A '* ¢. then 

either A ~ B or B Ii A is a segment. 



For X ~ V(G) we denote the subgraph of G induced by the vertices in 

X by G[X}. 

Theorem 3.1 Let G be an edge maximal graph in ~(n,k). Then 

{ 
k(n-k) • if n l!: 3k 

c(G) 

1 2 J L SCn+k) • if k+l :S n < 3k . 

Proof: If G has no distinguished edge, then the result coincides with 

Corollary 2.2 and we have nothing to prove. So suppose G contains 

at least one distinguished edge. 

Choose a k-ed~e cut E1 containing a distinguished edge, e
1 

say, 

such that G - E1 contains a component, G
1 

say, having no distinguished 

That such an E and e exists follows from edge. 
1 1 

Let G be the other component 
2 

As in the proof of Lemma 2.4, 

degree k+l we have n 
1 

of G - E and let n. 
1 1 

since G and G each 
1 2 

k+l and n 
2 

l!: k+l. 

Lemmas 2.1 and 2.2. 

= IV(Gi ) I, i = 1,2. 

contain a vertex of 

Since G 
1 

has no 

distinguished edge of G, we have by Lemma 2.3, cCG
1

) :S c(n
1
,k). Now if 

cCG
2

) :S c(n
2
,k), then 

c(G) C (G
1

) + c(G ) + k 
2 

:S c(n
1

,k) + c(n
2
,k) + k 

:S c(n + 
1 

n
2
,k) (Lemma 2.5) 

c(n,k) 

as required. Thus we may assume that c(G
2

) > c(n
2
,k). Then, by Lemma 

2.3, G
2 

contains at least one distinguished edge. 

Our strategy is to partition the vertices of G
2 

into sets and then 

196 



apply Lemmas 2.5 and 2.6 to count the edges of G. Observe that if e' 

is a distinguished edge of G in G
2 

and E' is a k-edge cut of G 

containing e ' , then by Lemma 3.1 there exists a segment 5' such 

that 5' n V(G
1

) =~. Further, Lemmas 2.1 and 2.2 ensure that we can 

choose e ' and E' such that G[5'] contains no distinguished edge of G. 

Note that 15' I ~ k+1 and by Lemma 2.3 c(G[5 / ]) ~ c(IS' I, k). 

Let T denote the largest segment of G such that T n V(G
1

) = ¢ and 

c(G[TJ) ~ c(ITI,k). That such a T exists follows from the 

existence of 5'. 5ince c(G
2

) > c(n
2
,kl, T * V(G

2
). Let T' = V(G

2
)'T. 

If c(G[T'] ~ a(IT' I,k), then 

as required. 

c(G) ~ c(G) + c(G[T]) + c(G[T']) + 2k 
1 

~ a (n 1 • k) + a ( I T I • k) + a ( I T I I ,k) + 2k 

~ a(n1 + ITI + IT' I,k) (Lemmas 2.5 & 2.6) 

c(n,k), 

Hence we may assume that c(G[T'] ,k) > a( IT' I ,k). The 

definition of a(n,k) then implies that IT' I ~ k+1. We now partition 

the set T' . 

We can find a distinguished edge e
1 

of G in G[T/l and a segment 51 

of G such that e is in the cut (5 ,5 ), 5 n V(G ) = ~ (so 5 nT 5 
1 111 1 1 1 

nT/) and G [5 n T) does not contain a distinguished edge. That this 
1 

can be done follows from lemmas 2.1, 2.2 and 3.1. Continuing in this 

way we partition T' into sets B
1

,B
2

, ... ,B
t 

such that 

B 
1 

and each subgraph 

5 n T 
1 

G[B. ] 
1 

B. 
1 

i-1 

(5 i ' U 5 j ) n T 

j=l 

contains no distinguished edge of G
1

. 
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Hence, by Lemma 2.3, c(G[B.l s c(IB. I,k) when IB, I ~ k+l. Obviously 
1 1 1 

1 
dG[Bi ]) s 21Bil(IBil -1). Hence dG[BiJ) s aC!Bil,k) for every i. If 

IBil ~ k+1 for some i, with no loss of generality say i=l, then since 

IV(G
1

)1 + ITI + IBll ~ 3(k+l), we have by Lemma 2.5 

t 

c(G) s c(G
1

) + c(G[T]) + cCG[B
1

] + 2k + L c(G[B
i
]) + (t-l)k 

i=2 

t 

s a(IV(Gl )1 + ITI + IB
1

I,k) + L 
i=2 

dn,k) , 

a( lB. I ,k) + (t-1)k 
1 

as required. Thus assume that IBil s k for every i. Then Bi is not a 

segment. Now by Lemma 3.1 T ~ Sl and Sl = T V B
1

. 

