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Abstract

In this paper we formalize three constructions for skew-Hadamard ma-
trices from a Computational Algebra point of view. These constructions
are the classical 4 Williamson array construction, an 8 Williamson array
construction and a construction based on OD(16; 1, 1, 2, 2, 2, 2, 2, 2, 2), a
9-variable full orthogonal design of order 16. Using our Computational
Algebra formalism in conjunction with supercomputing, we perform ex-
haustive and partial searches for all three constructions. The computa-
tional results of these searches indicate a fundamental difference among
these constructions, namely that the 8 Williamson array construction
and the full orthogonal design construction exhibit exponential growths
in the number of solutions. Subsequently, we analyze the computational
results of these searches to locate inequivalent skew-Hadamard matrices,
using the profile criterion. We show how to use the doubling construc-
tion to construct inequivalent skew-Hadamard matrices of order 2n from
skew-Hadamard matrices of order n. Combining our computational re-
sults and the doubling construction we establish constructively 30 new
lower bounds for the numbers of inequivalent skew-Hadamard matrices of
orders 60, 68, 72, 76, 80, 84, 88, 92, 100, 104, 108, 112, 116, 120, 136, 144,
152, 160, 168, 176, 184, 200, 208, 216, 224, 232, 240, 288, 352, 416. All
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the inequivalent skew-Hadamard matrices constructed in this paper are
available on the web page http://www.cargo.wlu.ca/skew-Hadamard .

1 Introduction

A (1,−1) matrix H of order n is called Hadamard matrix if HHT = HTH = nIn,
where HT is the transpose of H and In is the identity matrix of order n. A (1,−1)
matrix A of order n is said to be of skew type if A − In is skew-symmetric. A
Hadamard matrix is normalized if all entries in its first row and column are equal
to 1. A skew-Hadamard matrix H of order n can always be put in the skew-normal
form

H =

(

1 eT

−e C + I

)

,

where eT is the 1 × (n − 1) vector of ones, i.e. eT = (1, . . . , 1), and C is a skew-
symmetric (0, 1,−1) matrix. A necessary and sufficient condition for a Hadamard
matrix H of order n to be a skew-Hadamard matrix, is that H + HT = 2In.

Two Hadamard matrices are said to be equivalent if one can be transformed into
the other by a series of row or column permutations and negations. It is well known
that if n is the order of a Hadamard matrix then n is necessarily 1, 2 or a multiple
of 4. However, it still remains open if a Hadamard matrix of order n exists for every
n ≡ 0 (mod 4). Since a Hadamard matrix of order 428 is found recently (see [21]),
the smallest order for which a Hadamard matrix is not yet known is n = 668.

Skew-Hadamard matrices are of great interest (see [33]) because of their ap-
plications in constructing orthogonal designs, D-optimal weighing designs for n ≡
3 (mod 4) (see for example [28]), and edge designs (see for example [11, 18, 19]).

The comprehensive survey article [27], discusses the existence and the equivalence
of skew-Hadamard matrices, presents some known construction methods of skew-
Hadamard matrices and the known results and also some new inequivalent skew-
Hadamard matrices of order 52.

1.1 The 4 Williamson array skew-Hadamard construction

Theorem 1 ([39]) Let A, B, C and D be square matrices of order n. Further, let

A be skew-type and circulant and B, C, D be back-circulant matrices whose first rows

satisfy the following equations:

a1,j = −a1,n+2−j

b1,j = b1,n+2−j

c1,j = c1,n+2−j

d1,j = d1,n+2−j

2 ≤ j ≤ n

a11 = b11 = c11 = d11 = +1,







(1)

where A = (aij), B = (bij), C = (cij), D = (dij) and every element is +1 or −1. If

AAT + BBT + CCT + DDT = 4nIn, (2)
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then

H =








A B C D

−B A D −C

−C −D A B

−D C −B A








(3)

is a skew-Hadamard matrix of order 4n. 2

1.1.1 Diophantine constraints

Hadamard matrices of the Williamson type, from the 4 Williamson array are subject
to some Diophantine constraints that can be derived by multiplying (2) from the
right with the column vector e = (1, 1, . . . , 1)t and from the left with the row vector
et, see [16]. Thus we obtain the representation of 4n as a sum of four squares

4n = a2 + b2 + c2 + d2, (4)

where a (resp. b, c, d) is the sum of the elements of each row (and column) of the
matrix A (resp. B, C, D). Since A is skew-type, we have a = a11 = 1. Therefore
we are looking for representations of 4n as a sum of four odd squares, where at least
one of the squares is equal to 1.

