Skolem-labeling of generalized three-vane windmills

C. A. Baker*
Department of Mathematics and Computer Science
Mount Allison University
Sackville, NB
Canada
cbaker@mta.ca
J. D. A. Manzer ${ }^{\dagger}$
Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John's, NL
Canada
manzer@math.mun.ca

Abstract

A graph on $2 n$ vertices can be Skolem-labeled if the vertices can be given labels from $\{1, \ldots, n\}$ such that each label i is assigned to exactly two vertices and these vertices are at distance i. Mendelsohn and Shalaby have characterized the Skolem-labeled paths, cycles and windmills (of fixed vane length). In this paper, we obtain necessary conditions for the Skolem-labeling of generalized k-windmills in which the vanes may be of different length. We show that these conditions are sufficient in the case where $k=3$ and conjecture that any generalized k-windmill, $k>3$, can be Skolem-labeled if and only if it satisfies these necessary conditions.

1 Introduction

Skolem-type sequences are integer sequences which contain two occurrences of each distinct entry, n, located n positions apart. These sequences have well-known connections with Steiner triple systems and with solutions to Heffter's difference problem.

[^0]In 1991, Mendelsohn and Shalaby [5] generalized this idea to graphs and noted that the Skolem-labeling of a graph could be used to design schemes for testing a communications network for node, link and distance reliability. In essence, a Skolemlabeled graph is a higher dimensional analogue of a Skolem sequence. Each label, n, is an integer which is used to label two vertices located at distance n. They also provided a characterization of the paths and cycles that can be Skolem-labeled. In [2], Baker, Bonato and Kergin approached the problem from the opposite direction and considered a two-dimensional analogue of a Skolem sequence. In doing so, they actually provided necessary and sufficient conditions for the existence of a Skolemlabeling of a $2 \times n$ ladder graph.

In [6], Mendelsohn and Shalaby extended this work to k-windmills; i.e., trees with k disjoint paths of equal length emanating from a central vertex. They showed that k must equal 3 and that the 3 -windmills that can be Skolem-labeled are precisely those that meet a particular parity condition. One obvious generalization is to the more realistic situation of generalized k-windmills, where the vanes need not be of the same length. Once this length restriction is removed, there are generalized k windmills which can be Skolem-labeled for each value k.

In this paper, we explore the parity and nondegeneracy conditions which are necessary for the Skolem-labeling of generalized k-windmills. We then prove that in the case of generalized 3-windmills, these conditions are also sufficient.

2 Skolem-type Sequences

2.1 Definitions and Existence Results

Skolem and other related sequences are tools used in the Skolem-labeling of graphs, so we provide a list of definitions and existence results.

A Skolem-type sequence is a sequence $\left(s_{i}\right)_{i \in I}$ of integers from a set J with the Skolem property:
for every $j \in J$, there exists a unique $i \in I$ such that $s_{i}=s_{i+j}=j$.

For a Skolem sequence of order n, denoted $\mathcal{S}_{n}, J=\{1, \ldots, n\}$ and $I=\{1, \ldots, 2 n\}$. Such a sequence exists if and only if $n \equiv 0,1(\bmod 4)$ [10].
For a k-extended Skolem sequence of order n, denoted k-ext \mathcal{S}_{n}, which has an empty space (called a hook or zero) in position $k, J=\{1, \ldots, n\}$ and $I=\{1, \ldots, 2 n+1\} \backslash$ $\{k\}$. Such a sequence exists [1], [7] if and only if either:

$$
k \text { is odd and } n \equiv 0,1(\bmod 4), \text { or } k \text { is even and } n \equiv 2,3(\bmod 4) .
$$

A hooked Skolem sequence, $h \mathcal{S}_{n}$, is just a $2 n$-extended Skolem sequence.

The sequence is an m-near Skolem [hooked Skolem] sequence of order n, denoted m near $\mathcal{S}_{n}\left[m\right.$-near $\left.h \mathcal{S}_{n}\right]$ if $J=\{1, \ldots, n\} \backslash\{m\}$. An m-near Skolem sequence of order n exists [8] if and only if either:
m is odd and $n \equiv 0,1(\bmod 4)$, or m is even and $n \equiv 2,3(\bmod 4)$.
For an m-near hooked Skolem sequence, the parity of m above is reversed.
If $J=\{d, \ldots, m+d-1\}$, the sequence is a [hooked] Langford sequence of length m and defect $d, \mathcal{L}_{d}^{m}\left[h \mathcal{L}_{d}^{m}\right]$. A Langford sequence of length m and defect d exists [9] if and only if

1) $m \geq 2 d-1$ (the size constraint) and
2) $m \equiv 0,1(\bmod 4)$ for d odd or $m \equiv 0,3(\bmod 4)$ for d even.

