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Abstract

By strengthening an edge-decomposition technique for gracefully label-
ling a generalised Petersen graph, we provide graceful labellings for a
new infinite family of such graphs. The method seems flexible enough to
provide graceful labellings for many other classes of graphs in the future.

1 Introduction

Among the numerous kinds of vertex labellings for graphs, graceful labellings owe
their popularity to disparate reasons such as applicability in real-life contexts (see a
pioneering work by Bloom and Golomb [3]), clear connections with graph decompo-
sition theory (see e.g. [7, 11, 12]) and, we presume, an intrinsic appeal that has been
enthralling combinatorialists for decades.

Definition 1.1. Let G = (V, E) be a simple connected graph, λ : V → {0, 1, 2, . . . ,
|E|} be an injective vertex labelling, and λ′ be the induced labelling, on the edges,
that assigns the value |λ(u) − λ(v)| to the edge {u, v}. The labelling λ is termed
graceful if λ′ is injective (equivalently, if it is a bijection on {1, 2, . . . , |E|}). A graph
that admits a graceful labelling is termed graceful as well.

r r r r r r r r r r r r r r r r

16 0 15 1 14 2 13 3 12 5 11 6 10 7 9 8

Figure 1: A graceful labelling of the 16-cycle

Without lingering on applicative aspects of graceful labellings, let us emphasise
instead the relationship between these labellings and edge-decompositions of graphs
into copies of assigned subgraphs. If we are given a graph S = (V, E) and try to
embed 2|E|+ 1 copies of S in the complete graph K2|E|+1 with the proviso that any
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edge of the complete graph belongs to exactly one copy (we are in fact looking for a so-
called (K2|E|+1, S)-design, see e.g. [6]), then we get a quick solution to our problem
whenever we can gracefully label S. For, by identifying V with the finite group
Z2|E|+1, and regarding labels as integers (mod 2|E| + 1), the i-th copy is obtained
by adding i to each vertex of S. It turns out that we have actually obtained a cyclic
(K2|E|+1, S)-design, because the further property we get for free is that copies are
still changed into copies by any vertex automorphism ϕi of K2|E|+1 defined, indeed,
by ϕi(v) = v + i, with 0 ≤ i ≤ 2|E|.

The already quoted paper by Rosa ([12]) was the starting point for the systematic
search of classes of graphs that might be graceful. For example trees have been
playing a star-role in this context, and they will still do at least until someone turns
up with a proof that every tree is graceful, or with a stunning counterexample1.
Complete graphs are graceful if and only if they have at most 4 vertices (see [9]).
Many other graphs are by now without secrets as to their being graceful or not,
whereas many others besides trees appear still difficult to understand.

Should a graceful labelling be hard to find, some relief might come from the
discovery of a relaxed graceful labelling (see [13]), namely a still injective labelling λ
which may however take larger values than |E| (and the same with λ′). Asymptotical
aspects of relaxed graceful labelling have been dealt with in [4], while in [2] these
labellings have been related to Golomb’s rulers.

A really satisfactory on-line survey, dealing with graceful labellings and many
other kinds of labellings, is Gallian’s ([7]), which counts several updates — the last
in this very year.

Let us now come to the main object of study in the present paper, namely gen-
eralised Petersen graphs.

Definition 1.2. Let n, k be positive integers such that n ≥ 3 and 1 ≤ k ≤ [(n−1)/2].
The generalised Petersen graph Pn,k is the graph whose vertex set is {ai, bi : 1 ≤ i ≤
n} and whose edge set is {{ai, bi}, {ai, ai+1}, {bi, bi+k} : 1 ≤ i ≤ n}, where an+1 = a1

and bn+c = bc for any positive c ≤ k.
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Figure 2: P8,k , with 1 ≤ k ≤ 3

In [8] every Pn,1 was shown to be graceful (see also [7]). In addition, a number
of Pn,k’s with k ≥ 2 and small values of n were shown to be graceful – this time

1While the general feeling is that the Graceful Tree Conjecture (Ringel’s conjecture, or Kotzig-

Ringel’s, standing from the 60’s, see [11]) is true, yet the author of the present paper has recently
raised some little doubts about it; see [15].



GRACEFUL GENERALISED PETERSEN GRAPHS 275

with the precious aid of computers (see [10]). The first result that has “pierced the
infinity” for k larger than 1 is the following.