1.1.2 Construction with Polynomials

In the rest of this paper, we take n to be an odd positive integer and we set m = n−1

2
.

Following Williamson’s analysis (see [39]) let T and R be the two n × n matrices

T =












0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . .
. . . . . .

0 0 0 . . . 1
1 0 0 . . . 0












R =











0 . . . 0 0 1
0 . . . 0 1 0
. . . . . . . . . . . . . . .

0 . . . 0 0 0
1 . . . 0 0 0











.

The matrix T has the property T n = In. Then the matrices A, B, C, D can be
defined by the following polynomials:

A = In + a1T + · · · + an−1T
n−1

B = In + (b1T + · · · + bn−1T
n−1)R

C = In + (c1T + · · · + cn−1T
n−1)R

D = In + (d1T + · · · + dn−1T
n−1)R

(5)

where the coefficients ai satisfy the skew-symmetry conditions

ai = −an−i, i = 1, . . . , m

and the coefficients bi, ci, di satisfy the symmetry conditions

bi = bn−i, ci = cn−i, di = dn−i, i = 1, . . . , m.
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In this notation, the equation (4) must be satisfied with

a = 1, b =| 1+2(b1 + . . .+ bm) |, c =| 1+2(c1 + . . .+ cm) |, d =| 1+2(d1 + . . .+dm) | .

For illustration, using the 4 Williamson array for n = 15, (m = 7) equation (4)
becomes

4 · 15 = 60 = a2 + b2 + c2 + d2 (6)

which has the solutions (a = 1, b = 1, c = 3, d = 7) and (a = 1, b = 3, c = 5, d = 5),
with b =| 1 + 2(b1 + . . . + b7) |, c =| 1 + 2(c1 + . . . + c7) |, d =| 1 + 2(d1 + . . . + d7) |.

1.2 An 8 Williamson array skew-Hadamard construction

Consider the 8 × 8 Williamson array

W =

























A −B −C −D −E −F −G −H

B A −D C −F E H −G

C D A −B −G −H E F

D −C B A −H G −F E

E F G H A −B −C −D

F −E H −G B A D −C

G −H −E F C −D A B

H G −F −E D C −B A

























which specifies the left matrix representation of an octonion over the set of real
numbers and has the property

WW T = (A2 + B2 + C2 + D2 + E2 + F 2 + G2 + H2) × I8.

when A, B, C, D, E, F , G, H as viewed as numbers. See [24] and references
therein, for computational results using this 8 Williamson array and for details on
the derivation of the array.
By analogy with the 4 Williamson array construction defined in the previous para-
graph, the matrices A, B, C, D, E, F , G, H can be defined by the following poly-
nomials:

A = In + a1T + · · · + an−1T
n−1, B = In + (b1T + · · · + bn−1T

n−1)R
C = In + (c1T + · · · + cn−1T

n−1)R, D = In + (d1T + · · · + dn−1T
n−1)R

E = In + (e1T + · · · + en−1T
n−1)R, F = In + (f1T + · · · + fn−1T

n−1)R

G = In + (g1T + · · · + gn−1T
n−1)R, H = In + (h1T + · · · + hn−1T

n−1)R
(7)

where the coefficients ai satisfy the skew-symmetry conditions

ai = −an−i, i = 1, . . . , m

and the coefficients bi, ci, di, ei, fi, gi, hi satisfy the symmetry conditions

bi = bn−i, ci = cn−i, di = dn−i, ei = en−i, fi = fn−i, gi = gn−i, hi = hn−i, i = 1, . . . ,m.
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By analogy with the 4 Williamson array construction defined in the previous para-
graph, Hadamard matrices of the Williamson type from the 8 Williamson array are
subject to the Diophantine constraints

8n = a2 + b2 + c2 + d2 + e2 + f 2 + g2 + h2, (8)

where a (resp. b, c, d, e, f , g, h) is the sum of the elements of each row (and column)
of the matrix A (resp. B, C, D, E, F , G, H). Since A is skew-type, we have
a = a11 = 1. Therefore we are looking for representations of 8n as a sum of eight
odd squares, where at least one of the squares is equal to 1.

