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Abstract 

There are 22521 nonisomorphic 2-(9,3,3) designs of which 9218 are 

decomposable and 395 resolvable. Computational methods used to find and analyse 

these designs are discussed. All cubic multigraphs on 8 vertices are displayed and their 

role in the generation process is outlined. Statistics are presented concerning 

neighborhood graphs, multiple blocks, parallel classes, subdesigns, group orders and 

fragments. It is verified that all 2-(9,3,3) designs are 2- and 3-resolvable and that 3 of 

them have mutually orthogonal resolutions. Two families of designs together with some 

of their properties are listed. 



1. Introduction. 
A 2-(v,k,A) design is a pair (V, B) where V is a v-set of elements, and B is a set of k­

subsets of V called blocks such that every 2-subset of V is contained in exactly A 

blocks. A design is called simple if it does not contain repeated blocks. A central 

problem in design theory concerns the enumeration of all nonisomorphic solutions for a 

given set of parameters. Catalogues of designs are important for the study of various 

properties and for the formulation and verification of conjectures. The enumeration of 

2-(9,3,3) designs is of particular interest for several reasons. To establish the fine 

structure of 3-fold triple systems it is essential to know the spectrum of repeated blocks 

for systems of small orders as ingredients for recursive constructions [2]. 2-(9,3,3) 

designs are also important for the study of decomposability and a-resolvability of triple 

systems [1,4,11]. There have been several attempts to enumerate all simple 2-(9,3,3) 

designs. The first search has been carried out in 1980 by Harnau [7] who found 329 

nonisomorphic designs. In 1985 Ivanov [8] obtained 330 solutions using a different 

computer algorithm. The final count has been settled in 1987 by Harms, Colbourn and 

Ivanov [6] who established that there are 332 nonisomorphic designs without repeated 

blocks. 

In this paper we are interested in a complete enumeration of 2-(9,3,3) designs 

when repeated blocks are permitted. The paper is organized as follows. In the next 

section we describe our generation procedure. As in [6] neighborhood graphs are 

employed for a partial rejection of isomorphic solutions. In Section 3 we highlight 

computational results and display statistics concerning multiple blocks, neighborhood 

graphs, parallel classes, subdesigns and fragments. The last section is concerned with 
decomposability and a-resolvability. In addition to various statistics we exhibit some 

interesting designs related to generalized Room squares. In the Appendices we display 

all cubic multigraphs on 8 vertices and list the homogeneous and resolvable 

indecomposable designs. 

2. Method of generation 

From now on we will assume that a 2-(9,3,3) design (V, B) has blocks B 

{BO,Bl, ... ,B3S} on the 9-element set V = {0,1, ... ,8}. Clearly, there are 36 blocks of size 

3, each element appears in exactly 12 blocks and each 2-subset of V appears in exactly 

3 blocks. The set of blocks containing a given element XE V will be denoted by B(x). A 

neighborhood graph G(x) on an element x is the graph (X,E) with vertices X = V\{x} 

and edges E = {(y,z) I (X,y,Z)E B(x)}. In a 2-(9,3,3) design each G(x) is a cubic 

multi graph on 8 vertices. There are exactly 32 such cubic multigraphs which are 



displayed in Appendix 1. They have been found by a simple exhaustive backtrack 

search with isomorph rejection. For each graph we have determined a set of invariants, 

listed in Table 1, which can be used for easy identification. The column headed IGI 

contains the order of the automorphism group while columns headed Mt, Md, T, and Q 

contain the number of triple edges, double edges, triangles and quadrangles, 

respectively, Neighborhood graphs serve as a powerful design invariant and will be 

used to help with isomorph rejection. 