Theorem 1.3 ([14]). P8t,3 is graceful for every positive integer t.

The parametric construction of infinitely many graceful labellings in the proof
of the above theorem is based on the splitting of any P8t,3 into a (12t)-cycle (thus,
containing half the number of all edges) and 4t 3-stars whose endpoints lie on the
cycle. After gracefully labelling the cycle, and amplifying labels by two, one chooses
suitable odd numbers for the centres of the stars, so as to generate all remaining (odd)
differences. Clearly, this game can be played first of all because the length of the
cycle allows for a graceful labelling (a classical result, see [12], characterises graceful
cycles as those having length congruent to 0 or 3 (mod 4) ). Such a constraint made
it impossible, at the time of the proof, to apply the above method also to graphs of
the form P8t+4,3, though any of them was likewise decomposable into a (nongraceful)
cycle and some 3-stars.

In the present paper we overcome the congruence obstacle using a “surgery”
technique, by means of which two adjacent vertices of the (12t + 6)-cycle of a given
P8t+4,3 are labelled by odd numbers, while the remaining vertices are assigned even
numbers as in an ingenuous up-and-down labelling amplified by two (performed more
or less in the same fashion as when gracefully labelling a cycle of admissible length).
Further little adjustments are then required before launching the same, old method
of odd labels for centres of 3-stars.

The Achilles heel of the above parametric construction is that it does not apply
to exceedingly small graphs —this is a typical obstruction when dealing with such
combinatorial problems. In the next section we shall in fact establish the following
result.

Theorem 1.4. P8t+4,3 is graceful for every positive integer t ≥ 4.

Choosing suitable labels for some of the centres of the 3-stars when 1 ≤ t ≤ 3 was
indeed so hard to us that we gave up the search after a reasonable while. It might,
however, very well be that a smarter labelling of the big cycle – such labellings could
in fact be performed in many ways – yields the desired global labelling with little
effort, in each of the three cases above (we leave it as an open question). At any
rate, we have filled up the three holes using a computer algorithm by Del Fra ([1]),
which has provided three graceful labellings for our purposes (see the last section).

It is worth remarking that no additional infinite class of generalised Petersen
graphs are known to be graceful (see [7]). The method that we shall carefully describe
in the next section is in our opinion likely to be applicable to many other classes of
graphs, not necessarily of the form Pn,k. However it would be desirable, first of all,
to find graceful labellings for infinitely many graphs of the form P2,k (none of which,
unfortunately, seems to contain a suitable cycle).

Our extreme confidence moved us to give the present technique a proper name.
Let us then call it graceful collage.
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2 The construction

The whole section is devoted to proving the main theorem.

Proof of Theorem 1.4. Starting from a given generalised Petersen graph of the form
P8t+4,3, and using the above notation for vertices, let us consider the cycle ( b3 a3 a2

a1 b1 b4 b7 a7 a6 a5 b5 b8 b11 a11 . . . a8t−1 a8t−2 a8t−3 b8t−3 b8t b8t+3 a8t+3 a8t+2

a8t+1 b8t+1 b8t+4 )—many of the present definitions are in keeping with [14]. The
reader can check with few difficulties that the deletion of this cycle leaves P8t+4,3 with
a disjoint union of 3-stars that can be collected in two subfamilies: stars of class 1,
having b4i−2 connected to b4i−5, a4i−2, b4i+1 for 1 ≤ i ≤ 2t + 1, and stars of class 2,
having a4i connected to a4i−1, b4i, a4i+1 for 1 ≤ i ≤ 2t + 1.
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Figure 3: Decomposing P8t+4,3 into a (12t + 6)-cycle and 4t + 2 3-stars

We now endow the above cycle with the following labelling (the two odd numbers
in bold refer to the modified edge, as hinted in the Introduction, while the just
preceding increase by two— in bold as well — is the standard trick used for gracefully
labelling cycles).

(
b3

24t + 12,
a3

0 ,
a2

24t + 10,
a1

2 , ...,
b4t−3

18t + 14,
b4t

6t − 2,
b4t+3

18t + 12,
a4t+3

6t+2,
a4t+2

18t + 11,

a4t+1

6t + 3,
b4t+1

18t + 8,
b4t+4

6t + 6,
b4t+7

18t + 6,
a4t+7

6t + 8, ...,
a8t+2

12t + 10,
a8t+1

12t + 4,
b8t+1

12t + 8,
b8t+4

12t + 6 ).