1.3 An OD16 array skew-Hadamard construction

Consider the 9-variable full orthogonal design of order 16 OD(16; 1, 1, 2, 2, 2, 2, 2, 2, 2)

OD16 =
































A B C D E F G H I B C D E F G H

−B A −D C −F E H −G −B I D −C F −E −H G

−C D A −B −G −H E F −C −D I B G H −E −F

−D −C B A −H G −F E −D C −B I H −G F −E

−E F G H A −B −C −D −E −F −G −H I B C D

−F −E H −G B A D −C −F E −H G −B I −D C

−G −H −E F C −D A B −G H E −F −C D I −B

−H G −F −E D C −B A −H −G F E −D −C B I

−I B C D E F G H A −B −C −D −E −F −G −H

−B −I D −C F −E −H G B A D −C F −E −H G

−C −D −I B G H −E −F C −D A B G H −E −F

−D C −B −I H −G F −E D C −B A H −G F −E

−E −F −G −H −I B C D E −F −G −H A B C D

−F E −H G −B −I −D C F E −H G −B A −D C

−G H E −F −C D −I −B G H E −F −C D A −B

−H −G F E −D −C B −I H −G F E −D −C B A
































(9)

which has the property that

OD16ODT
16 = (A2 + 2B2 + 2C2 + 2D2 + 2E2 + 2F 2 + 2G2 + 2H2 + I2) × I16

when A, B, C, D, E, F , G, H, I as seen as numbers.
By analogy with the 8 Williamson array construction defined in the previous para-
graph, the matrices A, B, C, D, E, F , G, H, I can be defined by the polynomials
(7) and the additional polynomial

I = In + (i1T + · · · + in−1T
n−1)R (10)

where the coefficients aj satisfy the skew-symmetry conditions

aj = −an−j, j = 1, . . . , m,

and the coefficients bj, cj, dj, ej, fj , gj, hj, ij satisfy the same symmetry conditions as
before and also ij = in−j, j = 1, . . . , m. The corresponding Diophantine constraints
are

16n = a2 + 2b2 + 2c2 + 2d2 + 2e2 + 2f 2 + 2g2 + 2h2 + i2. (11)

See [25] and references therein, for computational results using the OD16 array and
for details on the derivation of the array.
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1.4 The Doubling construction

This construction method was first given in [30] where it was used for the construction
of a skew-Hadamard matrix of order 184 using the skew-Hadamard matrix of order
92 which was also constructed in the same paper.

Theorem 2 Suppose that Hn = S+In is a skew-Hadamard matrix of order n. Then

H2n =

(

S + In S + In

S − In −S + In

)

is a skew-Hadamard matrix of order 2n.

1.5 Existence results for skew-Hadamard matrices

The problem of existence of skew-Hadamard matrices has been studied extensively,
see [3, 4, 5, 7, 8, 9, 13, 15, 16, 17, 20, 26, 32, 34, 36, 37, 38, 40, 41, 42]. However, there
are a lot of orders for which it is still unknown whether skew-Hadamard matrices
exist. Recently, a skew-Hadamard matrix of order 236 has been constructed in [12],
and of orders 188 and 388 in [10]. The smallest order for which a skew-Hadamard
matrix is not known, is the order 276 = 4 · 69. The current status on known results
and open problems on the existence of skew-Hadamard matrices of order 2tm, m

odd, m < 500, is described in [27].
J. Seberry Wallis [31] conjectured that skew-Hadamard matrices exist for all

orders divisible by 4.