T bi 1 I a e , nvanants 0 cu IC mu ugrapJ s on f b' h 8 vertIces 
No. IGI Mt Md T Q No. IGI Mt Md T Q 
0 384 4 0 0 0 16 4 0 2 2 1 
1 32 2 2 0 1 17 4 0 2 2 0 
2 192 2 0 4 0 18 2 0 2 1 0 
3 12 1 3 0 0 19 4 0 2 0 3 
4 16 1 2 2 0 20 4 0 2 0 1 
5 8 1 2 0 2 21 8 0 1 3 2 
6 8 1 1 2 0 22 4 0 1 2 1 
7 12 1 0 2 3 23 2 0 1 2 1 
8 24 1 0 0 9 24 2 0 1 1 2 
9 32 0 4 0 2 25 8 0 1 0 5 
10 8 0 4 0 0 26 1152 0 0 8 0 
11 8 0 3 2 0 27 16 0 0 4 0 
12 4 0 3 1 0 28 4 0 0 2 2 
13 2 0 3 0 1 29 12 0 0 1 2 
14 12 0 3 0 0 30 48 0 0 0 6 
15 96 0 2 4 1 31 16 0 0 0 4 

We are now in a position to describe our algorithm for generating 2-(9,3,3) 

designs, To facilitate the search we use two multi sets Sand P for the available elements 

and pairs, respectively. Initially, S contains 12 copies of each element and P 3 copies of 

each pair. In the first step of the algorithm we input 12 blocks corresponding to B(O) 

with a specified neighborhood graph G(O). Each of the 32 nonisomorphic graphs is 

considered in turn, starting from type 0 and ending with type 31. The remaining 24 

blocks are found recursively as follows. On the i-th level we use available elements 

x,y,z ES, x<y<z, and (x,y),(x,z),(y,Z)EP to form a candidate block. The candidates are 

generated in increasing lexicographical order. Whenever an element in S is completely 

exhausted we compare the type of its neighborhood graph to that of G(O). If it is smaller 

than G(O) we turn to the next candidate otherwise set Bi = (x,y,z), update Sand P and 

recurse to level i+ 1. In case there are no candidates left on the i-th level, we backtrack 



to the next candidate on level i -1, after recovering Sand P. When a block B35 on level 

35 is accepted, the set B of all blocks forms a 2-(9,3,3) design. At this point we carry 

out a partial rejection of isomorphic solutions. For this we use the vector of 

neighborhood graph types g = (10(0)1, 10(1)1, ... , 10(8)1), where 10(x)1 denotes the type 

of O(x). For every automorphism n of 0(0) we permute the elements in B and calculate 

ng. A new design is rejected if ng is lexicographically smaller than g, otherwise it is 

accepted. For a given input graph 0(0) the search terminates if all candidates on level 

12 are exhausted. 

To compute automorphism groups and canonical orderings we have employed 

the program nauty of Brendan McKay [10]. From the 34460 designs generated by our 

algorithm we obtained exactly 22521 nonisomorphic solutions. To check the 

correctness of our algorithm we have relabeled the types of input neighborhood graphs 

and repeated the search. This yielded a different set of designs but the same canonical 

solutions as before. In addition, we have generated the decomposable 2-(9,3,3) designs 

directly by concatenating the unique 2-(9,3,1) affine plane to each of the 362-(9,3,2) 

designs from [9,11] in all 840 possible ways. After rejecting isomorphic solutions we 

ended up with the same 9218 decomposable designs. As a final check we have 

compared the 332 simple designs extracted from our set with those listed in [6]. Again 

there was a perfect match. 

We end this section with a few comments concerning the way our designs are 
presented and stored. The blocks of any 2-(9,3,A.) design are contained in the set of all 

3-subsets of our 9-set V. By using a character to encode each of the 84 3-subsets we can 

represent a 2-(9,3,3) design compactly as a string of 36 characters. Together with each 

design we store its graph vector g, automorphism group order, number of distinct 

fragments, parallel classes and affine planes as well as information about 

decomposability and resolvability, reqUlnng another 15 characters. The design elements 

are permuted so that the corresponding graph vectors have components arranged in 

nondecreasing order. Finally, we sort the designs lexicographically by their vectors and 

blocks. A simple program can use this list to extract designs with any desired properties 

and calculate various statistics. 