A hooked Langford sequence of length m and defect d exists [9] if and only if

1) $m(m+1-2 d)+2 \geq 0$ and
2) $m \equiv 2,3(\bmod 4)$ for d odd or $m \equiv 1,2(\bmod 4)$ for d even.

A k-extended Langford sequence, k-ext \mathcal{L}_{d}^{m}, is defined in the obvious way. The following conditions are necessary for the existence of a k-ext \mathcal{L}_{d}^{m} [4]:

1) $m \geq 2 d-3$ and $m(2 d-1-m) / 2+1 \leq k \leq m(m-2 d+5) / 2+1$
2) $(m, k) \equiv(0,1),(1, d),(2,0),(3, d+1)(\bmod (4,2))$.

These conditions are sufficient for small defects, $d=1,2,3,4$, or $d \leq(m+4) / 8$ and for large defects $d=(m+1) / 2, m / 2,(m-1) / 2[3]$, [4].

2.2 A useful symmetric Langford sequence

Define $\mathcal{A}_{d}^{2 d-1}$ to be the sequence with:
i in positions i and $2 i$, for $i=d, d+1, \ldots, 2 d-1$, and
$2 d+i$ in positions $1+i$ and $2 d+2 i+1$, for $i=0,1, \ldots, d-2$.
For example, \mathcal{A}_{3}^{5} is the sequence 6734536475 .
This sequence has some interesting properties.

1) Each of the entries, $d, \ldots, 3 d-2$ occurs once in the first half of the sequence and once in the second. In fact, a Langford sequence, \mathcal{L}_{d}^{m}, can only have this symmetric property if $m=2 d-1$. To see this, note that an entry j occurs in positions a_{j} in the first half of the sequence and $a_{j}+j$ in the second half, so

$$
m(m+2 d-1) / 2=\sum_{j=d}^{m+d-1} j
$$

$$
\begin{aligned}
& =\sum_{j=d}^{m}\left(a_{j}+j\right)-\sum_{j=d}^{m} a_{j} \\
& =\sum_{i=m+1}^{2 m} i-\sum_{i=1}^{m} i \\
& =m^{2}
\end{aligned}
$$

2) The second occurrence of an entry $p \in\{d, d+1, \ldots, 2 d-1\}$ can be moved to the beginning of the sequence to create a $(2 p+1)$-ext $\mathcal{L}_{d}^{2 d-1}$. The reverse of this sequence is a $(4 d-2 p-1)$-ext $\mathcal{L}_{d}^{2 d-1}$.
3) This sequence can be used to create a new sequence with multiple holes in the middle by adding a fixed $k \in \mathbf{N}$ to each entry and inserting k holes in the middle. This sequence is denoted by $\mathcal{A}_{d}^{2 d-1}+k$.

For example, 67345|36475

$$
\begin{aligned}
& 46734536 \text { - } 75 \text { is a } 9 \text {-ext } \mathcal{L}_{3}^{5}, 57-63543764 \text { is a } 3 \text {-ext } \mathcal{L}_{3}^{5} \\
& \mathcal{A}_{3}^{5}+2 \text { is } 89567--58697 .
\end{aligned}
$$

Property 3) will be extremely useful in some of the labeling techniques that follow.

3 Skolem-labeled windmills

A k-windmill is a tree consisting of k paths of equal positive length, called vanes, which meet at a central vertex called the pivot. For clarity, we will often refer to these windmills as ordinary windmills.

A generalized k-windmill ($g k$-windmill) is a windmill in which the k vanes may be of different positive lengths.

A graph on $2 n$ vertices can be (weakly) Skolem-labeled if each of the vertices can be assigned a label from the set $J=\{1, \ldots, n\}$ such that exactly two vertices at distance j are labeled j, for each $j \in J$. The Skolem-labeling is strong if the removal of any edge destroys the Skolem-labeling, see the figures below.

Figure 1: A Skolem-labeling that is not strong.

Figure 2: A strong Skolem-labeling for the same graph.

3.1 Elementary properties

A $g k$-windmill, which must contain at least $k+1$ vertices, can only be Skolem-labeled if $|V|$ is even. In addition, in order to use the label n, there must be a path of length at least n. (This is the part of the Degeneracy Condition of [6] that applies to the $g k$-windmills.)

For $g 3$ - and $g 4$-windmills, this will always be the case as the path along the longest two vanes is of length at least $\lceil 2(2 n-1) / 4\rceil \geq n$.

An ordinary (i.e., not generalized) k-windmill can only be Skolem-labeled if $(2 n-1) / k$ is an integer and if the length of the longest path $2(2 n-1) / k$ is greater than or equal to n. So only 3 -windmills can be Skolem-labeled.