1.6 Inequivalent skew-Hadamard matrices

The problem of establishing lower bounds for the numbers of inequivalent skew-
Hadamard matrices of a given order has also received a lot of attention in the litera-
ture. Let Nn denote the number of inequivalent skew-Hadamard matrices for a given
order n. We summarize the known results for Nn in the table below, taken from [27].

n 2 4 8 12 16 20 24 28 32 36 40 44 48 52

Nn 1 1 1 1 2 1 16 54 ≥ 6 ≥ 18 ≥ 22 ≥ 59 ≥ 1 ≥ 561
(12)

Inequivalent skew-Hadamard matrices for orders 2 to 52.

In Table (12), we denote by n the order of the skew-Hadamard matrix and by Nn

the number of known inequivalent skew-Hadamard matrices of order n.
For n = 4, 8, 12, 20, 24, 28, 32, 44, 48 the conditions of Paley’s theorem ([29])

are satisfied and thus we can construct a skew-Hadamard matrix of order n. N. Ito
has determined that for general skew-Hadamard matrices, there is a unique matrix
of each order less than 16, two of order 16, and 16 of order 24. H. Kimura has found
49 of order 28 and 6 of order 32, see [35, p.492]. Later Baartmans, Lin and Wallis
[1] improved the lower bound found by Kimura for order 28, showing that there are
exactly 54 inequivalent skew-Hadamard matrices of order 28. 22 skew-Hadamard
matrices of order 40 were constructed in a resent paper (see [14]). Results for orders
36, 44 have been recently given in [19, 18], respectively. A skew-Hadamard matrix of
order 52 was first found in [2]. New results for n = 52 are presented in [27].
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2 Computational Algebra approach

From the point of view of Computational Algebra we see that we need 4(n−1

2
) = 2n−2

coefficients to describe the skew-Hadamard 4 Williamson array construction using
the polynomials (5). Similarly, we need 8(n−1

2
) = 4n − 4 coefficients to describe the

skew-Hadamard 8 Williamson array construction using the polynomials (7). Finally,
we need 9(n−1

2
) coefficients to describe the orthogonal design construction using the

polynomials (10).

For illustration, using the 4 Williamson array for n = 15 we obtain the following
7 equations in the 28 variables a1, . . . , a7, b1, . . . , b7, c1, . . . , c7, d1, . . . , d7:

