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Abstract

Denote the n × n toroidal queen’s graph by Qt
n. We find its automor-

phism group Aut(Qt
n) for each positive integer n, showing that for n ≥ 6,

Aut(Qt
n) is generated by the translations, the group of the square, the

homotheties, and (for odd n) the automorphism (x, y) �→ (y + x, y − x).
For each n we find the automorphism classes of edges of Qt

n, in par-
ticular showing that for n > 1, Qt

n is edge-transitive if and only if n is
prime.

We find the number of automorphism classes of regular solutions of
the toroidal n-queens problem, generalizing work of Burger, Cockayne,
and Mynhardt.

1 Introduction

Consider an n× n chessboard covering the surface of a torus. We may cut the torus
along the ring separating two adjacent columns and along the ring separating two
adjacent rows, and draw the resulting square in the plane. Label the columns and
the rows from 0 to n − 1, starting at the lower left corner, and refer to the square
in column x and row y as (x,y). We will follow the standard practice of writing
the column and row labels as integers but treating them as members of the set
Zn = {0, 1, . . . , n− 1} of congruence classes modulo n. We also use Zn to denote the
group of congruence classes modulo n under addition.

For k ∈ Zn, the difference diagonal with number k is the set of all squares (x,y)
such that y − x ≡ k (mod n). The sum diagonal with number k is the set of all
squares (x,y) such that y + x ≡ k (mod n). Thus there are n difference diagonals
and n difference diagonals, each containing n squares. The columns and rows are
the orthogonals, and the orthogonals and diagonals are the lines of the board. For
each k ∈ Zn, let Ck (respectively Rk, Dk, Sk) denote the set of squares in the column
(respectively row, difference diagonal, sum diagonal) with number k.
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Note that an arbitrary difference diagonal Dm and sum diagonal Sk intersect in a
square (x,y) if and only if y − x ≡ m (mod n) and y+ x ≡ k (mod n). This system
of congruences has a unique solution if n is odd. If n is even, the system has two
solutions if m ≡ k (mod 2) and none otherwise.

We define the toroidal queen’s graph Qt
n to be the graph whose vertices are the

n2 squares of the n× n toroidal chessboard. Two squares of Qt
n are adjacent if they

share a line of the board; that is, if a queen on one of the squares could move to
the other. If n is even, each square (x,y) is adjacent to (x + (n/2), y + (n/2)) along
both of its diagonals, but we consider this to yield just one edge of Qt

n. Thus Qt
n has

4n
(

n
2

)
= 2n2(n− 1) edges if n is odd, and 4n

(
n
2

) − (n2/2) = n2(4n− 5)/2 edges if n
is even.

An automorphism of a graph G is a bijection α : V (G) → V (G) such that ver-
tices v, w are adjacent if and only if α(v) and α(w) are adjacent. The set of all
automorphisms of G is a group under composition; this is the automorphism group
of G, denoted Aut(G). We are interested here in finding Aut(Qt

n) for each positive
integer n.

2 Determining Aut(Qt
n)

For n ≤ 3, it is easily seen that any two squares of Qt
n are adjacent, and thus every

permutation of the n2 squares is an automorphism. Therefore Aut(Qt
n) is isomorphic

to the symmetric group Sn2 for n ≤ 3.

For each n, let ι denote the identity automorphism of Qt
n.

Define a metric d : V (Qt
n) × V (Qt

n) → {0, 1, . . . , �n/2	} by

d((x1, y1), (x2, y2)) =

max{min{|x2 − x1|, n− |x2 − x1|},min{|y2 − y1|, n− |y2 − y1|}}.

We now define and briefly discuss some subgroups and elements of Aut(Qt
n).

The translation subgroup Tn. (Order n2.)

For each h, k ∈ Zn define an automorphism τh,k of Qt
n by τh,k(x, y) = (x+h, y+k).

These n2 automorphisms form the subgroup Tn of Aut(Qt
n), which is isomorphic to

Zn × Zn.

Thus the graph Qt
n is vertex-transitive; that is, for any two squares s, t of Qt

n,
there is an automorphism γ of Qt

n such that γ(s) = t.

The square subgroup In. (Order 8, for n ≥ 3.)

For a square in the plane, there are eight rigid motions of the plane that take
the square to itself. We may use these to define a subgroup In of Aut(Qt

n) that
is isomorphic to the dihedral group of order 8 if n ≥ 3; In is generated by the
automorphisms β and μ defined by:

β(x, y) = (y, x) [reflection across D0]; μ(x, y) = (x,−y) [reflection across R0].
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We will write α for μβ; α may be regarded as clockwise rotation by a quarter turn
about the center of square (0, 0).

The homothety subgroup Hn. (Order φ(n), where φ denotes the Euler phi func-
tion.)

For each integer m, 1 ≤ m ≤ n, with gcd(m,n) = 1, define an automorphism λm

of Qt
n by λm(x, y) = (mx,my). These φ(n) automorphisms form the subgroup Hn of

Aut(Qt
n), which is isomorphic to the group Z

×
n of those congruence classes modulo n

that have multiplicative inverses, with multiplication as operation.

The exceptional automorphism ρ (for odd n only). We define a mapping ρ
from V (Qt

n) to itself by ρ(x, y) = (y + x, y − x). Since n is odd, ρ is one-to-one
and hence onto. As a transformation of the Cartesian plane, the rule of ρ yields
a clockwise rotation by π/4 radians about the origin combined with a dilation by
a factor of

√
2. As this would lead one to expect, ρ takes columns to difference

diagonals, difference diagonals to rows, rows to sum diagonals, and sum diagonals to
columns. Thus ρ is an automorphism of Qt

n. It is easily checked that ρ2 = λ2α and
ρ4 = λ−4.

Definitions and notation. For a finite set S, we write |S| for the size of S.

For subsets A,B of a group G, define AB = {ab : a ∈ A, b ∈ B}.
For subsets or elements s1, . . . , sk of a group, let 〈s1, . . . , sk〉 be the subgroup

generated by s1, . . . , sk.

If H is a normal subgroup of G, we write H � G.

For even n ≥ 4, let Gn denote the subgroup 〈Tn, In, Hn〉 of Aut(Qt
n).

For odd n ≥ 5, let Gn denote the subgroup 〈Tn, In, Hn, ρ〉 of Aut(Qt
n).

To determine the basic structure and size of Gn, we use the following lemma; part
(a) follows from Lemma 2.8 of [6] and part (b) is Theorem 2.B of [6].

Lemma 1 Let G be a group with subgroups H and K.

(a) If hKh−1 ⊆ K for all h ∈ H, then HK is a subgroup of G, and K is a normal
subgroup of HK.

(b) If H and K are finite, then |HK| = |H||K|/|H ∩K|.

Theorem 2 For even n ≥ 4, Tn � InTn � HnInTn = Gn and |Gn| = 4n2φ(n).

For odd n ≥ 5, Tn � InTn � HnInTn � 〈ρ〉HnInTn = Gn and |Gn| = 8n2φ(n).