3.2 Skolem parity

In [6], the authors defined the following Skolem parity condition and showed that it was necessary for the existence of a Skolem-labeling of any tree.

The Skolem parity of a vertex u of a tree $T=(V, E)$ is

$$
\sum_{v \in V} d(u, v)(\bmod 2),
$$

where $d(u, v)$ is the length of the path from u to v.

Lemma 1 [6] If T is a tree on $2 n$ vertices, then the Skolem parity is independent of the choice of vertex u.

Lemma 2 (Skolem parity condition) [6] If T is a Skolem-labeled tree on $2 n$ vertices, then either

1) the Skolem parity of T is even and $n \equiv 0,3(\bmod 4)$ or
2) the Skolem parity of T is odd and $n \equiv 1,2(\bmod 4)$.

In the case of $g k$-windmills, the Skolem parity condition reduces to the following simple condition.

Theorem 3 If G is a Skolem-labeled $g k$-windmill with $2 n$ vertices and k vanes, m of which are of odd length, then either:

1) $n \equiv 0,1(\bmod 4)$ and $m \equiv 1(\bmod 4)$ or
2) $n \equiv 2,3(\bmod 4)$ and $m \equiv 3(\bmod 4)$.

Proof. Suppose $G=(V, E)$ is a Skolem-labeled $g k$-windmill with vanes of length x_{1}, \ldots, x_{k}. Using the pivot p to calculate the Skolem parity, we obtain

$$
\begin{aligned}
\sum_{v \in V} d(p, v) & =\sum_{i=1}^{k} x_{i}\left(x_{i}+1\right) / 2 \\
& =1 / 2\left[\sum x_{i}^{2}+\sum x_{i}\right] \\
& =1 / 2\left[\sum x_{i}^{2}+(2 n-1)\right] \\
& =1 / 2\left[\sum x_{i}^{2}-1\right]+n
\end{aligned}
$$

Since this is an integer, the number of odd vanes must be odd. Then by Lemma 2,
number of odd vanes $\equiv 1(\bmod 4) \Longleftrightarrow \sum x_{i}^{2}-1 \equiv 0(\bmod 4) \Longleftrightarrow n \equiv 0,1(\bmod 4)$
number of odd vanes $\equiv 3(\bmod 4) \Longleftrightarrow \sum x_{i}^{2}-1 \equiv 2(\bmod 4) \Longleftrightarrow n \equiv 2,3(\bmod 4)$.
Therefore, an ordinary k-windmill, G can only be Skolem-labeled if its $k=3$ equal vanes all have odd length $m=(2 n-1) / 3$. Hence $n \equiv 2,3(\bmod 4)$ and $2 n \equiv 1(\bmod$ $3)$, so $2 n \equiv 4,22(\bmod 24)$ and $m \equiv 1,7(\bmod 8)$ as in $[6]$.

3.3 Nondegeneracy condition

In general, the conditions that we have identified above are not sufficient to guarantee that a $g k$-windmill can be Skolem-labeled. Although having a path of length at least n guarantees that the label n can be placed, it does not guarantee that $n-1$ can also be placed. The graph given below meets the Skolem parity condition since $n=5=m$ and it contains a path of length $n=5$; however, it cannot be Skolem-labeled, so an additional condition is required.

Theorem 4 (Nondegeneracy condition) If G is a Skolem-labeled gk-windmill with $2 n$ vertices and vanes of length x_{1}, \ldots, x_{k}, then

$$
n(n+1) \leq \sum_{i=1}^{k} x_{i}\left(x_{i}+1\right)
$$

Figure 3: A graph in which 4 cannot be placed.

Proof. Let $G=(V, E)$ be a Skolem-labeled $g k$-windmill with $2 n$ vertices, vanes y_{1}, \ldots, y_{k} of length x_{1}, \ldots, x_{k}, respectively, and pivot p. Each vertex $v \neq p$ can be denoted by a pair (i, j) where v is on vane y_{i} and $j=d(v, p)$. Let p be denoted by $(0,0)$.

Since G is Skolem-labeled, each element $m \in\{1, \ldots, n\}$ is associated with 2 vertices $(i, j),\left(i^{\prime}, j^{\prime}\right)$ where $d\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)=m$. Then

$$
m=\left\{\begin{array}{ll}
j+j^{\prime} & \text { if } i \neq i^{\prime} \\
\left|j-j^{\prime}\right| & \text { if } i=i^{\prime} .
\end{array}\right\}
$$

Summing over all the labels, we obtain

$$
n(n+1) / 2=\sum_{m=1}^{n} m=\sum_{i \neq i^{\prime}}\left(j+j^{\prime}\right)+\sum_{i=i^{\prime}}\left|j-j^{\prime}\right| \leq \sum_{m=1}^{n}\left(j+j^{\prime}\right) .
$$

Since this last sum is just the sum of the distances from each of the vertices to the pivot, we could calculate this vane-by-vane, so

$$
n(n+1) / 2 \leq \sum_{m=1}^{n}\left(j+j^{\prime}\right)=\sum_{i=1}^{k} x_{i}\left(x_{i}+1\right) / 2 .
$$

Theorem 5 Any g3- or g4-windmill satisfies the nondegeneracy condition.