3. Results and analysis 

Since it is technically impossible to list all 22521 nonisomorphic designs we will 

compile statistics concerning designs with specific properties. We start with the 

spectrum of repeated blocks. Table 2 displays the number of designs with a given 

number of double blocks (first column) and triple blocks (first row). There are no 



designs with 5,7,8,9,10 and 11 blocks repeated three times. The (O,O)-entry is 332 and 

corresponds to the number of simple designs; the sum of all entries in the table is 

22521. Next we study the distribution of neighborhood graphs in the set of all designs. 

bl 2 F Ta e . requency 0 f d bl d· 1 bl k ou e an trIpJe oc s 
-1,2/3-+ 0 I 2 3 4 5 6 12 

0 332 26 1 2 1 0 0 1 
1 1319 71 5 0 0 0 0 0 
2 2774 186 6 0 1 0 0 0 
3 4021 263 12 u 0 0 0 0 
4 4299 344 21 1 2 0 0 0 
5 3649 335 18 0 0 0 0 0 
6 2485 246 19 2 2 0 1 0 
7 1253 143 13 1 1 0 0 0 
8 440 51 8 0 1 0 0 0 
9 113 20 3 2 0 0 0 0 
10 19 2 1 0 0 0 0 0 
11 2 1 0 0 0 0 0 0 
12 2 0 0 0 0 0 0 0 

T bl 3 F a e . requency 0 f . hb h d h nelg or 00 grap. s 
No. Nd Ng No. Nd Ng 
0 8 16 16 7545 9017 
1 87 99 17 7433 8867 
2 27 29 18 13068 20596 
3 544 675 19 7445 9358 
4 555 632 20 4776 5396 
5 995 1304 21 5864 6452 
6 1219 1795 22 10067 13199 
7 784 997 23 10787 14561 
8 178 205 24 16782 30615 
9 327 341 25 6471 7653 
10 1918 2197 26 48 48 
11 2760 3076 27 4231 4584 
12 5221 6526 28 12761 22504 
13 8761 13014 29 6432 8081 
14 2164 2393 30 1846 1990 
15 220 223 31 5274 6246 

In Table 3 the column headed Nd displays the number of designs which contain a 

graph of type No. and column Ng contains the total number of times a graph of type 

No. occurs in the set.of all designs. Hence, the Nd-columns sum to 22521 and the Ng­

columns sum to 8 times more. As we can see from the table, graph No.O occurs least 

and graph No.24 most frequently. 
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A design is called homogeneous if all its neighborhood graphs are of the same 

type and heterogeneous if no two graphs are of the same type. Among the 22521 
designs 14 are homogeneous and 726 heterogeneous. 

Table 4. Frequencies of graph vectors, distinct parallel classes and affine planes, and 
d group or ers. 

N Nv Np Na Ngp N Nv Np* Na Ngp* 
0 0 0 13303 0 14 2 2757 0 0 
1 14859 1 8077 21534 15 0 2416 0 0 
2 2049 1 759 792 16 1 1904 0 2 
3 487 6 354 83 17 1 1355 0 0 
4 208 25 23 39 18 0 996 0 4 
5 97 57 0 0 19 0 530 0 0 
6 38 187 4 41 20 0 377 0 0 
7 31 344 0 0 21 0 143 0 0 
8 12 671 0 4 22 1 84 0 0 
9 7 1060 0 3 23 0 24 0 0 
10 4 1742 0 0 24 0 19 0 5 
11 2 2283 0 0 25 0 2 0 0 
12 3 2792 1 7 26 0 2 0 0 
13 0 2740 0 0 27 0 1 0 0 

T bl 5 S a e ipectrum 0 fd·· f Istmct ragments 
0 1 2 3 4 5 6 7 8 9 

10 1 0 0 0 0 0 1 0 0 0 
20 0 0 0 0 1 2 1 0 1 1 
30 0 2 0 1 3 0 1 1 0 3 
40 5 5 4 5 5 3 5 7 13 13 
50 10 19 12 11 18 30 27 38 28 47 
60 38 58 74 78 74 84 75 113 157 148 
70 156 147 151 197 222 212 270 261 283 314 
80 317 289 366 354 367 381 428 439 426 445 
90 454 418 459 461 470 479 479 435 469 439 