Proof. Assume n ≥ 4. First we apply Lemma 1(a) to the subgroups In and Tn

of Gn. For each τh,k in Tn, we have μτh,kμ
−1 = τh,−k and βτh,kβ

−1 = τk,h. Thus InTn

is a subgroup of Gn and Tn � InTn. Each member of In fixes (0, 0) and in Tn only ι
does that, so since n > 2, |InTn| = |In||Tn| = 8n2 by Lemma 1(b).
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Next we apply Lemma 1(a) to Hn and InTn. For each λm in Hn and τh,k in Tn, we
have λmμτh,kλ

−1
m = μτmh,mk and λmβτh,kλ

−1
m = βτmh,mk. Thus HnInTn is a subgroup

of Gn and InTn �HnInTn. It is not difficult to see that any member of InTn preserves
the metric d and λm ∈ Hn preserves d if and only if m = 1 or m = n− 1, and then
that Hn ∩ InTn = {ι, λn−1}. Thus |HnInTn| = 8n2φ(n)/2 = 4n2φ(n) by Lemma 1(b).

If n is even, the definition of Gn implies Gn = HnInTn and we are done.

If n is odd, apply Lemma 1(a) to 〈ρ〉 and HnInTn. For each λm in Hn and τh,k in
Tn, we have ρλmμτh,kρ

−1 = λmμβμτh+k,k−h and ρλmβτh,kρ
−1 = λmμτh+k,k−h. Thus

〈ρ〉HnInTn is a subgroup of Gn and HnInTn � 〈ρ〉HnInTn. Then the definition of Gn

implies Gn = 〈ρ〉HnInTn.

If γ ∈ 〈ρ〉 ∩HnInTn then since all members of 〈ρ〉, Hn and In fix the square (0, 0),
we have γ ∈ 〈ρ〉 ∩ HnIn. Since ρ(0, 1) = (1, 1) and for each η in HnIn, η(0, 1) is
in either column 0 or row 0, we see ρ �∈ HnIn. From ρ2 = λ2α it then follows that
〈ρ2〉 = 〈ρ〉 ∩HnIn = 〈ρ〉 ∩HnInTn, so |Gn| = |〈ρ〉HnInTn| = 2|HnInTn| = 8n2φ(n) by
Lemma 1(b).

Actually, each subgroup in each of the chains of Theorem 2 is normal in all later
ones in its chain. In particular, Tn � Gn for n ≥ 4.

Definitions. Let G be a graph without loops or multiple edges. The complement of
G is the graph G having the same vertex set as G, with the property that vertices
v, w are adjacent in G if and only if v, w are not adjacent in G. It is easily seen that
Aut(G) = Aut(G).

A clique of G is a subset C of V (G) such that any two vertices of C are adjacent;
if C has k members, we say C is a k-clique. If C is not a proper subset of another
clique of G, C is a maximal clique.

An independent set in G is a set S of vertices such that no two vertices of S are
adjacent. Clearly cliques of G are independent sets of G and vice versa.

To find the automorphism group of Qt
n, we will frequently use the fact that the

image of a clique (respectively independent set) under an automorphism is a clique
(respectively independent set) of the same size.

Definitions. Let a, b, d ∈ Zn with 1 ≤ d ≤ n/2. Then {(a, b), (a+ d, b), (a, b+ d), (a+
d, b+ d)} is a two-by-two of Qt

n, with side length d.

For even n only, we define the parity of square (x, y) of Qt
n to be the parity of

x + y. We say an automorphism θ of Qt
n respects parity if whenever s1 and s2 are

squares of Qt
n of the same parity, also θ(s1) and θ(s2) have the same parity. (This

implies that if s1 and s2 have opposite parity then θ(s1) and θ(s2) have opposite
parity.) If θ respects parity, say θ is even (respectively odd) if for every square s, s
and θ(s) have the same (respectively opposite) parity.

Proposition 3 The graph Qt
n has a maximal 4-clique if and only if n is even. For

even n, the maximal 4-cliques are exactly the two-by-twos with odd side length, except
that for Qt

4 the orthogonals are also maximal 4-cliques.
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Proof. Suppose that M is a maximal 4-clique of Qt
n. The squares of M cannot

all lie in the same orthogonal unless n = 4, in which case it is easily verified that
the orthogonal is a maximal 4-clique. The squares of M cannot all lie in the same
diagonal, as each diagonal of Qt

4 is a subset of the maximal 8-clique of squares having
the same parity as the number of the diagonal.

If M has exactly three squares in some line L, let γ be the automorphism of
Qt

n given by reflection across L, and let s be the fourth square of M . Since γ(s)
is adjacent to all squares of M , the maximality of M implies γ(s) = s. If L is
a diagonal then γ fixes only squares of L, so L is an orthogonal. Without loss of
generality, we may assume L is C0 and s is (a, 0). Then the three squares of M ∩ L
are (0,−a), (0, 0), (0, a), but γ(s) = s implies a ≡ −a (mod n) and then (0,−a) and
(0, a) are the same square. So M cannot have exactly three squares in any line.

Thus it remains to consider the possibility that no line of Qt
n contains more than

two squares of M . In this case, no square of M can be adjacent to the other three
squares of M along diagonals only, or along orthogonals only. Without loss of gen-
erality, we may assume (0, 0) and (d, d) are in M . If d > n/2 then d′ = n− d ≤ n/2
and by applying τd′,d′ we may replace d with d′, so we can assume 1 ≤ d ≤ n/2.

We next establish the claim that the other squares s1, s2 of M are (d, 0) and (0, d).

Each si is adjacent to (0, 0) along its row, column, or sum diagonal, and to (d, d)
along a different one of those three lines. This implies the si’s are among the squares
(−d, d), (0, 2d), (2d, 0), (d,−d), (d, 0), (0, d). If d = n/2, the claim follows immedi-
ately, so we may assume d < n/2.

If the claim is false, then at least one si is among (−d, d), (0, 2d), (2d, 0), (d,−d); by
employing the reflections across the diagonals D0 and Sd we may assume M contains
(d,−d). As the column (respectively sum diagonal) of (d,−d) does not contain
more than two squares of M , M does not contain (d, 0) (respectively (−d, d)). If
the last square of M was (0, d) or (2d, 0) (respectively (0, 2d)), then M ∪ {(0, 2d)}
(respectively M ∪ {(2d, 0)}) would be a clique, contradicting the maximality of M .
This establishes the claim: M = {(0, 0), (d, d), (d, 0), (0, d)}.

By the maximality of M , the difference diagonal of (0, 0) and (d, d) and the sum
diagonal of (d, 0) and (0, d) cannot intersect, which implies n is even and d is odd.

Conversely, suppose that M = {(0, 0), (d, 0), (0, d), (d, d)} with n even, d odd, and
1 ≤ d ≤ n/2. Then M is a clique that we wish to show is maximal. If not, there
is a square t adjacent to all squares of M and not in M . Since n is even and d is
odd, D0 and Sd do not meet, so t cannot be diagonally adjacent to all squares of
M . By symmetry we may then reduce to the possibility that t is in C0 and adjacent
to (d, d) along its sum diagonal, so t is (0, 2d). But (0, 2d) can only be adjacent to
(d, 0) along its difference diagonal, implying 2d ≡ −d (mod n), so n divides 3d. As
n is even and d is odd, this is not possible.