Proof. Let G be a $g k$-windmill with $2 n$ vertices and vanes of length x_{1}, \ldots, x_{k}. Since

$$
\sum_{i=1}^{k} x_{i}\left(x_{i}+1\right) / 2=\sum_{i=1}^{k} \sum_{j=1}^{x_{i}} j,
$$

and

$$
\sum_{j=1}^{x_{k}} j+\sum_{j=1}^{x_{t}} j \leq \sum_{j=1}^{x_{k}-1} j+\sum_{j=1}^{x_{t}+1} j, \text { if } x_{k} \leq x_{t}
$$

$\sum_{i=1}^{k} x_{i}\left(x_{i}+1\right) / 2$ attains a minimum when the vertices are as evenly distributed among the vanes as possible.

If $k=3, n$ must be at least 2 and

$$
\sum_{i=1}^{3} x_{i}\left(x_{i}+1\right) \geq 3\left(\frac{2 n-1}{3}\right)\left(\frac{2 n-1}{3}+1\right) \geq n(n+1)
$$

If $k=4, \frac{2 n-1}{4}$ is never an integer. If $n=2 s$, the most even distribution of the vertices would be $s, s, s, s-1$; if $n=2 s+1$, it is $s+1, s, s, s$. Hence, in each of these cases,

$$
\sum_{i=1}^{k} x_{i}\left(x_{i}+1\right) \geq n(n+1)
$$

Remark 1 Once $k>4$, however, the nondegeneracy condition is not automatically satisfied. A $g 5$-windmill with vanes of lengths $2,2,2,2,1$ fails the nondegeneracy condition as does the $g 6$-windmill illustrated above.

Remark 2 Note that $n(n+1)=\sum_{i=1}^{k} x_{i}\left(x_{i}+1\right)$ only when no label appears twice on the same vane. This implies that 1 must be used to label the pivot plus one adjacent vertex and the two 2's must straddle the pivot, so the only $g 3$-windmill of this type is the ordinary 3 -windmill with vanes of length 1 .

In the remainder of the paper, we show that every $g 3$-windmill that satisfies the Skolem parity condition can be Skolem-labeled. We also make the following conjecture.

Conjecture 1 Any gk-windmill that satisfies the Skolem parity and nondegeneracy conditions can be Skolem-labeled.

4 Labeling techniques for $g 3$-windmills

Let $G=W(n: x, y, z)$ be a generalized 3 -windmill, on $2 n$ vertices, with vanes X, containing x vertices, Y containing y and Z containing z vertices, where $x \geq y \geq z$. Then

$$
2 n=x+y+z+1
$$

For ease in identifying the vertices, we place the graph on a grid and use the following coordinate system:
X contains vertices $(1, z+1)$ to $(x, z+1)$,
Y contains vertices $(x+2, z+1)$ to $(x+1+y, z+1)$,
Z contains vertices $(x+1,1)$ to $(x+1, z)$
p, the pivot, is located at $(x+1, z+1)$.

4.1 Pruning

Let G be a generalized windmill. If we can use the largest labels to label the vertices at the extreme ends of two vanes, we can reduce the problem to finding a Skolem labeling for a smaller tree. In essence, we will have pruned the original tree. In this section, we define a pruning algorithm that works for $g 3$-windmills. We note that variations of the pruning algorithm work for other $g k$-windmills.
Let G be a $g 3$-windmill on $2 n$ vertices with $x<n$. Note that $x \geq \frac{2 n-1}{3}$. Define $d=n-x$ and construct $\mathcal{A}_{d}^{2 d-1}$. This sequence has largest entry $3 d-2$. Since the largest label to be used is n, define $k=n-3 d+2$, which is greater than zero as $x \geq \frac{2 n-1}{3}$. The sequence $\mathcal{A}_{d}^{2 d-1}+k$ has length $2(2 d-1)+k=4 d-2+n-3 d+2=$ $2 n-x=y+z+1$ and contains entries $d+k=n-2 d+2, \ldots, n$ which are placed in the $2 d-1$ positions at either end of the sequence. The middle k positions are empty. If we use this sequence to label the path consisting of Y, the pivot and Z, then the last $2 d-1$ positions of Y and Z will be labeled and we are left with a tree on $2 n-2(2 d-1)=3 x-y-z+1$ vertices. Note that the pivot is never labeled in this procedure since $2 d-1=2 n-2 x-1=x+y+z+1-2 x-1=y+z-x=z-(x-y) \leq z$, so we are left with either a $g 3$-windmill or a path.