100 471 481 450 475 435 405 393 453 426 424 
110 347 323 346 313 339 377 326 312 271 207 
120 229 230 235 193 182 164 197 179 162 161 
130 147 97 97 77 97 92 84 51 51 43 
140 63 41 57 31 37 29 24 15 11 13 
150 13 11 4 2 3 0 5 1 4 2 
160 0 1 0 0 0 0 0 0 0 0 
170 0 0 0 0 0 1 0 0 0 0 

The homogeneous designs are listed in Appendix II (see end of Section 4 for an 

explanation of the first line of each design). Table 4 gives statistics for graph vectors, 



parallel classes, affine planes and group orders. Its columns have the following 

meaning: Nv graph vectors occur N times, Np designs contain N distinct parallel 

classes, Na designs contain N distinct affine planes (i.e.2-(9,3,1) subdesigns) and Ngp 

designs have an automorphism group of order N. It is obvious that the sum of the Nv­

column entries taken with multiplicity N, and the sums of each remaining column again 

equal to 22521, except for a few entries which did not fit into the table (*). These are: 

one design with 30 and one with 37 parallel classes and one design with each of the 

group orders 32, 36,48,54, 108,432 and 1296. 

Afragment (or a Pasch configuration) in a triple system 2-(v,3,A) is a set of four 

blocks of the form {(a,c,d), (a,e,f), (b,c,e), (b,d,±)}. Fragments play an important role 

as design invariants and can be used to transform one design into another [3]. In Table 

5 we display the number of designs containing a given number of distinct fragments 

which is specified in the first row (units) and first column (tens). For example, there 

are 354 designs containing 83 fragments. 

Finally. we assess the strength of some invariants considered in this section to 

distinguish nonisomorphic designs. The efficiency of an invariant on a set D of 

nonisomorphic designs is the ratio of the number of values it takes on D to the 

cardinality of D. Table 6 displays the efficiency of four combinations of invariants. 

T bl 6 Effi . f I d' a e lClency 0 se ecte mvanants 

V VMGDR VF VMGDRF 

17802 20875 21531 22190 

0.790 0.927 0.956 0.985 

The letters V, M, G, D, R, and F stand for graph vector, block multiplicities, group 

order, decomposability, resolvability and the number of distinct fragments, 

respectively. The first row displays the number of designs with different invariants, 

the second row contains the corresponding efficiencies. As we can see from the table, 

graph vectors in conjunction with fragment numbers are capable of distinguishing 

over 95% of nonisomorphic designs. 

4. Decomposability and resolvability 
A 2-(v,k,A) design (V,B) is said to be decomposable if there is a proper subset B' of B 

for which (V,B') is a 2-(v,k,A') subdesign. A design with no such subset is called 

indecomposable. It is easy to see that the complementary blocks BV3' form a 2-(v,k,A-



A') subdesign. Of interest are also partitions of a 2-(v,k,A) design into n indecomposable 

2-(v,k,Ai) designs with A1+ .. ,+An = A (see [1]). The 2:-(9,3,A) family of designs begins 

with a unique design with A=1 which has the structure of an affine plane (of order 3). 

Of the 36 designs with A=2, 9 are decomposable into 2 disjoint affine planes. For A=3 

the situation is a little more complicated. Any decomposable design D contains at least 

one affine plane. D can be one of 3 types depending on the structure of the 2-(9,3,2) 

subdesign complementary to an affine plane. D is of type 1 or 2 if the complement to 

every affine subplane is indecomposable or decomposable, respectively; D is of type 3 

if it contains both subplanes with decomposable and indecomposable complements. In 
the set of 22521 designs with A=3 there are 9218 decomposable ones. These are 

partitioned into 8854 designs of type 1,347 of type 2 and 17 of type 3. 