To describe Aut(Qt
4), we need to define some automorphisms.

Definition. With ω being the automorphism of Qt
4 defined in Figure 1 and μ being

the reflection across R0, set η = μω. (We do not define η directly as it is easier to
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Figure 1: Automorphisms ω of Qt
4 and φA of Qt

5 are shown. In each case, the
automorphism fixes blank squares and exchanges squares labelled with the same
letter.

verify that μ and ω are automorphisms than η.) It is perhaps somewhat surprising
that Qt

4 has an automorphism of order 3:
η = ((2, 0), (1, 1), (1, 3))((3, 0), (0, 1), (0, 3))((2, 1), (1, 2), (2, 3))((3, 1), (0, 2), (3, 3))
(using cycle notation).

Theorem 4 The group Aut(Qt
4) = G4〈η〉 so |Aut(Qt

4)| = 27 · 3 = 384.

Proof. The eight squares of Qt
4 that have even parity form a clique, as do the

eight squares of odd parity, and these are the only cliques of Qt
4 that have size eight.

It follows that every automorphism of Qt
4 respects parity.

Let σ be an arbitrary automorphism of Qt
4. There is a translation τ in T4 such

that σ1 = τσ fixes the square (0, 0). Then σ1 is an even automorphism, so σ1(1, 0)
is an odd square adjacent to (0, 0), and thus σ1(1, 0) is in {(±1, 0), (0,±1)}. This
implies there is γ in I4 such that σ2 = γσ1 fixes both (0, 0) and (1, 0).

Let G = {θ ∈ Aut(Qt
4) : θ(0, 0) = (0, 0) and θ(1, 0) = (1, 0)}. By Proposition 3,

there are three maximal cliques of size four that contain (0, 0) and (1, 0), namely
R0 and the two-by-twos M0,0 = {(0, 0), (1, 0), (0, 1), (1, 1)} and M0,3 = {(0, 0), (1, 0),
(0, 3), (1, 3)}. Any θ in G permutes the set S = {R0,M0,0,M0,3}, and this gives a
homomorphism F from G to the group Sym(S) of permutations of S.

Since μ and ω are in G, so is η, and it is easy to verify that F (η) = (M0,0,M0,3, R0)
and F (μ) = (M0,0,M0,3), using cycle notation for members of Sym(S). It follows that
each of the six members of Sym(S) is the image under F of an element ηiμj of G,
where 0 ≤ i ≤ 2 and 0 ≤ j ≤ 1.

Then for some i and j, the automorphism σ3 = ηiμjσ2 fixes each of R0, M0,0, and
M0,3 setwise. But since η, μ, and σ2 are all even, so is σ3, and then since σ3 fixes
(0, 0) and (1, 0), σ3 fixes all squares of R0, M0,0, and M0,3.

By repeatedly using the fact that an automorphism of Qt
4 that fixes three squares

of a maximal 4-clique must fix the fourth square, we can show that σ3 = ι. This
implies that σ−1 = ηi(μjγ)τ is in the left coset ηiG4. Taking inverses, σ is in the
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right coset G4η
−i, so Aut(Qt

4) = G4 ∪ G4η ∪ G4η
2. To see that η is not in G4, note

that every member of G4 sends lines to lines but η(R0) = M0,0. Thus the three right
cosets G4, G4η, G4η

2 are distinct, and |Aut(Qt
4)| = 3 · |G4| = 3 · 27 = 384.

Theorem 5 If n is even and n ≥ 6, then Aut(Qt
n) = Gn.

Proof. Let n be even, n ≥ 6. For each square (i, j) of Qt
n, let Mij be the two-by-

two (and maximal 4-clique) {(i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1)} of Qt
n. Let σ be

an arbitrary member of Aut(Qt
n). Then for each square (i, j), σ(Mij) is a maximal

4-clique, which by Proposition 3 necessarily is a two-by-two of side length dij for
some odd integer dij with 1 ≤ dij ≤ n/2.

The cliques M0,0 and M1,0 share only squares (1, 0) and (1, 1), so σ(M0,0) and
σ(M1,0) share only the squares σ(1, 0) and σ(1, 1). If these squares are diagonally
adjacent, it is easily seen that they lie in a unique maximal 4-clique, which thus must
contain σ(M0,0 ∪M1,0), contradicting the fact that σ is one-to-one. Therefore σ(1, 0)
and σ(1, 1) are orthogonally adjacent, implying d0,0 = d1,0. For any (i, j) we have
a sequence M0,0,M1,0, . . . ,Mi0,Mi1, . . . ,Mij of two-by-twos such that neighboring
members of the sequence share exactly two squares. It follows that all dij’s have the
same value d.

We show next that σ takes orthogonals to orthogonals. It suffices to show that
any three consecutive squares of an orthogonal go to three squares of an orthogonal.
Without loss of generality, we may consider the three consecutive squares (1, 0), (1, 1),
and (1, 2) of C1. As shown previously, σ(1, 0) and σ(1, 1) are orthogonally adjacent
at distance d, as are σ(1, 1) and σ(1, 2). Thus if σ(1, 0), σ(1, 1), and σ(1, 2) are not
in the same orthogonal, they are three members of a two-by-two M . Then σ−1(M)
is a maximal 4-clique, so by Proposition 3, σ−1(M) is a two-by-two, contradicting
the fact that σ−1(M) contains three squares of C1. Thus σ(1, 0), σ(1, 1), and σ(1, 2)
are in the same orthogonal.

Therefore the image of C1 under σ is an orthogonal, and each step of length 1
in C1 corresponds to a step of length d in that orthogonal, with n steps required to
return to the starting point. This implies that d is relatively prime to n.

Let k be the multiplicative inverse of d modulo n. Then σ1 = λkσ is an auto-
morphism of Qt

n that permutes {Mij : (i, j) ∈ V (Qt
n)}, so σ1(M0,0) = Mgh for some

(g, h) ∈ V (Qt
n). As orthogonally adjacent squares of M0,0 must go to orthogonally

adjacent squares of Mgh under σ1, there are τ ∈ Tn and γ ∈ In such that σ2 = γτσ1

fixes each square of M0,0. Then σ2 fixes the squares of each 4-clique sharing exactly
two squares with M0,0, and this extends throughout Qt

n, implying σ2 = ι. Therefore
σ = λ−1

k τ−1γ−1 is in Gn, and Aut(Qt
n) = Gn.

Corollary 6 For even n ≥ 4, every automorphism of Qt
n respects parity. For even

n ≥ 6, every automorphism of Qt
n sends orthogonals to orthogonals and diagonals to

diagonals.