Example 1 Let $G=W(12: 9,8,6)$. Then $d=3$ and $k=5$. We use the sequence, $\mathcal{A}_{3}^{5}+5$, which is

$$
11128910 \text { - - - - - } 811912 \text { 10, }
$$

to assign labels to the 5 vertices at the ends of the $Y Z$-path. Once we remove these vertices the resulting graph is $W(7: 9,3,1)$.

Theorem 6 Let G be a g3-windmill on $2 n$ vertices, with $x<n$, and G^{\prime} be the tree produced by pruning G. Then G satisfies the Skolem parity condition if and only if G^{\prime} is either a g3-windmill which satisfies the Skolem parity condition or a path which can be Skolem-labeled.

Proof. Let G be a $g 3$-windmill on $2 n$ vertices with $x<n$ and G^{\prime} the tree produced by pruning G. Then G^{\prime} contains $2 n^{\prime}=4 x-2 n+2$ vertices arranged on vanes of length $x^{\prime}=x, y^{\prime}=y-2 d+1$ and $z^{\prime}=z-2 d+1$. Note that y^{\prime} and z^{\prime} have the opposite parity to y and z. This tree will be a $g 3$-windmill unless $z=2 d-1$.

Suppose that G satisfies the Skolem parity condition.
If $n \equiv 2$ or $3(\bmod 4)$, then x, y and z are all odd. After pruning, only x^{\prime} is odd and $n^{\prime}=2 x^{\prime}-n+1 \equiv 1$ or $0(\bmod 4)$, respectively. Then if $z^{\prime}>0, G^{\prime}$ is a $g 3$-windmill which satisfies the Skolem parity condition. If $z^{\prime}=0$, then G^{\prime} can be labeled by a Skolem sequence of order n^{\prime}.
If $n \equiv 0$ or $1(\bmod 4)$ and x is odd, then y and z are even. After pruning, x^{\prime}, y^{\prime} and z^{\prime} are all odd and $n^{\prime}=2 x^{\prime}-n+1 \equiv 3$ or $2(\bmod 4)$, respectively, so G^{\prime} is a $g 3$-windmill which satisfies the Skolem parity condition.

If $n \equiv 0$ or $1(\bmod 4)$ and x is even, then one of y and z is even and the other is odd. After pruning, x^{\prime} will still be even, as will exactly one of y^{\prime} and z^{\prime}, and $n^{\prime}=2 x^{\prime}-n+1 \equiv 1$ or $0(\bmod 4)$, respectively. If $z^{\prime}>0$, then G^{\prime} is a $g 3$-windmill which satisfies the Skolem parity condition. If $z^{\prime}=0$, then G^{\prime} can be labeled by a Skolem sequence of order n^{\prime}.
Now suppose that G^{\prime} is a $g 3$-windmill which satisfies the Skolem parity condition.
If $n^{\prime} \equiv 2$ or $3(\bmod 4)$, then x^{\prime}, y^{\prime} and z^{\prime} are all odd, so x is odd and y and z are even. Then $n=2 x-n^{\prime}+1 \equiv 1$ or $0(\bmod 4)$, respectively. Hence, G satisfies the Skolem parity condition. If $n^{\prime} \equiv 0$ or $1(\bmod 4)$ and x^{\prime} is odd, then y^{\prime} and z^{\prime} are both even and x, y, z are all odd, so $n=2 x-n^{\prime}+1 \equiv 3$ or $2(\bmod 4)$, respectively. Hence, G satisfies the Skolem parity condition.

If $n^{\prime} \equiv 0$ or $1(\bmod 4)$ and x^{\prime} is even, then exactly one of y^{\prime} and z^{\prime} is even and the other is odd, so x is even and exactly one of y and z is even and the other odd. Then $n=2 x-n^{\prime}+1 \equiv 1$ or $0(\bmod 4)$, respectively, and G satisfies the Skolem parity condition.

Finally, suppose that G^{\prime} is a path (so $z=2 d-1$) which can be Skolem-labeled. So $n^{\prime} \equiv 0$ or $1(\bmod 4)$. Since $2 n^{\prime}=x^{\prime}+y^{\prime}+1$, exactly one of x^{\prime} and y^{\prime} must be odd. If x^{\prime} is odd, then $y=y^{\prime}+z$ and z are also both odd and $n=2 x-n^{\prime}+1 \equiv 3$ or 2 $(\bmod 4)$, respectively. If y^{\prime} is odd, then $y=y^{\prime}+z$ is even, x is even, z is odd and $n=2 x-n^{\prime}+1 \equiv 1$ or $0(\bmod 4)$. Hence G satisfies the Skolem parity condition.