More formally, for any i ≡ 1, 2, 3 (mod 4) and i 6∈ [4t + 1, 4t + 3], the vertex ai is
labelled respectively by 2+3(i− 1)/2+ ε, 24t+10− 3(i− 2)/2, 3(i− 3)/2+ ε, where
ε = 2 if i ≥ 4t+5 and ε = 0 otherwise; we do not write again the labels for the three
remaining ai’s, which show well in the above sequence. Instead, for any i ≡ 0, 1, 3
(mod 4), the vertex bi is labelled respectively by −2 + 3i/2 + ε, 24t + 8− 3(i− 1)/2,
24t + 12 − 3(i − 3)/2, where ε = 2 if i ≥ 4t + 4 and ε = 0 otherwise.

The differences obtained along the cycle are therefore all the even numbers from
2 to 24t + 12 except 12t + 4 and 12t + 12, plus the two odd differences 12t + 5 and
12t + 9. The missing even numbers are now obtained by labelling the star centres
a4t and b4t+2 respectively by 18t + 15 and 6t + 7, which as a consequence yields the
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s s s s s s ss s s
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46 64 44 52 58 50 2 106 0 8

42 62 66 48 56 60 54 104 108 4 98

s s s s s s ss s s
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c c c c

e e e e

e

20 88 18 87 27 83 26 34 76 32 40

16 86 90 22 80 31 84 30 74 78 36 68

Figure 4: Near the cycle extremes and the modified trait, when t = 4

further differences 12t − 5, 12t + 11, 12t + 17, 12t + 21 (see the two distinguished
circles out of the cycle, in the lower side of figure 4).

It can be easily seen (with the possible help of the whole Figure 4) that apart
from two exceptions, and leaving aside the two stars whose centres have already
been labelled, the endvertices of each class-1 star are assigned three labels of the
form 〈x, x − 8, x − 16〉, while the labels for each class-2 star are, apart from one
exception, of the form 〈x, x + 4, x + 8〉 (moving in the same direction along the
cycle). In details, denoting by [x] and [[x]] the above forms, such triples of labels are
the following:

{ [6x] : 2t + 4 ≤ x ≤ 4t + 2 , x 6= 3t + 3} ,

{ [[6x]] : 0 ≤ x ≤ t − 2} , { [[6x + 2]] : t ≤ x ≤ 2t − 1} ,

〈2, 12t + 2, 12t + 6〉 , 〈12t + 10, 12t + 18, 24t + 8〉 , 〈12t + 12, 24t + 2, 24t + 10〉 .

The choice of odd labels, for all these triples except the two already labelled, will
split into two cases depending on the parity of t. In both cases, every arrow 7→ in the
scheme indicates an assignment. The labels used at each time are specified, unless
there is a unique label. The resulting differences are in any case displayed. Three
groups of assignments (starting with “ IF ”) must be skipped only if t = 4 and t = 5
respectively. The symbol [x, y]z denotes all integers from x to y that are congruent
to x (mod z). Finally, notice that the two modifications subject to t ≥ 8 in the first
case prevent repeating the very last label, 12t−25 (something similar occurs, though
less explicitly, also in the second case).

Case 1: t even.

[18t + 30 + 12x] 7→ 6t − 23 − 12x : 0 ≤ x ≤ t/2 − 2 =⇒

diff. [12t + 37, 24t + 5]8 , labels [1, 6t − 23]12

[18t + 36 + 12x] 7→ 6t − 21 − 12x : 0 ≤ x ≤ t/2 − 2 =⇒

diff. [12t + 41, 24t + 9]8 , labels [3, 6t − 21]12

[18t + 24] 7→ 6t − 7 =⇒ diff. {12t + 15, 12t + 23, 12t + 31}
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IF t ≥ 6 : [12t + 42 + 12x] 7→ 12t − 15 − 12x : 0 ≤ x ≤ t/2 − 3 , x 6= 1,

[12t + 54] 7→ 12t − 31 (if t ≥ 8) =⇒

diff. [41, 12t − 15]8 \ {65, 73, 81} ∪ {69, 77, 85},

labels [6t + 21, 12t − 15]12 \ {12t − 27} ∪ {12t − 31}

(do not perform the “(\,∪)-replacements”, when t = 6)