Proof. It was shown in the proof of Theorem 4 that automorphisms of Qt
4 respect

parity. For even n ≥ 6, it is easily verified that every member of Hn, of In, and of Tn
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respects parity, takes orthogonals to orthogonals, and takes diagonals to diagonals,
so the conclusion then follows from Theorems 2 and 5.

Another view: for even n ≥ 4, a difference (respectively sum) diagonal of Qt
n

numbered k meets every sum (respectively difference) diagonal with number of the
same parity as k in two squares, but no orthogonal meets another line in more than
one square; thus no automorphism of Qt

n can take an orthogonal to a diagonal or
vice versa.

For odd n, “all lines are alike,” as the automorphism ρ interchanges orthogonals
and diagonals.

Theorem 7 The group Aut(Qt
5) = 〈G5, φA〉 and is isomorphic to a semidirect prod-

uct of S5 × S5 and Z2. Thus Aut(Qt
5) has order 28 800.

Proof. It is well known [1] that maximal independent sets of Qt
5 have size five.

We check that there are exactly ten such sets. Clearly a maximal independent set
I of Qt

5 contains one square of each column. If (0, j) is in I then the square of C1

in I must be either (1, j + 2) or (1, j − 2). If it is (1, j + 2), the square of C2 in I
cannot be (2, j), as this shares its row with (0, j), so must be (2, j + 4). Continuing
in this way, we see that each maximal independent set of Qt

5 is obtained by starting
with one of the five squares of C0 and then either applying the “knight’s move” τ1,2

repeatedly, or similarly using τ1,−2. (Such regular independent sets will be further
examined later.)

Label the maximal independent sets as follows: for i = 1, . . . , 5, set Ai = {(j, 3 −
i−2j) : 0 ≤ j ≤ 4} and Bi = {(j,−3+ i+2j) : 0 ≤ j ≤ 4}. Let LA = {A1, . . . , A5},
LB = {B1, . . . , B5}, and L = LA ∪ LB.

As the image of an independent set under an automorphism is an independent set
of the same size, any automorphism of Qt

5 permutes L. This gives a homomorphism
F from Aut(Qt

5) to the group Sym(L) of permutations of L. Any square s of Qt
5 is

a member of just one Ai and one Bj, and Ai ∩ Bj = {s}. Thus any σ ∈ Aut(Qt
5)

that fixes each Ai and Bj setwise will fix each square, so kerF = {ι} and Aut(Qt
5) is

isomorphic to its image under F .

The automorphism φA defined in Figure 1 satisfies F (φA) = (A2, A4), and F (τ1,2)
= (A1, A2, A3, A4, A5), using cycle notation for members of Sym(L). As any 2-cycle
and 5-cycle in S5 generate S5, F (〈φA, τ1,2〉) is a subgroup of Sym(L) which we may
identify with Sym(LA).

Recall μ is reflection across R0. It is easily checked that F (μ) = (A1, B1)(A2, B2)
(A3, B3)(A4, B4)(A5, B5). Set φB = μφAμ

−1 and note τ1,−2 = μτ1,2μ
−1. Then

F (φB) = (B2, B4) and F (τ1,−2) = (B1, B2, B3, B4, B5), so F (〈φB, τ1,−2〉) is a sub-
group of Sym(L) which we may identify with Sym(LB). Let G = 〈φA, φB, τ1,2, τ1,−2〉.
Then F (G) is the internal direct product Sym(LA)Sym(LB), which is isomorphic to
S5 × S5, so G ∼= S5 × S5.

Given any σ ∈ Aut(Qt
5), there is τ in T5 such that σ1 = τσ fixes (0, 0). As A3

and B3 are the maximal independent sets that contain (0, 0), σ1 sends {A3, B3} to
itself. So there is e in {0, 1} such that σ2 = μeσ1 fixes each of A3 and B3 setwise.
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We will show σ2(LA) = LA and σ2(LB) = LB. If not, there is i �= 3 such that
σ2(Ai) = Bj for some j. But then Ø = σ2(A3 ∩ Ai) = σ2(A3) ∩ σ2(Ai) = A3 ∩ Bj �=
Ø, a contradiction. Thus F (σ2) is in Sym(LA)Sym(LB), implying σ2 ∈ G. As
T5 = 〈τ1,2, τ1,−2〉, we see σ ∈ 〈G, μ〉, and thus Aut(Qt

5) = 〈G, μ〉. Since μGμ−1 = G
and μ has order two, Aut(Qt

5) is a semidirect product as stated. Finally, Aut(Qt
5) =

〈G, μ〉 = 〈φA, φB, τ1,2, τ1,−2, μ〉 ⊆ 〈μ, τ1,2, φA〉 ⊆ 〈G5, φA〉 ⊆ Aut(Qt
5), so Aut(Qt

5) =
〈G5, φA〉.

To approach Aut(Qt
n) for odd n ≥ 7, we need to define more kinds of cliques.

Definitions. Let a, b ∈ Zn and k ∈ Z with 1 ≤ k ≤ n/2. Then {(a, b), (a+ k, b), (a−
k, b), (a, b + k), (a, b − k)} is an orthogonal quincunx of Qt

n, and {(a, b), (a + k, b +
k), (a − k, b + k), (a + k, b − k), (a − k, b − k)} is a diagonal quincunx of Qt

n. The
union of the two quincunxes just given is a three-by-three of Qt

n.

Each of the quincunxes above and the three-by-three have radius k, and the
quincunxes have center (a, b).

It is easily seen that a quincunx is a clique.

If n is odd and U is a quincunx of radius k in Qt
n, then ρ(U) is a quincunx of the

other type that has radius k′, where k′ = 2k if 2k < n/2 and k′ = n− 2k otherwise.
Note that if n = 3k then k′ = k.

This implies that if T is a three-by-three of radius k then ρ(T ) is a three-by-three
of radius k′.

Proposition 8 Let n be an odd positive integer. A set M of squares of Qt
n is a

maximal clique if and only if one of the following holds:

(i) M is a line of Qt
n and n �= 3;

(ii) M is a three-by-three of radius k and n = 3k;

(iii) M is a quincunx of radius k and n �= 3k.

Proof. Let n be an odd positive integer, let M be a maximal clique of Qt
n, and

let h be the maximum of |M ∩ L| over all lines L of Qt
n. We will show that M has

one of the three forms given in the statement of the proposition; that the three types
of set mentioned are maximal cliques will be apparent from the discussion.

Suppose first that h ≥ 4. Since n is odd, any square of Qt
n that is not in a

particular line is adjacent to exactly three squares of that line. Thus there is a line
L with M ⊆ L, and then maximality of the clique M implies M = L.