Suppose that IBil ~ 2 for some i. With no loss of generality let 

IBll ~ 2. Then 

(Lemma 2.5) 

contradicting the choice of T as T v B1 is a segment of G. Thus 

IBil = 1 for each i and further no Bi is a segment. Hence, since 

IT' I ~ k+1, t ~ 2. By Lemma 3.1, Sl v B2 is a segment of G. Now since 

IB v B I :'2 we have 
1 2 



(Lemma 2.5) 

contradicting the choice of T. This completes the proof of the 

theorem. o 

In the following result we will prove that an edge maximal graph in 

~(n,k~l) can not have a distinguished edge. We will make use of the 

following remarks in the proof of our result. 

Remark 3.1: It can be shown that equality in (12) holds only if one 

of the following conditions is satisfied : 

(i) n ~ 3k-1 and n 1 ; for 
1 2 

(ii ) n n = k+1 and 2 ::s k ::s 4 
1 2 

(iii ) n = k+1 and n 2; for 
1 2 

(iv) n 4 and n k = 3 
1 2 

(v) n k+2 and n = 2; k is 
1 2 

Remark 3.2 Equality in (13) holds only 

2 ::s k ::s 5. 

every k 

every k 

odd. 

if n 
1 

n = k+1 and 
2 

Theorem 3.2: For k '* 1, there is no edge-maximal graph in ~(n,k) 

having a distinguished edge. 
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Proof Let G e ~(n.k), k * 1, be a graph containing a distinguished 

edge. To prove the theorem it is sufficient to show that G has less 

than c(n,k) edges, where c(n,k) is given by (11). 

As in the proof of Theorem 3.1, we select a k-edge cut E1 containing 

a distinguished edge e
1 

such that G - E1 contains a component, G
1 

say, having no distinguished edge. Let G be 
2 

of G - E1 and let n i == /V(Gi ) I, i == 1,2. 

the other component 

Since E contains a 
1 

distinguished edge, then n
1 

~ k+l, and of course n
2 
~ k+l. 

Since G
1 

has no distinguished edge of G Lemma 2.3 implies 

dG) c(G ) + c(G ) + k 
1 2 

c(n,k) . (Lemma 2.5) 

Since k ~ 2 and n i ~ k+l for i=l,2, it follows from Remark 3.1 

that the above holds with equality only when n
1 

== n
2 

= k+l and 

L 1 2J 1 2 :s k :s 4. Since dk+l, k) == g(2k+l) == z:k (k+1) , we conclude 

that G
1 

== G
2 

== Kk+
1

. Now since there are k edges between G
1 

and G
2 

we 

can assume, without loss of generality, that G
1 

contains two vertices, 

v
1 

and v
2 

say, joined to vertices in G
2

. But then, since K' (G
1

) = k, 

there are at least paths in G, 

contradicting the fact that G is k-critical. Hence c(G) < c(n,k) when 

dG
2

) :S dn
2
,k). 

Assume then that dG
2

) > c (n
2

, k). Then G
2 

contains at least one 

distinguished edge. As in the proof of Theorem 3.1, let T be the 
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largest segment of G such that T f"I V(G ) = tP and e(G[T]) :s dITI.k). 
1 

Let T' = V(G
2
)'T. Now T' * tP since e(G

2
) > e(n

2
,k). As in the proof 

of Theorem 3.1. if e(G[T'] :s a(IT' I,k), then 

e(G) :s e(G
1

) + e(G[T]) + e(G[T']) + 2k 

:s a (n 1 • k) + a ( I T I . k) + a ( I T I I • k) + 2k. 

If IT' I ~ 2, then by Lemma 2.5 

dG) :s a(n,k) + a( ITI + IT' I,k) + k . 