A subset C of blocks in a 2-(v,k,A) design (V,B) is called an a-class if each 

element of V occurs in exactly a blocks. A design is a-resolvable if its blocks can be 

partitioned into a-classes [4]. For a=1 we have the usual notion of resolvability into 

parallel classes. Two a-resolutions of (V,B) are said to be orthogonal if any a-class of 

one of them has at most one block in common with any a-class of the other. A design is 

called m-tuply a-resolvable if it has m mutually orthogonal a-resolutions. There are 

395 resolvable designs of which exactly 3 contain orthogonal resolutions. We display 

these 3 designs ( No. 0, 1809,22197) and their orthogonal resolutions by listing each 

block together with a tuple from 12 letters signifying the parallel classes it belongs to 

in various resolutions. The i-th coordinate of each tuple corresponds to the i-th 

resolution. 

012aaa 012bbb 012ccc 034ddd 034eee 034fff 056ggg 056hhh 056iii 
078jjj 078kkk 078111 135j1k 135kj1 1351kj 147gih 147hgi 147ihg 
168dfe 168edf 168fed 238ghi 238hig 238igh 246jk1 246k1j 2461jk 
2S7def 257efd 257fde 367acb 367bac 367cba 458abc 458bca 458cab 

012aaa 012bbb 012ccc 034ddd 035eee 038fff 046ggg 047hhh 056iii 
OS7jjj 068kkk 078111 1341kj 135k1g 138jih 146fe1 147efi 156dhf 
lS7gdk 168hjd 178ige 234ijk 235hg1 238ghi 246j1e 247kif 2561fh 
2S7fkd 268edj 278deg 367acb 367bac 367cba 458abc 458bca 458cab 

012aa 013bb 014cc 023dd 024ee 034ff 056gg 057hh 058ii 
067jj 068kk 07811 125jk 126ih 1351j 137gi 145k1 148hg 
167fe 168df 178ed 236h1 237kg 2461i 248gj 257cf 258fb 
278bc 347ik 348jh 356ec 358ae 368ca 456bd 457da 467ab 

A probabilistic approach based on simulated annealing has been suggested by 

Gordon Royle to verify that every 2-(9,3,3) design is both 2- and 3-resolvable. His 

algorithm starts with an arbitrary partition of blocks into 6 (or 4) equal sets and swaps 

11;7 



blocks from different subsets to minimize the number of conflicts via· simulated 

annealing. The final partition is in most cases a 2-resolution (or 3-resolution). 

Processing all 22521 designs took less than an hour of CPU time on a SUN 

SPARCstation. From the 3 designs which are multiply resolvable only 2 (No. 1809, 

22197) are doubly 2-resolvable~ We display them as squares in which the rows 

correspond to one 2-resolution and columns to another. 

012 458 367 246 138 057 

367 012 458 035 247 168 

458 367 012 178 056 234 

034 156 278 068 235 147 

157 238 046 134 078 256 

268 047 135 257 146 038 

012 467 248 137 358 056 

236 013 278 456 057 148 

368 347 014 058 126 257 

457 125 067 023 348 168 

145 068 356 178 024 237 

078 258 135 246 167 034 

It would be interesting to know whether there exist 3 mutually orthogonal 2-resolutions. 

This would be a maximal set since there are no mutually orthogonal Latin squares of 

order 6. We note that for obvious reasons there are no orthogonal 3-resolutions of a 2-

(9,3,3) design. 

Finally, a summary is given in Table 7 of results concerning 2-(9,3,A) designs for 

A=I,2,3. The columns headed M, N, S, D and R contain the numbers of distinct, 

nonisomorphic, simple, decomposable and resolvable designs, respectively. 