Suppose next that h = 3. Using a power of ρ and a translation if needed, we
can find an automorphic image M1 of M that meets column C0 in a set M ′

1 of three
squares. Then M1 is a maximal clique but M ′

1 is not. (Note that V (Qt
3) is a clique,

so no line of Qt
3 is a maximal clique.) As we have shown in Proposition 3 that Qt

n has
no maximal 4-clique if n is odd, M1 contains at least two squares not in M ′

1, and thus
not in C0. Then employing a vertical translation, and reflection across C0 if needed,
we can find an automorphic image M2 of M1 such that |M2∩C0| = 3 and M2 contains
a square (k, 0) with 0 < k < n/2. This implies M2 ∩ C0 = {(0,−k), (0, 0), (0, k)}.
Call this set M ′

2.
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What are the possibilities for a square not in C0 but adjacent to all squares of
M ′

2? It must be adjacent to one square of M ′
2 along its difference diagonal, to another

along its row, and to the last square of M ′
2 along its sum diagonal. Thus there are

at most 3! = 6 such squares; together with the squares of M ′
2, they form a three-by-

three T of radius k. However, the four squares (±k,±k) of T each are adjacent to all
squares of M ′

2 if and only if n = 3k. For example, the difference diagonal of (0, 0) and
row of (0, k) intersect at (k, k), which can only be adjacent to (0,−k) if they share
the same sum diagonal. This would mean −k ≡ 2k (mod n), which is equivalent to
n dividing 3k. Since 0 < k < n/2, that means n = 3k. Similar arguments apply to
the squares (k,−k), (−k, k), and (−k,−k).

Therefore M2 ⊆ T . If n = 3k then T induces a subgraph of Qt
n that is isomorphic

to Qt
3, which is a clique, so T is a clique. As then T contains all squares adjacent to

the three squares of M ′
2, T is a maximal clique and M2 = T . Then M is the image

of T under an automorphism composed of a power of ρ and a translation, so M is a
three-by-three of radius k.

If n �= 3k, then M2 is contained in the orthogonal quincunx U with center (0, 0)
and radius k, and since |M2| ≥ 5 we have M2 = U . Then M is the image of U under
an automorphism composed of a power of ρ and a translation, so M is a quincunx,
and since it is a maximal clique, its radius cannot be n/3.

If h = 2, let t be a square of M . The four lines through t contain at most four
other vertices of M , so |M | ≤ 5. By Proposition 3, |M | �= 4, and then since h = 2
and M is a maximal clique, |M | = 3 or 5. If |M | = 3 then M contains two squares
in a diagonal D and one square s not in D. Let γ be the automorphism of Qt

n given
by reflection across D. Then M ∪{γ(s)} is a clique of Qt

n that properly contains M ,
a contradiction. Thus |M | = 5 which implies that any line containing a square of
M contains exactly two squares of M . So if j is the number of columns containing
squares of M , we have 2j = |M | = 5, which is not possible.

If h = 1 then |M | = 1 so n = 1, and we may regard M = V (Qt
1) as a line of Qt

1.

Theorem 9 If n is odd and n ≥ 7, then Aut(Qt
n) = Gn.

Proof. Let n be an odd integer, n ≥ 7.

First we establish that each automorphism of Qt
n takes lines to lines. For n �= 9,

this follows from Proposition 8, as the lines of Qt
n are the only maximal cliques of size

n. Suppose that η is an automorphism of Qt
9 that takes a line L to a three-by-three

T of radius 3. Consider a set S containing any three consecutive squares s1, s2, s3

of L. As S is a subset of a quincunx of radius 1, which is a maximal clique of Qt
9

by Proposition 8, η(S) is a subset of some quincunx which is a maximal clique of
Qt

9, and thus cannot have radius 3. But also η(S) ⊆ T , so for distinct i, j ∈ {1, 2, 3}
we have d(η(si), η(sj)) = 3, where d is the metric defined earlier. This contradiction
implies no such η exists.

Let σ be an arbitrary automorphism of Qt
n. By the preceding paragraph, σ(R0)

is a line of Qt
n. For some non-negative integer h and τ in Tn, the automorphism

σ1 = τρhσ has the property that σ1(R0) = R0 and σ1(0, 0) = (0, 0).
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For each j �= 0, Rj ∩R0 = Ø so σ1(Rj) is a line of Qt
n that does not meet R0, thus

is a row.

For each i ∈ Zn, let Ui = {(i−1, 0), (i, 0), (i+1, 0), (i, 1), (i,−1)} be the orthogonal
quincunx with center (i, 0) and radius 1 of Qt

n. As each Ui is a maximal clique of
Qt

n, σ1(Ui) is also, and since n > 5, σ1(Ui) must be a quincunx, say of radius di. For
each i, |Ui ∩R0| = 3 so |σ1(Ui)∩R0| = 3, implying σ1(Ui) is an orthogonal quincunx.
Also, ∪n−1

i=0 Ui = R0∪R1∪R−1, so ∪n−1
i=0 σ1(Ui) is the union of three rows. This implies

all di’s have the same value d; by composing σ1 with reflection across R0 if necessary,
we may obtain σ2 such that σ2(R0) = R0, σ2(0, 0) = (0, 0), and σ2(R1) = Rd.

Looking at the overlap between Ui and Ui+1 for each i, we see that σ2(i, 0) = (di, 0)
for each i. Then σ2(R0) = R0 implies that d and n are relatively prime. Let k be
the multiplicative inverse of d modulo n and set σ3 = λkσ2, so σ3 fixes each square
of R0 and fixes R1 setwise. This implies σ3 fixes each square of each Ui, so σ3 fixes
each square of R1. Continuing in this way shows σ3 = ι, so σ is in Gn.

Remarks. (1) A straightforward but lengthy proof shows that the center of Aut(Qt
n)

is {ι, τn/2,n/2} for even n ≥ 4 and is trivial for other n. It is interesting to compare
this to the fact that the center of the automorphism group of the n-dimensional
hypercube, n ≥ 1, has one nontrivial member: the antipodal map.

(2) No nonabelian simple group has order dividing |Aut(Qt
4)| (found in Theorem

4), so Aut(Qt
4) is solvable. For n > 4, it is apparent from the definitions of the groups

Tn, In, Hn, and 〈ρ〉 that they are solvable. It then follows from Theorems 2, 5, 7,
and 9 that Aut(Qt

n) is solvable except for n = 3, when the alternating group A9 is a
composition factor, and n = 5, when A5 appears twice as a composition factor.

Table 1 summarizes much of what we have found about Aut(Qt
n).

n Aut(Qt
n) |Aut(Qt

n)|
1, 2, 3 ∼= Sn2 (n2)!

4 = G4〈η〉 384 = 27 · 3
5 = 〈G5, φA〉 ∼= (S5 × S5) � Z2 28 800 = 27 · 32 · 52

≥ 6 = Gn 4n2φ(n) if n even,
8n2φ(n) if n odd.

Table 1: A summary of information about Aut(Qt
n).

3 Edges and Aut(Qt
n)

We now examine the interplay of automorphisms and edges for Qt
n.

Definitions. Let e = (v1, v2) and f = (w1, w2) be edges of a finite, simple graph U
and let G be a subgroup of Aut(U). Say edges e and f are G-related if there is θ in G
such that either θ(vi) = wi for i = 1, 2, or θ(vi) = w3−i for i = 1, 2. (If G = Aut(U),
we just say e and f are related.) It is easily seen that this is an equivalence relation
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on the edge set of U . The equivalence class of edge e will be denoted [e]G unless
G = Aut(U), when [e] will be used; we say [e] is the edge class of e. We write ψ(U)
for the number of edge classes of U .