Remark 3 Since a $g 3$-windmill can only be pruned if $n>x$, a $g 3$-windmill cannot be pruned more than once. After the pruning, $n^{\prime}=2 x-n+1=x-(n-x-1) \leq x=x^{\prime}$.

4.2 Direct labeling techniques

Let $G=W(n: x, y, z)$ be a $g 3$-windmill which satisfies the Skolem parity condition. Then G has exactly one vane of odd length if $n \equiv 0,1(\bmod 4)$ and three vanes of odd length if $n \equiv 2,3(\bmod 4)$. We provide a number of labeling techniques.

4.2.1 $n \equiv 0,1(\bmod 4), z$ even

In this group, a [near] Skolem sequence is used to label Z, while a [hooked] Langford sequence, [plus the omitted labels from the near Skolem sequence], are used on the $X Y$-path.
a) $n \equiv 0,1(\bmod 4), z \equiv 0,2(\bmod 8)$.

Place a $\mathcal{L}_{(z+2) / 2}^{(x+y+1) / 2}$ on the $X Y$-path and a $\mathcal{S}_{z / 2}$ on Z.
Since $z / 2 \equiv 0,1(\bmod 4)$, this Skolem sequence clearly exists, so we need only verify that the Langford sequence exists. Since $n \equiv 0,1(\bmod 4), G$ has exactly one vane, X
or Y, of odd length. In either case, $x \geq y+1 \geq z+1$, which implies $x+y+1 \geq 2 z+2$, so the size constraint is satisfied. If $z \equiv 0(\bmod 8)$,

$$
(z+2) / 2 \text { is odd and }(x+y+1) / 2=(2 n-z) / 2 \equiv 0 \text { or } 1(\bmod 4) ;
$$

if $z \equiv 2(\bmod 8)$, then

$$
(z+2) / 2 \text { is even and }(x+y+1) / 2 \equiv 3 \text { or } 0(\bmod 4)
$$

b) $n \equiv 0,1(\bmod 4), z \equiv 2,4(\bmod 8),(2 n-8) / 3 \geq z$.

Place a $h \mathcal{L}_{(z+4) / 2}^{(x+y-1) / 2}$ on the $X Y$-path, leaving the vertices $(x-1+y, z+1)$ and $(x+1+y, z+1)$ at the end of Y unlabeled. Label these two vertices 2. Place a 2-near $\mathcal{S}_{(z+2) / 2}$ on Z.

Since $(2 n-8) / 3 \geq z$,

$$
(x+y-1) / 2=(2 n-z-2) / 2 \geq(3 z+8-z-2) / 2=z+3=2[(z+4) / 2]-1 .
$$

If $z \equiv 2(\bmod 8)$, then

$$
(z+4) / 2 \text { is odd and }(x+y-1) / 2=(2 n-z-2) / 2 \equiv 2 \text { or } 3(\bmod 4) ;
$$

if $z \equiv 4(\bmod 8)$, then

$$
(z+4) / 2 \text { is even and }(x+y-1) / 2 \equiv 1 \text { or } 2(\bmod 4)
$$

c) $n \equiv 0,1(\bmod 4), z \equiv 0,6(\bmod 8),(2 n-8) / 3 \geq z$.

Place a $\mathcal{L}_{(z+4) / 2}^{(x+y-1) / 2}$ on the $X Y$-path, leaving the last two vertices of Y unlabeled. Label these vertices 1. Place a 1-near $\mathcal{S}_{(z+2) / 2}$ on Z.

As in construction $\mathbf{b},(x+y-1) / 2 \geq z+3$. If $z \equiv 0(\bmod 8)$,

$$
(z+4) / 2 \text { is even and }(x+y-1) / 2=(2 n-z-2) / 2 \equiv 3 \text { or } 0(\bmod 4) ;
$$

if $z \equiv 6(\bmod 8)$,

$$
(z+4) / 2 \text { is odd and }(x+y-1) / 2 \equiv 0 \text { or } 1(\bmod 4) .
$$

4.2.2 $\quad n \equiv 0,1(\bmod 4), y$ even

This is similar to 4.2.1 above except that the [near] Skolem sequence is placed on Y. Since y is even, either x or z must be odd. Existence of the given sequences is verified as in 4.2.1.
a) $n \equiv 0,1(\bmod 4), y \equiv 0,2(\bmod 8),(2 n-2) / 3 \geq y$.

Place a $\mathcal{L}_{(y+2) / 2}^{(x+z+1) / 2}$ on the $X Z$-path and a $\mathcal{S}_{y / 2}$ on Y.

b) $n \equiv 0,1(\bmod 4), y \equiv 2,4(\bmod 8),(2 n-8) / 3 \geq y$.