Since n
1 

~ k+l and ITI + IT' I ~ k+3 we have by Lemma 2.5 and Remark 3.1 

< a(n
1 

+ ITI + IT'I.k), 

and hence 

dG) < a(n
1 

+ ITI + IT'I.k) e(n.k), 

as required. 

Consider now IT'I = 1. Then a(IT' I.k) = D, and hence 

e (G) :s a (n 1 • k ) + a ( I T I • k) + 2k. 

If n
1 

~ 3k or ITI ~ 3k, then by Lemma 2.5 and Remark 3.1, 

Hence 

dG) < a(n
1 

+ ITI + l,k) e(n,k). 
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as required. So suppose that n
l 

< 3k and ITI < 3k. Then, by Lemma 2.6 

with equality holding only if n
l 

3.2). As before, since a(k+1,k) 

ITI = k+1 and 2 s k s 5 (by Remark 

1 
Zk(k+1), G

l 
= G[T] = Kk+1 . Let v 

be the single vertex T/. Since dG(v) ~ k+1 (~ 3), v is joined to at 

least two vertices, say x and y in the same segment G
l 

or T of G. But 

then, there are at least k+1 edge-disjoint (x,y) - paths in G, 

contradicting the criticallity of G. Consequently 

c(G) < a(n
1 

+ ITI +l,k) 

= a(n,k) = c(n,k), 

as required. This completes the proof of the theorem for the case 

dG[T']) s a(IT'I,k). 

Now suppose that c(G[T / ]) > aCIT' I,k). Then IT' I ~ k+1. As in the 

proof of Theorem 3.1, we partition T' into sets B
1

,B
2

, ...• B
t 

such that 

each subgraph G[B
i

] contains no distinguished edge of G and hence 

If IBil ~ k+1 for some i, say i=l, then 

t 

c(G) s c(G
1

) + c(G[T]) + c(G[B
1
]) + 2k + L c(G[B

i
]) + (t-1)k 

i=2 

t 

saC n 1 ' k) + a ( I T I ,k) + a ( I B 1 I ,k) + 2k + L 
i=2 

t 

a(IB.I,k) + (t-1)k 
1 

s a(n
1
,k) + a(ITI+ IB

1
I,k) + k + L a(IBil,k) + (t-1)k 

i=2 
(Lemma 2. 5 ) . 
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Since n
l 

~ k+1 and ITI + IBll ~ 2(k+1). then by Lemma 2.5 and Remark 

3.1 we have 

and hence since nl + ITI + IBll ~ 3(k+1). 

t 

c(G) < a(n
1
,+ ITI + IB

1
1,k) + L a(IBil.k) + k(t-l) 

i=2 

:!!i a(n,k) (Lemma 2.5) 

as required. 

Finally. when I Bi I :!!i k for every i. 1 :!!i i :!!i t. the desired 

contradiction is obtained by applying the arguement use for the 

corresponding case in the proof of Theorem 3. 1 . This completes the 

proof of the Theorem. o 

Before proceeding to the characterisation, we need to describe the 

following graphs. Let H' (n,r) be a r-regular ( r-semi-regular ) 

graph on n vertices for even (odd) n. 

Let nand k be two integers with 2 :!!i k+1 :!!i n < 3k. We define 

and,for n > k+1 , we construct the graph G' such that 

G' = Kn- n v H' (n
1

• k + n
1 

- n). 
1 

'" then we define G 
1 

G'; otherwise we define 



* G G' - {e}, where e == xy e E(G') with x e V(K and y eV(H' (n
1
,k 

1 n-n 
1 

+ n
1 

- n)) such that dH,(y) = k-n+n
1
+1. For n=k+l, we take G*= H(n,k). 

1 

Now we define u
1
= r n+~+~,. if n = 3k - 2(2i-1), where 

1 
i = 1,2, ... '4"(2k+U. 

'* We construct the graph G
2 

as follows 

or 

let 

and * G 
2 

K "v H' (n ,k+n -n) , if n > n n-n 1 1 1 
1 

Now for 

n :: 2i - k + 1; k + 1 ~ i ~ 2k - 1 

n :::: 2i - k; k + 2 ~ i ~ 1 ~ 2k - 1; 1 1s odd, 

Construct graph G such that 

G 

'* 

K
n

-
n 

v HI (n
i

, k + 
-'1 

- n) 

'* We define G :::: G 
3 

if (k - n + n ) is even and G = G - {e} if 
-1 3 

n (k - n + n) is odd where e = xyeE(G), such that x E V(K and , , ~n 

-1 

Y E V(H') with dG(y) = k + 1. 