a1a2+a2a3+a3a4+a4a5+a5a6+a6a7+b1b2+b2b3+b3b4+b4b5+b5b6+b6b7+

c1c2+c2c3+c3c4+c4c5+c5c6+c6c7+d1d2+d2d3+d3d4+d4d5+d5d6+d6d7+

b1+c1+d1+1 = 0

a1a3+a2a4+a3a5+a4a6+a5a7-a6a7+b1b3+b2b4+b3b5+b4b6+b5b7+b6b7+

c1c3+c2c4+c3c5+c4c6+c5c7+c6c7+d1d3+d2d4+d3d5+d4d6+d5d7+d6d7+

b2+c2+d2+1 = 0

-a1a2+a1a4+a2a5+a3a6+a4a7-a5a7+b1b2+b1b4+b2b5+b3b6+b4b7+b5b7+

c1c2+c1c4+c2c5+c3c6+c4c7+c5c7+d1d2+d1d4+d2d5+d3d6+d4d7+d5d7+

b3+c3+d3+1 = 0

-a1a3+a1a5+a2a6+a3a7-a4a7-a5a6+b1b3+b1b5+b2b6+b3b7+b4b7+b5b6+

c1c3+c1c5+c2c6+c3c7+c4c7+c5c6+d1d3+d1d5+d2d6+d3d7+d4d7+d5d6+

b4+c4+d4+1 = 0

-a1a4+a1a6-a2a3+a2a7-a3a7-a4a6+b1b4+b1b6+b2b3+b2b7+b3b7+b4b6+

c1c4+c1c6+c2c3+c2c7+c3c7+c4c6+d1d4+d1d6+d2d3+d2d7+d3d7+d4d6+

b5+c5+d5+1 = 0

-a1a5+a1a7-a2a4-a2a7-a3a6-a4a5+b1b5+b1b7+b2b4+b2b7+b3b6+b4b5+

c1c5+c1c7+c2c4+c2c7+c3c6+c4c5+d1d5+d1d7+d2d4+d2d7+d3d6+d4d5+

b6+c6+d6+1 = 0

-a1a6-a1a7-a2a5-a2a6-a3a4-a3a5+b1b6+b1b7+b2b5+b2b6+b3b4+b3b5+

c1c6+c1c7+c2c5+c2c6+c3c4+c3c5+d1d6+d1d7+d2d5+d2d6+d3d4+d3d5+

b7+c7+d7+1 = 0

where the 28 variables satisfy the additional 28 equations

a2

1 = 1, . . . , d2

7 = 1.

We remark that each equation is of total degree 2 but also contains three monomials
of degree 1, namely the variables bi, ci, di, i = 1, . . . , 7 linearly. Here is a solution of
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the equations for n = 15: (− stands for −1, + stands for +1)

−−−−− + −
︸ ︷︷ ︸

a1 a2 a3 a4 a5 a6 a7

− + −− + + −
︸ ︷︷ ︸

b1 b2 b3 b4 b5 b6 b7

+ − + + + + −
︸ ︷︷ ︸

c1 c2 c3 c4 c5 c6 c7

+ + −− + − +
︸ ︷︷ ︸

d1 d2 d3 d4 d5 d6 d7

.

The above solution belongs to the first class of solutions of the associated Diophantine
constraint (6) because it satisfies the identities

b =| 1 + 2(b1 + . . . + b7) |= 1, c =| 1 + 2(c1 + . . . + c7) |= 7, d =| 1 + 2(d1 + . . . + d7) |= 3.

We run several C programs automatically generated with Maple, to perform exhaus-
tive searches for all odd values of n up to n = 25 and partial searches for n = 27, 29.
The searches for all odd values of n until n = 23 were performed with serial C pro-
grams. The exhaustive search for n = 25 was performed using a serial C program
that was broken into 16 C programs using the bash shell Linux utility. The individ-
ual C programs were run simultaneously on a SHARCnet high-performance cluster
at the University of Western Ontario, London ON, Canada. The partial searches for
n = 27, 29 were performed on SHARCnet high-performance clusters at the Univer-
sity of Western Ontario, London ON, Canada, McMaster University, Hamilton ON,
Canada and on a WestGrid high-performance cluster at the University of Calgary,
Calgary AB, Canada.

The results of our searches are summarized below:

n 3 5 7 9 11 13 15 17 19 21 23 25 27 29

# sol’s 6 12 66 36 180 432 528 192 768 720 792 1080 ≥ 810 ≥ 222
(13)

Exhaustive and partial searches for the 4 Williamson array

n 3 5 7 9 11 13 15

# solutions 6 2, 100 56, 070 1, 179, 360 ≥ 5, 592, 430 ≥ 841, 214 ≥ 91, 648
(14)

Exhaustive and partial searches for the 8 Williamson array

n 3 5 7 9 11 13

# solutions 42 2, 100 48, 510 982, 800 23, 362, 500 ≥ 3, 722, 034
(15)

Exhaustive and partial searches for the OD16 orthogonal design

3 New inequivalent skew-Hadamard matrices from the 4 and
8 Williamson array and the OD16 array

In this section we describe how many inequivalent skew-Hadamard matrices of the
twenty-two orders 40, 44, 48, 52, 56, 60, 68, 72, 76, 80, 84, 88, 92, 100, 104, 108,
112, 116, 120, 144, 176, 208 we constructed using the results of the exhaustive and
partial searches from the 4 and the 8 Williamson arrays and the OD16 array (see
tables (13), (14) and (15)).
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k 11 13 15 17 19 21 23 25 27 29
n 44 52 60 68 76 84 92 100 108 116

Nn ≥ 5 ≥ 11 ≥ 22 ≥ 4 ≥ 16 ≥ 20 ≥ 12 ≥ 18 ≥ 26 ≥ 10

Table 1: Inequivalent skew-Hadamard matrices from the 4 Williamson array

k 5 7 9 11 13 15
n 40 56 72 88 104 120

Nn ≥ 6 ≥ 75 ≥ 990 ≥ 3673 ≥ 2661 ≥ 5738

Table 2: Inequivalent skew-Hadamard matrices from the 8 Williamson array

Let Nk denote the number of inequivalent skew-Hadamard matrices of order k. We
summarize our results for Nk, in the following three tables.