Place a $h \mathcal{L}_{(y+4) / 2}^{(x+z-1) / 2}$ on the $X Z$-path leaving the vertices $(x+1,3)$ and $(x+1,1)$ unlabeled. Label them 2. Put a 2-near $\mathcal{S}_{(y+2) / 2}$ on Y.
c) $n \equiv 0,1(\bmod 4), y \equiv 0,6(\bmod 8),(2 n-8) / 3 \geq y$.

Place a $\mathcal{L}_{(y+4) / 2}^{(x+z-1) / 2}$ on the $X Z$-path leaving vertices $(x+1,2)$ and $(x+1,1)$ unlabeled. Label these vertices 1. Put a 1-near $\mathcal{S}_{(y+2) / 2}$ on Y.

4.2.3 Long X-vanes

A [hooked] Langford sequence is used to label the long X-vane plus one or two additional vertices and the remaining vertices are covered by an extended Skolem sequence.
a) $n \equiv 2,3(\bmod 4), y+z \equiv 4,6(\bmod 8), x \geq(4 n-1) / 3$.

Place a $\mathcal{L}_{(y+z+2) / 2}^{(n-((y+z+2) / 2)+1)}$ on X and the pivot and a $(z+1)$-ext $\mathcal{S}_{(z+y) / 2}$ along the $Z Y$-path.

Since $n-(y+z+2) / 2+1=(x+1) / 2$, we have $(x+1) / 2 \geq y+z+1$ whenever $x \geq(4 n-1) / 3$. If $y+z \equiv 4(\bmod 8)$, then

$$
\begin{gathered}
(y+z) / 2 \equiv 2(\bmod 4),(y+z+2) / 2 \text { is odd and } \\
n-(y+z+2) / 2+1 \equiv 0 \text { or } 1(\bmod 4) .
\end{gathered}
$$

If $y+z \equiv 6(\bmod 8)$, then

$$
\begin{gathered}
(y+z) / 2 \equiv 3(\bmod 4),(y+z+2) / 2 \text { is even and } \\
n-(y+z+2) / 2+1 \equiv 3 \text { or } 0(\bmod 4)
\end{gathered}
$$

b) $n \equiv 2,3(\bmod 4), y+z \equiv 0,2(\bmod 8), x \geq(4 n-1) / 3$.

Place a $h \mathcal{L}_{(y+z+2) / 2}^{(n-((y+z+2) / 2)+1)}$ on X plus the pivot and vertex $(x+2, z+1)$ of Y and a $(z+2)$-ext $\mathcal{S}_{(z+y) / 2}$ along the $Z Y$-path.
If $y+z \equiv 0(\bmod 8)$, then

$$
\begin{gathered}
(y+z) / 2 \equiv 0(\bmod 4),(y+z+2) / 2 \text { is odd and } \\
n-(y+z+2) / 2+1 \equiv 2 \text { or } 3(\bmod 4)
\end{gathered}
$$

If $y+z \equiv 2(\bmod 8)$, then

$$
\begin{gathered}
(y+z) / 2 \equiv 1(\bmod 4),(y+z+2) / 2 \text { is even and } \\
n-(y+z+2) / 2+1 \equiv 1 \text { or } 2(\bmod 4) .
\end{gathered}
$$

4.2.4 Short Z-vanes

In this construction, we label windmills with relatively short Z-vanes by using: $\mathcal{A}_{d}^{2 d-1}+(n-3 d+2)$, for a suitable choice of d given below, to label [most of] Z plus a block of vertices near the middle of X with labels $n-2 d+2$ to n, inclusive.
a) $n \equiv 0,3(\bmod 4)$ and $z \equiv 3(\bmod 4)$ or $n \equiv 1,2(\bmod 4)$ and $z \equiv$ $1(\bmod 4)$.
Let $d=\frac{z+1}{2} . \mathcal{A}_{d}^{2 d-1}+(n-3 d+2)$ can be used to label Z and some vertices on X, see ovals in the diagram. There are two remaining paths denoted by B and C, see the figure below.

The path labeled B contains

$$
x-(2 d-1)-(n-3 d+1)=x+d-n=\frac{x-y}{2} \text { vertices. }
$$

If $n \equiv 0(\bmod 4)$ and $z \equiv 3(\bmod 4)$, then x must be even, so $x+d-n$ is even and $x-y \equiv 0(\bmod 4)$. This holds in each case.