For each positive integer n, let τ (n) denote the number of positive divisors of n.

The proof of our theorem on edge classes will require the following elementary
lemma, whose proof will be omitted.

Lemma 10 For nonzero integers i, j, n, the following conditions are equivalent:

(i) There exists an integer m such that gcd(m,n) = 1 and mi ≡ j (mod n);

(ii) gcd(i, n) = gcd(j, n).

Theorem 11

ψ(Qt
n) =

⎧⎪⎪⎨
⎪⎪⎩

τ (n) − 1 for odd n,
1 for n = 2,
3 for n = 4,
2(τ (n) − 1) for even n ≥ 6.

A complete set of edge class representatives for each n > 1 is:

for n = 2 and for odd n ≥ 3, {((0, 0), (d, 0)) : d divides n and 1 ≤ d < n};
for n = 4, {((0, 0), (1, 0)), ((0, 0), (2, 0)), ((0, 0), (2, 2))};
for even n ≥ 6, {((0, 0), (d, 0)), ((0, 0), (d, d)) : d divides n and 1 ≤ d < n}.

Proof. As previously noted, for n = 2, 3, every permutation of the squares of Qt
n

is an automorphism, so ψ(Qt
2) = ψ(Qt

3) = 1. For the remainder of the proof, we will
assume n ≥ 4.

Let G be a subgroup of Aut(Qt
n) that contains the translation subgroup Tn and

the square subgroup In. Since Tn ⊆ G, every class [e]G contains an edge having
(0, 0) as one end. Since In ⊆ G, for each orthogonal (respectively diagonal) edge
e, the class [e]G contains an edge of form ((0, 0), (i, 0)) (respectively ((0, 0), (i, i)))
for some i in Zn. Finally, we note that we can use an automorphism in G to
“reverse” an edge : this follows from βμβτ−i,0((0, 0), (i, 0)) = ((i, 0), (0, 0)) and
μβμτ−i,−i((0, 0), (i, i)) = ((i, i), (0, 0)). Thus in determining the equivalence classes
of edges under the action of G, it suffices to consider edges of form ((0, 0), (i, 0)) and
((0, 0), (i, i)) and automorphisms in G that fix (0, 0).

We first take G = Gn.

Suppose that n is odd, and the edge ((0, 0), (i, 0)) is Gn-related to ((0, 0), (j, 0)).
By Theorem 2, Gn = 〈ρ〉HnInTn, so there are a non-negative integer p, λm in Hn,
γ in In, and τ in Tn such that ρpλmγτ sends (0, 0) to (0, 0) and (i, 0) to (j, 0).
Since ρ, λm, and γ send (0, 0) to (0, 0), we see τ = ι and then (j, 0) = ρpλmγ(i, 0).
By the Division Algorithm, there are integers q and r such that p = 2q + r and
0 ≤ r ≤ 1. Then using ρ2 = λ2α and the fact that members of Hn commute with
members of In, we have (j, 0) = ρpλmγ(i, 0) = ρr(αqγ)(λq

2λm)(i, 0) = ρrγ′(2qmi, 0),
where γ′ = αqγ is in In. As γ′(2qmi, 0) is in {(±2qmi, 0), (0,±2qmi)}, we have r = 0
and ±2qmi ≡ j (mod n). Since n is odd, gcd(2qm,n) = 1, so (i) implies (ii) of
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Lemma 10 gives gcd(i, n) = gcd(j, n). Calling this common value d, it is easily
seen from (ii) implies (i) of Lemma 10 that the edge ((0, 0), (d, 0)) is Gn-related to
both ((0, 0), (i, 0)) and ((0, 0), (j, 0)). A similar proof shows that for odd n, edges
((0, 0), (i, i)) and ((0, 0), (j, j)) are Gn-related if and only if gcd(i, n) = gcd(j, n), and
that then both are Gn-related to ((0, 0), (d, d)) for d = gcd(i, n). Finally, for any
divisor d of n, ρ(d, d) = (2d, 0), so the edge ((0, 0), (d, d)) is Gn-related to the edge
((0, 0), (2d, 0)), and since n is odd, ((0, 0), (2d, 0)) is Gn-related to ((0, 0), (d, 0)).

Thus for each odd n ≥ 5, a complete set of representatives of Gn-equivalence
classes of edges is the set given in the theorem statement as a complete set of edge
class representatives. By Theorem 9, Gn = Aut(Qt

n) for odd n ≥ 7, so the theorem
is proved for these n. Above we have shown that there is only one G5-equivalence
class of edges of Qt

5 so since G5 ⊆ Aut(Qt
5), ψ(Qt

5) = 1.

The proof for even n is similar to and simpler than that for odd n, so we will
mention only a few points.

First, for even n ≥ 6, no diagonal edge is Gn-related to any orthogonal edge. To
see this, suppose instead that there is θ in Gn such that θ sends edge ((0, 0), (i, 0))
to ((0, 0), (j, j)). By Theorem 5 there are λm in Hm, γ in In, and τ in Tn such that
λmγτ sends (0, 0) to (0, 0) and (i, 0) to (j, j). As before, since λm and γ send (0, 0) to
(0, 0), we see τ = ι and then (j, j) = λmγ(i, 0) = γ(mi, 0). But γ(mi, 0) is a member
of {(±mi, 0), (0,±mi)}, and thus cannot equal (j, j).

For even n ≥ 6, Gn = Aut(Qt
n) by Theorem 5, so the theorem is proved for

these n.

For n = 4, we have shown that a complete set of equivalence class representatives
under the action of G4 is {((0, 0), (1, 0)), ((0, 0), (2, 0)), ((0, 0), (1, 1)), ((0, 0), (2, 2))}.
The first edge given here joins an even square to an odd one, and since every auto-
morphism of Qt

4 respects parity (Corollary 6), this edge is not related to any of the
other three. With η as defined before Theorem 4, η((0, 0), (2, 0)) = ((0, 0), (1, 1)),
so two of the G4-equivalence classes are contained in a single edge class. Lastly we
show that ((0, 0), (2, 0)) is not related to ((0, 0), (2, 2)). If these edges are related, by
Theorem 4 there is an integer p (with 0 ≤ p ≤ 2), λm in H4, γ in I4, and τ in T4 such
that ηpλmγτ takes (0, 0) to itself and ((0, 0), (2, 0)) to ((0, 0), (2, 2)). As before this
implies τ = ι, and then ηpλmγ(2, 0) = (2, 2). Applying η3−p gives λmγ(2, 0) = (2, 2)
and then γ(2m, 0) = (2, 2), which cannot happen since γ(2m, 0) is a member of
{(±2m, 0), (0,±2m)}. Thus the set of edge class representatives for Qt

4 stated in the
theorem is correct.

Recall that a graph is edge-transitive if any two edges are related by the automor-
phism group of the graph. The corollary below follows from Theorem 11.