IF t ≥ 6 : [12t + 48 + 12x] 7→ 12t − 13 − 12x : 0 ≤ x ≤ t/2 − 3 , x 6= 1,

[12t + 60] 7→ 12t − 21 (if t ≥ 8) =⇒

diff. [45, 12t − 11]8 \ {69, 77, 85} ∪ {65, 73, 81},

labels [6t + 23, 12t − 13]12 \ {12t − 25} ∪ {12t − 21}

(do not perform the “(\,∪)-replacements”, when t = 6)

[12t + 36] 7→ 12t − 3 =⇒ diff. {23, 31, 39}

[12t + 30] 7→ 12t − 5 =⇒ diff. {19, 27, 35}

[12t + 24] 7→ 12t − 9 =⇒ diff. {17, 25, 33}

〈12t + 10, 12t + 18, 24t + 8〉 7→ 12t − 11 =⇒ diff. {21, 29, 12t + 19}

〈12t + 12, 24t + 2, 24t + 10〉 7→ 12t − 25 =⇒ diff. {37, 12t + 27, 12t + 35}

. . . . . . . . . . . . . . . . .

[[6x]] 7→ 24t + 11 − 6x : 0 ≤ x ≤ t − 3 =⇒

diff. [12t + 39, 24t + 11]4 , labels [18t + 29, 24t + 11]6

[[6t − 12]] 7→ 18t + 21 =⇒ diff. {12t + 25, 12t + 29, 12t + 33}

[[6t + 2]] 7→ 18t + 3 =⇒ diff. {12t − 7, 12t − 3, 12t + 1}

IF t ≥ 6 : [[6t + 8 + 6x]] 7→ 18t − 1 − 6x : 0 ≤ x ≤ t − 5 =⇒

diff. [43, 12t − 9]4 , labels [12t + 29, 18t − 1]6

[[12t − 16]] 7→ 12t − 1 =⇒ diff. {7, 11, 15}

[[12t − 10]] 7→ 12t − 7 =⇒ diff. {1, 3, 5}

[[12t − 4]] 7→ 24t + 3 =⇒ diff. {12t − 1, 12t + 3, 12t + 7}

〈2, 12t + 2, 12t + 6〉 7→ 12t + 15 =⇒ diff. {9, 13, 12t + 13}

The reader can easily check that this scheme yields, as differences, all the odd
numbers from 1 to 24t + 11 with the exception of the six previously obtained, while
no repetition of label occurs (consider also the labels 6t+7 and 8t+15, already used)
and all the 3-star centres to label are taken into account.

We now proceed with the second half of the construction.
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Case 2: t odd.

[18t + 36 + 12x] 7→ 6t − 29 − 12x : 0 ≤ x ≤ (t − 5)/2 =⇒

diff. [12t + 49, 24t + 5]8 , labels [1, 6t − 29]12

[18t + 42 + 12x] 7→ 6t − 27 − 12x : 0 ≤ x ≤ (t − 5)/2 =⇒

diff. [12t + 53, 24t + 9]8 , labels [3, 6t − 27]12

[18t + 30] 7→ 6t − 15 =⇒ diff. {12t + 29, 12t + 37, 12t + 45}

[18t + 24] 7→ 6t − 17 =⇒ diff. {12t + 25, 12t + 33, 12t + 41}

[18t + 12] 7→ 6t − 19 =⇒ diff. {12t + 15, 12t + 23, 12t + 31}

IF t ≥ 7 : [12t + 54 + 12x] 7→ 12t − 39 − 12x : 0 ≤ x ≤ (t − 9)/2 ,

diff. [77, 12t − 15]8 , labels [6t + 15, 12t − 39]12

IF t ≥ 7 : [12t + 60 + 12x] 7→ 12t − 37 − 12x : 0 ≤ x ≤ (t − 9)/2 ,

diff. [83, 12t − 11]8 , labels [6t + 17, 12t − 37]12

[12t + 48] 7→ 12t − 21 =⇒ diff. {53, 61, 69}

[12t + 42] 7→ 12t − 31 =⇒ diff. {57, 65, 73}

[12t + 36] 7→ 12t − 15 =⇒ diff. {35, 43, 51}

[12t + 30] 7→ 12t − 17 =⇒ diff. {31, 39, 47}

[12t + 24] 7→ 12t − 9 =⇒ diff. {17, 25, 33}

〈12t + 10, 12t + 18, 24t + 8〉 7→ 12t − 11 =⇒ diff. {21, 29, 12t + 19}

〈12t + 12, 24t + 2, 24t + 10〉 7→ 12t − 25 =⇒ diff. {37, 12t + 27, 12t + 35}

. . . . . . . . . . . . . . . . .