All the inequivalent skew-Hadamard matrices described in this paragraph, can
be downloaded from the web page http://www.cargo.wlu.ca/skew-Hadamard.

We used the following Magma function to check whether the matrices are skew-
Hadamard (and Hadamard).

IsSkewHadamard := function(H) if IsHadamard(H) eq true

then

n := NumberOfRows(H);

In2 := DiagonalMatrix([2 : i in [1..n]]);

if H+Transpose(H) eq In2

then return(true);

else return("this is not a skew-Hadamard matrix");

end if;

else return("this is not a Hadamard matrix");

end if; end function;

We used the profile criterion (implemented in Magma’s HadamardInvariant com-
mand) to prove that the matrices are inequivalent.

4 New inequivalent skew-Hadamard matrices from the dou-
bling construction

In this section we describe how many inequivalent skew-Hadamard matrices of the
twenty-two orders 80, 88, 96, 104, 112, 120, 136, 144, 152, 160, 168, 176, 184, 200,
208, 216, 224, 232, 240, 288, 352, 416 we constructed, by using the doubling method

k 3 5 7 9 11 13
n 48 80 112 144 176 208

Nn ≥ 1 ≥ 6 ≥ 62 ≥ 366 ≥ 1586 ≥ 1143

Table 3: Inequivalent skew-Hadamard matrices from the OD16 array
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on the matrices constructed in the previous section. The doubling construction is
particularly easy to implement, given an initial set of skew-Hadamard matrices.

Remark: For some of the orders obtained by doubling, there are already a number
of inequivalent skew-Hadamard matrices from the 4 and 8 Williamson arrays. In the
present paper there are six such orders, namely, 88, 104, 120, 144, 176 and 208.

Remark: When the doubling construction is used on a set of k inequivalent skew-
Hadamard matrices of a fixed order n, we can obtain at most k inequivalent skew-
Hadamard matrices of order 2n. In the case of the 4 Williamson array, the number
of inequivalent skew-Hadamard matrices of order 2n is usually less than k (in most
cases it’s about k

2
as has been verified experimentally). However, in the case of the 8

Williamson array, the number of inequivalent skew-Hadamard matrices of order 2n
is always exactly equal to k (as has been verified experimentally). This experimental
observation may be linked to the exponential behavior of the solution sets for the 8
Williamson array.

We use the notations and tools of the previous paragraph. Below is a summary
of the results on Nn for the twenty-two orders by doubling. The inequalities for the
six orders 88, 104, 120, 144, 176 and 208 below, are to be understood as the numbers
of inequivalent matrices for these orders, coming from doubling. These inequalities
must also be interpreted taking into account the previous (much larger) bounds for
these three orders.

• Results from doubling 4 Williamson array matrices

N88 ≥ 3, N104 ≥ 6, N120 ≥ 11, N136 ≥ 2, N152 ≥ 8,

N168 ≥ 10, N184 ≥ 6, N200 ≥ 9, N216 ≥ 13, N232 ≥ 5.

• Results from doubling 8 Williamson array matrices

N80 ≥ 6, N112 ≥ 75, N144 ≥ 990,

N176 ≥ 3673, N208 ≥ 2661, N240 ≥ 5738.

• Results from doubling OD16 array matrices

N96 ≥ 1, N160 ≥ 6, N224 ≥ 62, N288 ≥ 366, N352 ≥ 1586, N416 ≥ 1143.