Corollary 12 For n > 1, Qt
n is edge-transitive if and only if n is prime.
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4 Regular solutions of the toroidal n-queens problem

The n-queens problem is the problem of placing n queens on an n× n chessboard so
that no two queens attack each other. For the usual chessboard, Ahrens [1] showed
this is possible for n = 1 and n ≥ 4. For the toroidal chessboard, Pólya (cited in [1])
showed that solutions exist if and only if n ≡ ±1 (mod 6).

We examine the type of toroidal n-queens solutions defined next.

Definitions. A regular solution of the toroidal n-queens problem is a solution of the
form

S = {(x+ a, kx+ b) : x ∈ Zn} (1)

for some fixed k, a, b ∈ Zn. We refer to k as the step of the regular solution S. Let
Reg(n) denote the set of regular solutions of the toroidal n-queens problem.

Regular solutions were studied by Pólya, who used them to prove (see [8] or [7])
Fermat’s theorem that a prime number of the form 4k+ 1 is the sum of two squares.

We will determine the number of regular solutions that are distinct up to auto-
morphism of Qt

n. This extends work of Burger, Cockayne, and Mynhardt [4], where
the number of regular solutions up to isometry was found; we follow their approach.

Which k occur as steps of regular solutions?

Definitions. For odd n > 1, set Pn = {i ∈ Zn : gcd(i, n) = 1} and Rn = {i ∈ Zn :
i− 1, i, i+ 1 ∈ Pn}.

It is easily seen that the squares in S = {(x + a, kx + b) : x ∈ Zn} have distinct
row numbers (respectively difference diagonal numbers, sum diagonal numbers) if
and only if the set {ki : i ∈ Zn} (respectively {(k− 1)i : i ∈ Zn}, {(k+ 1)i : i ∈ Zn})
equals Zn, which is equivalent to k− 1, k, k+ 1 all being relatively prime to n. This
establishes the following, which is [4, Proposition 3].

Proposition 13 For a, b, k ∈ Zn, S = {(x+ a, kx+ b) : x ∈ Zn} is a solution of the
toroidal n-queens problem if and only if k is in Rn.

In particular, suppose that n > 1 and n ≡ ±1 (mod 6). Then n is relatively prime
to 2 and 3, so 2 is in Rn and thus k = 2 gives a regular solution for every such n.

Part (a) of the next proposition is proved in [4, Theorem 10]. Part (b) is implicit
in [4]; it follows from the fact that for any k in Rn, a regular solution of step k can
include any square of C0, and is determined by that square and k.

Proposition 14 Let n > 1 and n ≡ ±1 (mod 6), and let p1, . . . , pt be the distinct
primes that divide n. Then:

(a) |Rn| = n
∏t

i=1(1 − 3
pi

) ;

(b) The number of regular solutions of the toroidal n-queens problem is n|Rn|.

For both the usual chessboard and the toroidal one, many methods of constructing
solutions to the n-queens problem have been found and considerable effort has been
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devoted to determining the number of solutions for each n. See [9] for a summary.
There is a connection between the two problems: Pólya [1, 9] showed that any
toroidal n × n solution and any usual m × m solution may be composed to get a
usual mn×mn solution, by replacing each empty square of the m ×m board with
an empty n× n board and each occupied square of the m×m board with a copy of
the toroidal n× n solution.

The regular toroidal solutions may be seen as the simplest ones for the toroidal
n-queens problem. For an interesting method of altering regular toroidal solutions
to get more toroidal solutions, see [3].

Definition. Let n ≥ 1 and n ≡ ±1 (mod 6), and let θ be an automorphism of Qt
n.

We say θ respects step if for any S1, S2 in Reg(n) that have the same step, θ(S1) and
θ(S2) are in Reg(n) and have the same step.

Lemma 15 Let n ≥ 1 and n ≡ ±1 (mod 6). Every automorphism of Qt
n respects

step.

Proof. There is nothing to prove for n = 1 so let n ≡ ±1 (mod 6) and n ≥ 5.
As remarked after Theorem 2, the image of an independent set of vertices of a graph
under an automorphism is an independent set of the same size. Thus the image of
any regular solution under an automorphism is a solution of the n-queens problem,
and it will be clear from the following discussion that it is regular. By Theorems
2, 7, and 9, any automorphism of Qt

n can be written as a product of elements of
the subgroups 〈ρ〉, Hn, In, Tn, and (if n = 5) 〈φA〉, so it suffices to show that every
member of each of these subgroups preserves step. The following equations establish
this (recall In = 〈β, μ〉). With S as in (1):

μ(S) = {(x+a,−kx− b) : x ∈ Zn} = {(x+a, (−k)x− b) : x ∈ Zn}. Thus μ sends
regular solutions with step k to regular solutions with step −k. This corresponds to
a bijection k �→ −k from Rn to Rn.

β(S) = {(kx + b, x + a) : x ∈ Zn} = {(k(k−1i) + b, k−1i + a) : i ∈ Zn} =
{(i + b, k−1i+ a) : i ∈ Zn}: bijection k �→ 1/k.

τh,j(S) = {x+ a+ h, kx+ b+ j) : x ∈ Zn}: bijection k �→ k.

λm(S) = {(m(m−1i+ a),m(km−1i+ b)) : i ∈ Zn} = {(i+ma, ki+mb) : i ∈ Zn}:
bijection k �→ k.

ρ(S) = {((k + 1)x+ a+ b, (k− 1)x+ b− a) : x ∈ Zn} = {((k + 1)(k + 1)−1i+ a+
b, (k−1)(k+1)−1i+ b−a) : i ∈ Zn} = {(i+a+ b, (k−1)(k+1)−1i+ b−a) : i ∈ Zn}:
bijection k �→ k−1

k+1
.

For n = 5: using the notation of the proof of Proposition 7, each Bi is a regular
solution of step 2 and each Ai is a regular solution of step 3. It was shown that φA

induces the permutation (A2, A4) of the set L = {A1, . . . , A5, B1, . . . , B5}. Thus φA

respects step and gives the bijection k �→ k.

Definitions. Say that S, S ′ in Reg(n) are automorphic, denoted S ∼ S ′, if there is an
automorphism θ of Qt

n such that θ(S) = S ′.
Two members k, k′ of Rn are similar, denoted k ≈ k′, if S ∼ S ′ for every regular

solution S with step k and every regular solution S ′ with step k′.
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It is clear that these are equivalence relations on Reg(n) and Rn, respectively. We
write [S] for the automorphism class of the regular solution S, and Reg∗(n) for the
set of all automorphism classes. Let δ(n) = |Reg∗(n)|.

The similarity class of k under ≈ is [k], and the set of all similarity classes is R∗
n.

The analysis in [4] was carried out using the isometry subgroup InTn of Aut(Qt
n)

where we are using Aut(Qt
n). The proof of Lemma 15 shows that the automorphism

ρ makes the difference between the two approaches.