[[6x]] 7→ 24t + 11 − 6x : 0 ≤ x ≤ t − 4 =⇒

diff. [12t + 51, 24t + 11]4 , labels [18t + 35, 24t + 11]6

[[6t − 18]] 7→ 18t + 29 =⇒ diff. {12t + 39, 12t + 43, 12t + 47}

[[6t − 12]] 7→ 18t − 5 =⇒ diff. {12t − 1, 12t + 3, 12t + 7}

[[6t + 2]] 7→ 18t + 3 =⇒ diff. {12t − 7, 12t − 3, 12t + 1}

IF t ≥ 7 : [[6t + 8 + 6x]] 7→ 18t − 1 − 6x : 0 ≤ x ≤ t − 6 =⇒

diff. [55, 12t − 9]4 , labels [12t + 35, 18t − 1]6

[[12t − 22]] 7→ 12t + 27 =⇒ diff. {41, 45, 49}
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[[12t − 16]] 7→ 12t − 1 =⇒ diff. {7, 11, 15}

[[12t − 10]] 7→ 12t − 7 =⇒ diff. {1, 3, 5}

[[12t − 4]] 7→ 12t + 23 =⇒ diff. {19, 23, 27}

〈2, 12t + 2, 12t + 6〉 7→ 12t + 15 =⇒ diff. {9, 13, 12t + 13}

Also in this case, the routine checks are left to the reader.

3 Some final remarks

As anticipated in the Introduction, the three cases not covered by Theorem 1.4 were
managed by Del Fra with the aid of a computer. For each case, the “exterior cycle”
was labelled once for all (in a fashion that will remind the reader of the graceful
labelling of a cycle), then a suitable labelling for the “interior” was successfully
found by an algorithm. The relevant results can be therefore recorded as follows.

Corollary 3.1. There exist graceful labellings for P12,3 , P20,3 , and P28,3 .

Proof. For each n ∈ {12, 20, 28} we simply exhibit the two ordered sequences of labels
assigned to a1, a2, ..., an and to b1, b2, ..., bn respectively, leaving the easy—though a
little tedious —routine calculations to the reader.

( 36, 0 , 35, 1 , 34, 2 , 33, 3 , 32, 4, 17, 10) ,

(11, 18, 12, 23, 15, 26, 13, 20, 5 , 19, 16, 21) .
. . . . . . . . . . . . . . . . . . .

( 0 , 60, 1 , 59, 2 , 58, 3 , 57, 4 , 56, 5 , 54, 6 , 53, 7 , 52, 8 , 51, 9 , 50) ,

(21, 23, 37, 19, 32, 24, 25, 28, 31, 17, 38, 30, 29, 22, 33, 14, 36, 16, 34, 18) .
. . . . . . . . . . . . . . . . . . .

( 0 , 84, 1 , 83, 2 , 82, 3 , 81, 4 , 80, 5 , 79, 6 , 78, 7 , 76, 8 , 75, 9 , 74, 10, 73, 11, 72, 12, 71, 13, 70) ,

(29, 38, 35, 27, 51, 31, 33, 44, 54, 25, 49, 34, 37, 39, 43, 22, 50, 40, 41, 36, 58, 20, 52, 32, 45, 28, 60, 18) .

The above corollary, together with Theorem 1.4, Theorem 1.3, and the graceful-
ness theorem for the prism P4,1 (see [8]), settle in the affirmative the gracefulness
problem when k = 3 and n is a multiple of 4:

Corollary 3.2. P4s,3 is graceful for every positive integer s.

We end by spending the last corollary to obtain the expected edge decomposi-
tions of complete graphs into generalised Petersen graphs (the standard proof of the
relevant claim has already been outlined in the Introduction).

Corollary 3.3. There exists a cyclic (K24s+1, P4s,3)-design for any positive integer s.
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