5 Structure of the ideal for skew-Hadamard matrices

The study of the entire solution sets (varieties) of the polynomial systems of equa-
tions (ideals) arising in the construction of skew-Hadamard matrices for the 4 and 8
Williamson arrays reveals some similarities and differences with the ideals associated
to other constructions for Hadamard matrices, see for example [22], [23], [24].
Specifically, if we look at the sequence of the numbers of solutions for all values of
the parameter, we observe the two properties:
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• non-lacunarity, i.e. there are solutions for all values of the parameters we
examined so far. This property holds in the case of Hadamard matrices with
two circulant cores see [23], but doesn’t hold in the case of Hadamard matrices,
from the 4 Williamson array, see [6].

• non-monotonicity, i.e. the sequence is neither (strictly) increasing nor (strictly)
decreasing. A monotonicity property (strictly increasing) holds for Hadamard
matrices with two circulant cores see [23]. Hadamard matrices, from the 4
Williamson array, exhibit non-monotonicity, see [24].

In addition, if we look at the two sequences of the numbers of solutions for skew-
Hadamard matrices from the 4 Williamson array and Hadamard matrices from the
4 Williamson array, we see that they exhibit a similar rate of growth.
An important difference of the solution sets associated with the 4 and the 8 William-
son arrays and the OD16 array, is that in the cases of the 8 Williamson and the
OD16 array skew-Hadamard construction, we observe an exponential growth in the
number of solutions, as a function of the order of the block matrices.
An important difference of the solution sets associated with skew-Hadamard matri-
ces, as opposed to the solution sets associated to non-skew Hadamard matrices, is
that there is a phenomenon of break of symmetry. To illustrate this phenomenon,
we study the case n = 5 for skew-Hadamard matrices from the 4 Williamson array.

The equations for n = 5 are:

-a1*a2+b1*b2+c1*c2+d1*d2+b2+c2+d2+1 = 0

a1*a2+b1*b2+c1*c2+d1*d2+b1+c1+d1+1 = 0

There are exactly 12 solutions (with ±1 values) of these equations:

1 -1 -1 -1 -1 -1 -1 -1 1 2 -1 -1 -1 -1 -1 1 -1 -1 3 -1 -1 -1 1 -1

-1 -1 -1 4 -1 1 -1 -1 -1 -1 1 -1 5 -1 1 -1 -1 1 -1 -1 -1 6 -1 1 1

-1 -1 -1 -1 -1 7 1 -1 -1 -1 -1 -1 1 -1 8 1 -1 -1 -1 1 -1 -1 -1 9 1

-1 1 -1 -1 -1 -1 -1 10 1 1 -1 -1 -1 -1 -1 1 11 1 1 -1 -1 -1 1 -1

-1 12 1 1 -1 1 -1 -1 -1 -1

where each solution is given in the format solution # a1 a2 b1 b2 c1 c2 d1 d2.
Using the bash shell script

awk ’{print $2 $3 $4 $5 $6 $7 $8 $9}’ $1 > $1.awked sed -f

sedChanges $1.awked > $1.seded rm $1.awked

where sedChanges is the SED script

s/-1/0/g s/$/,/g $s/,$/]:/ 1s/^/l:=[/

we can compute the ranks of these 12 solutions in the boolean cube of 28 = 256
elements, via their 12 binary representations

00000001 00000100 00010000 01000010 01001000 01100000 10000010

10001000 10100000 11000001 11000100 11010000
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Translating these binary numbers in the decimal system, we obtain the ranks of the
12 solutions as follows:

[1, 4, 16, 66, 72, 96, 130, 136, 160, 193, 196, 208].

Now we see that the solutions are not situated symmetrically in the interval [1, 256],
which is the interval representation of the boolean cube of 28 = 256 elements.
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7 Conclusion

In this paper we use Computational Algebra methods to establish constructively
30 new lower bounds for the numbers of inequivalent skew-Hadamard matrices of
orders 60, 68, 72, 76, 80, 84, 88, 92, 100, 104, 108, 112, 116, 120, 136, 144, 152,
160, 168, 176, 184, 200, 208, 216, 224, 232, 240, 288, 352, 416. All the inequivalent
skew-Hadamard matrices constructed in this paper are available in the web page
http://www.cargo.wlu.ca/skew-Hadamard .
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