Lemma 16 For any k, k′ in Rn, the following are equivalent:

(i) k ≈ k′;
(ii) there exist S, S ′ in Reg(n) with steps k, k′ such that S ∼ S ′.

Proof. We may assume n ≡ ±1 (mod 6) and n ≥ 5. That (i) implies (ii) is
clear from the definition of the relation ≈. Assume that (ii) holds; then there is θ
in Aut(Qt

n) with θ(S) = S ′. For every S ′′ in Reg(n) with step k, Lemma 15 implies
that θ(S ′′) has step k′. Since any two regular solutions with step k′ are automorphic
by a translation, we see k ≈ k′.

We may then define H : Reg∗(n) → R∗
n by H([S]) = [k], where k is the step of the

regular solution S. By Lemma 16, H is well-defined, and it is then not difficult to see
that H is a one-to-one correspondence. Thus δ(n) = |R∗

n|, the number of similarity
classes in Rn. To find |R∗

n|, we need [4, Theorem 9], given next.

Theorem 17 Let n > 1 be an odd integer, let p1, . . . , pt be the distinct primes di-
viding n, and let a in Pn. The congruence

x2 ≡ a (mod n) (2)

has a solution if and only if each of the congruences x2 ≡ a (mod pi), i = 1, . . . , t
has a solution, in which case (2) has exactly 2t solutions. These solutions (modulo
n) are in Pn, and are in Rn if and only if a− 1 (mod n) is in Pn.

Theorem 18 Let n > 1 with n ≡ ±1 (mod 6) and let p1, . . . , pt be the distinct
primes dividing n. For each k in Rn:

[k] = {k,−k} with |[k]| = 2 if and only if k2 ≡ −1 (mod n);

[k] = {k,−k, 1
k
, −1

k
} with |[k]| = 4 if and only if (k ± 1)2 ≡ 2 (mod n);

[k] = {k,−k, 1
k
, −1

k
, k−1

k+1
,−k−1

k+1
, k+1

k−1
,−k+1

k−1
} with |[k]| = 8 otherwise. Then:

δ(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8

(
5 · 2t + n

∏t
i=1(1 − 3

pi
)
)

if pi ≡ 1 (mod 8) for all i;

1
8

(
3 · 2t + n

∏t
i=1(1 − 3

pi
)
)

if pi ≡ 1 or 5 (mod 8) for all i

and pi ≡ 5 (mod 8) for some i;
1
8

(
2 · 2t + n

∏t
i=1(1 − 3

pi
)
)

if pi ≡ 1 or 7 (mod 8) for all i

and pi ≡ 7 (mod 8) for some i;
n
8

∏t
i=1(1 − 3

pi
) otherwise.

Proof. From the proof of Lemma 15, for each k in Rn, the class [k] is the small-
est subset of Rn that contains k and is closed under the three bijections from Rn
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to Rn that send k to −k, 1/k, and (k − 1)/(k + 1) respectively. Under composi-
tion, these bijections generate a subgroup D of Sym(Rn) that is isomorphic to the
dihedral group of order eight. We will refer to each bijection in D by its value
at k, abusing notation to avoid introducing more names. With this convention,
D = {k,−k, 1

k
,− 1

k
, k−1

k+1
,−k−1

k+1
, k+1

k−1
,−k+1

k−1
}.

Letting D act on Rn in the natural way, [k] is the orbit Dk = {g(k) : g ∈ D}. By
[2, Proposition 7.3.5(b)], |[k]| is the index in D of the isotropy subgroup Dk = {g ∈
D : g(k) = k}. We find Dk for each k in Rn.

Since n is odd and k �= 0, also k �= −k, so the bijection −k is not in Dk. For any
k in Rn, both k − 1 and k + 1 are relatively prime to n, so k2 − 1 �≡ 0 (mod n),
and thus k �= 1/k so the bijection 1/k is not in Dk. In particular these facts imply
Dk �= D for any k in Rn.

The bijection −1/k is in Dk if and only if k2 = −1, which is true if and only if the
bijection k−1

k+1
is in Dk. As |〈k−1

k+1
〉| = 4 and Dk �= D, we see that Dk = 〈k−1

k+1
〉 if and

only if k2 = −1, and in this case |[k]| = [D : Dk] = 2 so [k] = {k,−k}. By Theorem
17, the congruence

x2 ≡ −1 (mod n) (3)

is solvable if and only if for each i, the congruence x2 ≡ −1 (mod pi) is solvable. By
[5, Corollary, page 93], this occurs if and only if pi ≡ 1 (mod 4) for each i, and then
by Theorem 17, (3) has 2t solutions, which are in Rn since −2 is in Pn. These 2t

solutions pair off to give 2t−1 similarity classes of size two.

Otherwise we may assume that the intersection of Dk with each of the subgroups
〈k−1

k+1
〉 and 〈−k, 1/k〉 of D is trivial, which leaves three possibilities:

The isotropy subgroup Dk is trivial. Then [k] has eight members as given.

The isotropy subgroup Dk = 〈−k−1
k+1

〉. The equation k = −k−1
k+1

is equivalent to
(k + 1)2 = 2 and also to k(k + 2) = 1. By Theorem 17, the congruence

x2 ≡ 2 (mod n) (4)

is solvable if and only if for each i, the congruence x2 ≡ 2 (mod pi) is solvable. By
[5, Theorem 9-6] this occurs if and only if pi ≡ ±1 (mod 8) for each i, and in this
case there are 2t solutions of (4), which are in Rn since 1 is in Pn. Say ±y are two
solutions of (4) and set k+1 = y. Then k = y−1 is in Pn since y is in Rn; to show k is
in Rn, we need k− 1 = y− 2 in Pn, which follows from y(y− 2) = 2− 2y = 2(1− y),
since y, 2 and 1 − y are in Pn. Here |Dk| = 2 so |[k]| = [D : Dk] = 4. From
k(k + 2) = 1 we see [k] = {k,−k, 1

k
, −1

k
} = {k,−k, k+ 2,−k − 2} = {±y ± 1}. Thus

each of the 2t−1 pairs ±y of solutions of (4) gives a similarity class {±y ± 1} of size
four. In each of these classes, y − 1 and −y − 1 have isotropy subgroup 〈−k−1

k+1
〉.

The isotropy subgroup Dk = 〈k+1
k−1

〉. The equation k = k+1
k−1

is equivalent to
(k − 1)2 = 2. If we define k′ by k′ = k − 2, then (k′ + 1)2 = 2. Therefore this
case reduces to the previous one, with the same 2t−1 similarity classes of size four.
In each similarity class {±y ± 1} discussed there, y + 1 and −y + 1 have isotropy
subgroup 〈k+1

k−1
〉.
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It is now straightforward to determine δ(n) for each n; we only examine the most
complex case: pi ≡ 1 (mod 8) for i = 1, . . . , t. Here there are 2t−1 similarity classes of
size two and 2t−1 similarity classes of size four in Rn, leaving (|Rn|−2·2t−1−4·2t−1)/8
classes of size 8. Then using the value for Rn from Proposition 14(a) gives δ(n) the
value stated.
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