* '* * Observe that for k + ~ n < 3k the graphs G
1

, G
2 

and G
3

, are 

in the class ..4(n,k) and have l ~(n+k)2J edges and hence are 

edge-maximal in the class ..4(n,k). 

Our next result provides us a characterisation of the 

edge-maximal graph in ~(n,k). 
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Theorem 3.3 
if 

G is an edge-maximal graph in ~(n.k). k * 1 if and only 

(i) 

(ii ) 

(iii ) 

(iv) 

G = K k,n-k 

G K k,n-k 

G K k,n-k 

* G G or 
1 

or G G 

or G = G 

.. 
G = G 

2 

* * 

* 
1 

.. 
or G G 

1 
* 
2 

if n i!!: 3k 

if n 3k-l 

if n 3k-Z 

if n = 3k - Z (Zi-l), 

i = Z,3, ... ,i(Zk+l) 

(v) G G
1 

or G = G
3 

' if n = Zi - k + 1, k + 1 sis Zk - 1 

or n Zi - k, i is odd, k + Z sis Zk - 1 

(vi) otherwise. 

Proof: Let G be an edge-maximal graph in ~ (n, k); k *- 1. Then by 

Theorem 3.Z, G has no distinguished edge and so G E A(n,k). In other 

words, every edge e of G is incident to at least one vertex of degree 

k. Since G E ~(n,k), then o(G) = k. Now let G E A(n,k). We denote by 

Ixl = n -

E .4(n,k) , 

If n 

Clearly 

Now n 
1 

1 

n. 
1 

n i!!: 
1 

s n-k 

Now since 

k+1. 

then it is 

every vertex v of G 

obvious that 

c(G) s nk 
1 

g(n ) . 
1 

Let 

in X has 

max {g(n
1

)} 

n 
g(n-k) k(n-k) . 

1 

= n 
1 

dG(v) 

and 

> k, 

n 
2 

and G 

n-k, if and only if n
2 

n - n 
1 

k and so K is the only k,n-k 



edge-maximal graph for the case n
1 

= n-k. 

If n
1 
~ n-k, then n

2 
= n - n

1 
~ k simple counting gives 

c(G) 

1 
~ {n1 (n-n,) + r 2:n,<k 1- n n,)l 

n (n - n ) - 1 + r -n (k - n + 
1 1 2 1 

That is 

Since for n ~ 3k, g(n
1

) is decreasing in n
1 
~ n - k we have 

max {gent)} g(n k) 
n 

1 

(n - k) k + l ~(n-k)(O) J 

(n-k)k. 

Again for this case Kk,n-k achieves this bound. Now for n < 3k, 

. l n+k-l J it is easy to verify that g(n
1

) is increasing In n
1 

for n
1 

~ ---2---

n+k+l 
and decreasing in n

1 
for n

1 
~ L ---2--- J. Thus the maximum of gent) is 

attained when 

Some simple algebra gives 

g( l n+~+l J ) := l ~(n + k)2 J . 

* Observe that the graph G achieving this bound is G
1 

Now when n 
1 l n+k2-1 J ' we have 

l 1 2 
g(n+k) J 



only if n = 2i - k + 1 for k + 1 sis 2k - 1 or n = 2i - k for 

k + 2 sis 2k 1 and i is odd. *' So for this case the graph G
3 

achieves this bound. It can be shown that 

1 
only if n = 3k - 4i+2, i = 1,2""'4(2k+1). *' Clearly for this case G2 

achieves this bound. Now since 

(n-3k)2 = (n+k)2 - 8k(n-k) ~ 0 

and k(n-k) is integer, we have 

1 2 J L S(n+k) ~ k(n-k) 

for n < 3k, with equality holding only if n = 3k-1 or n = 3k-2. So for 

this case if G is an edge maximal then G could be K as well. k,n-k 

This completes the proof of the Theorem 3.3. o 

Note that for k == 1, every tree on n vertices belongs to ~(n,k), 

having n-1 edges. Thus it is obvious that every tree on n vertices is 

an edge-maximal graph in ~(n.1). 
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