Table 7. The family of 2-(9,3,A) designs 

A M N S D R 

1 840 1 1 0 1 

2 4409916 36 13 9 9 

3 7974771 700 22521 332 9218 395 

In Appendix III we present a list of all resolvable indecomposable 2-(9,3,3) 

designs. The first line gives the design No., vector of graph types, group order, 

number of distinct fragments, triple blocks, double blocks, number of distinct affine 

planes with decomposable complements, with indecomposable complements, number 

of distinct parallel classes and an indicator of resolvability. 
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Appendices 

I. Cubic multigraphs of order 8 

10 11 12 13 14 

~~OCD@ 
15 16 17 18 19 

800GG 
20 Z1 22 23 Z4 

Q~O@~ 
25 26 27 28 29 

@® 
30 31 

155 



ll. Homogeneous (9,3,3) designs (14) 

o 0 0 0 0 0 0 0 0 0 432 0 12 0 1 0 4 1 
012012012034034034056056056078078078 135 135 135 147 147 147 
168 168 168238238238246246246257257257367367367458458458 

120 3 3 3 3 3 3 3 3 3 108 18 3 9 2 0 7 1 
012012012034034035046057057068068078 134 138 138 147 147 156 
156 157 168235235238246246247256278278367367367458458458 

1809 8 8 8 8 8 8 8 8 8 1296 54 3 0 12 0 37 1 
012012 012034035038046047056057068078 134 135 138 146 147 156 
157168178234235238246247256257268278367367367458458458 

2130 10 10 10 10 10 10 10 10 10 18 33 0 12 2 0 8 1 
012012013024035035046046057068078078 125 134 134 146 158 158 
167 167 178237237238248248256256267347356368368457457458 

5866 12 12 12 12 12 12 12 12 12 9 63 0 9 0 0 3 0 
012013014027027035036048048056056078 123 123 145 148 157 157 
167 168 168238245246246256258278346347347358358367457678 

9185 13 13 13 13 13 13 13 13 13 9 36 0 9 3 0 12 1 
012013013024024035046056057068078078 127 128 134 146 146 157 
157 158 168235238238247256256267345347367367368458458478 

17653 18 18 18 18 18 18 18 18 18 18 63 0 6 3 0 10 1 
012013017023024035046046058058067078 126 126 138 138 145 147 
148 156 157234235248257257268278347347356367368456458678 

21991 24 24 24 24 24 24 24 24 24 6 99 0 3 0 1 20 0 
012012013024035037045048056067068078 126 135 138 145 147 148 
157167168235237238247248256258267346346347368456578578 

21992 242424242424242424 18 99 0 3 3 0 20 1 
012012013024035037045048056067068078126137138145147148 
156157168235237238247248256258267345346346368467578578 

22437 28 28 28 28 28 28 28 28 28 6 132 0 0 0 1 12 0 
012013018024026035037045046057068078 123 124 137 145 147 156 
158 167 168236238247256257258278345346348358367468478567 

22438 282828282828282828 18 126 0 0 3 0 12 1 
012013018024026035037045046057068078 124 127 135 136 147 148 
156158167236237238245257258268345346348378467478567568 

22439 282828282828282828 9 135 0 0 0 3 12 0 
012 013 018024026035037045046057068078 124 125 134 138 147 156 
157167168236237238247256258278345348356367458467468578 

22440 28 28 28 28 28 28 28 28 28 6 165 0 0 0 1 12 0 
012013018024026035037045046057068078 123 125 136 145 146 147 
158 167 178234238 248 256257 267 278 347 348 356 357 368 458 467 568 

22520 29 29 29 29 29 29 29 29 29 54 99 0 0 3 0 30 1 
012013018024025034035046057067068078 123 126 137 146 147 148 
156 157 158234235247258267268278348356367368378456457458 
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III. Indecomposable resolvable (9,3,3) designs (22) 

614 3 7 7242424242424 6 75 1 3 0 0 18 1 
012356478012358467012378456034 158267034 167 258 035 168247 
046 157 238 057 136 248 057 148 236068 137 245 068 145 237 078 134 256 

1397 5 6 7 18 20 24 24 28 29 1 69 1 3 0 0 18 1 
012348 567012 356478012368457035 167248035 178 246037 168245 
046 137258046 158237047 156238058 134267068 134257078 145236 

1421 5 6 7202024242828 2 71 1 3 0 0 18 1 
012356478012368457012378456035 147268035 167 248037 168245 
046 138257046 158237048 157236058 134267067 134 258078 156234 

1545 6 6 6 142424242930 3 65 1 3 0 0 18 1 
012348 567012358467012368457036 145278036 158 247 037 156248 
045168237046178235048167235057134268058137246078134256 

1755 6 7 7 24 24 28 28 31 31 2 92 1 1 0 0 20 1 
012356478012357468012378456034 158267034 167 258 035 168247 
046157238057136248058147236067138245068145237078134256 

1791 7 7 7 28 28 28 29 30 30 3 98 1 0 0 0 21 1 
012346578012356478012378456034 158267035 168 247037 156248 
046 138257048 167235057 134268058 147236067 145 238068 137245 

2126 922 22232424242425 1 80 0 4 0 0 16 1 
013258467014237 568014238 567026 148357026 158 347027 138456 
035 126478035 167248045 127368068 157234078 125 346078 136245 

12481 13 18 19202424252728 1 82 0 4 0 0 18 1 
014256378014267358018247356025 138467025 168 347028 167345 
036 127458036 157248037 145 268046 123578057 123 468078 156234 

13288 132324242424242829 1 93 0 3 0 0 19 1 
014236578014237568015234678025 137468025 167348028 146357 
036 128 457 036 158247038 127456047 138256067 135 248078 126345 

13588 1417 19202224252828 1 80 0 4 0 0 18 1 
014256378014268357017238456025167348025178346027168345 
036 124 578 035 158247037 156248048 135267058 123 467068 123457 

16578 17 18 18242424282931 1 90 0 3 0 0 19 1 
015246378015268347017236458023 148567023 168 457025 138467 
034 156 278 046 137 258048 136257067 124358068 127 345078 124356 

19515 182324242528282929 1 106 0 2 0 0 20 1 
012356478012357468015246378027 136458034 128 567034 167258 
035 168 247 046 157238058 147236067 138245068 145 237078 134256 

19550 182424242428282831 1 104 0 2 0 0 20 1 
014257 368 014 268 357 016 278 345 023 158467023 167 458 025 136478 
037 128456047 138256056 127348058 124367068 157234078 135246 

19555 182424242428282931 2 100 0 2 0 0 22 1 
014258367014267358015278346023157468023168457026178345 
037 156248047 138256056 127348058 123467068 124357078 136245 

157 



19575 18 24 24 2425 28 28 28 29 1 98 0 2 0 0 20 1 
012356478012357468017236458025 146378034 128 567034 158267 
038 157246047 168235056 134278058 136247067 145238068 137245 

21184 2222 24282828292931 1 1140 1 0 0 19 1 
012345678012358467015248367027 138456034 126578036 147258 
038 146257047 135268048 156237056 178234057 148236068 137245 

21348 2223242728283031 31 1 115 0 1 0 0 19 1 
012358467012378456013256478024 168357034 157268036 147258 
045 138 267 057 136 248 058 127 346 067 148 235 068 145 237 078 156 234 

21517 222424272828293031 1 115 0 1 0 0 19 1 
012345 678012356478013267458028 157346035 147 268038 146257 
046 137 258047 158236048 156237056 124378057 168 234067 138245 

21897 232424282828292931 1 113 0 1 0 0 21 1 
012347568012367458013258467026178345035146278037148256 
045167238046138257048157236057124368068135247078156234 

22494 2828282828282931 31 1 125 0 0 0 0 221 
012346578015267348016248357023 168457028 145367035 178246 
038156247045127368046137258047123568067148235078134256 

22511 2828282828292931 31 2 120 0 0 0 0 24 1 
012368457013258467014237 568026 135478027 156348034 168257 
038 157 246045 178236056 137 248 058 124367067 128345078 146235 

22513 28 28 28 28 28 29 29 31 31 2 126 0 0 0 0 24 1 
013257 468014267358015238467024 168357025 136478028 147356 
034 126 578037 128456056 127 348 067 158234068 137245078 145236 

158 