If $(x-y) / 4 \equiv 0$ or $1(\bmod 4)$, then $\mathcal{S}_{\frac{x-y}{4}}$ exists and can be used to label the $(x-y) / 2$ vertices of B. The path C contains

$$
x+y+1-z-\left(\frac{x-y}{2}\right)=2 n-2 z-\left(\frac{x-y}{2}\right) \text { vertices }
$$

which can be labeled using a $\mathcal{L}_{\frac{x-y}{4}+1}^{n-z-\left(\frac{x-y}{4}\right)}$. This sequence exists for all cases of n and z under consideration provided that

$$
\begin{gathered}
2\left(\frac{x-y}{4}+1\right)-1 \leq n-z-\left(\frac{x-y}{4}\right) \\
\Longleftrightarrow 2 x-2 y+8-4 \leq 4 n-4 z-x+y \\
\Longleftrightarrow 3 x-3(2 n-x-z-1)+4 z+4 \leq 4 n \\
\Longleftrightarrow 6 x+7 z+7 \leq 10 n
\end{gathered}
$$

A similar discussion can be used if $(x-y) / 4 \equiv 2$ or $3(\bmod 4)$. The results are summarized in the following table.

$(x-y) / 4$ $(\bmod 4)$	B	C	size constraint
0,1	$\mathcal{S}_{\frac{x-y}{4}}$	$\mathcal{L}_{\frac{x-y}{4}+1}^{n-z-\left(\frac{x-y}{4}\right)}$	$10 n \geq 6 x+7 z+7$
3	1-near $\mathcal{S}_{\frac{x-y}{4}+1}$	11 then $\mathcal{L}_{\frac{x-y}{4}+2}^{n-z-\left(\frac{x-y}{4}\right)-1}$	$10 n \geq 6 x+7 z+19$
2	2-near $\mathcal{S}_{\frac{x-y}{4}+1}$	$2-2$ hooked into $h \mathcal{L}_{\frac{x-y}{2}+2}^{n-z\left(\frac{x-y}{4}\right)-1}$	$10 n \geq 6 x+7 z+19$

b) $n \equiv 0,3(\bmod 4)$ and $z \equiv 1(\bmod 4)$ or $n \equiv 1,2(\bmod 4)$ and $z \equiv$ $3(\bmod 4)$.
Let $d=\frac{z-1}{2}$. Then $\mathcal{A}_{d}^{2 d-1}+(n-3 d+2)$ can be used to label $2 d-1=z-2$ vertices of Z plus $z-2$ vertices near the middle of X. The remaining vertices of Z are labeled 1 (location given below for each case). There are two possibilities:
i) 1 in $(x+1, z)$ and $(x+1, z-1)$:

Then B contains

$$
x-(2 d-1)-(n-3 d-1)=x+d-n+2=\frac{x-y+2}{2} \text { vertices. }
$$

In each case, $x+d-n+2$ is even, so $x-y+2 \equiv 0(\bmod 4)$.
ii) 1 in $(x+1,1)$ and $(x+1,2)$:

Then B contains

$$
x-(2 d-1)-(n-3 d+1)=x+d-n=\frac{1}{2}(x-y-2) \text { vertices }
$$

and $x-y-2 \equiv x-y+2 \equiv 0(\bmod 4)$.
The labelings are summarized in the table below:

$(x-y+2) / 4(\bmod 4)$	B	C	size constraint
0,3 use i)	1-near $\mathcal{S}_{\frac{x-y+2}{4}+1}$	$\mathcal{L}_{\frac{x-y+2}{4}+2}^{n-z-\left(\frac{x-y+2}{4}\right)+1}$	$10 n \geq 6 x+7 z+17$
1 use ii)	1-near $\mathcal{S}_{\frac{x-y+2}{4}}$	$\begin{aligned} & \mathcal{L}_{\frac{x-y+2}{4}+1}^{n-z-\left(\frac{x-y+2}{4}\right)+2} \\ & \hline \end{aligned}$	$10 n \geq 6 x+7 z+13$
2 use ii)	$\mathcal{L}_{3}^{\frac{x-y+2}{4}-1 *}$	2-2 hooked into $h \mathcal{L}_{\left.\frac{x-y+2}{n-z-(}+\frac{x-y+2}{4}\right)+1}$	$\begin{aligned} & 10 n \geq 6 x+7 z+17 \\ & * 22 \leq x-y \end{aligned}$

In order to use the last construction, $5 \leq \frac{x-y+2}{4}-1$, so $22 \leq x-y$ (which forces n to be quite large). However, the only smaller case occurs when $\frac{x-y+2}{4}=2$, so $x-y=6$. We adapt the construction in a) to cover $W(n: x, x-6, z)$.
Let $d=\frac{z+1}{2}$ and use $\mathcal{A}_{d}^{2 d-1}+(n-3 d+2)$ to label the vertices of Z plus some vertices of X. We have used labels $n-2 d+2$ to n inclusive. Then B contains

$$
x-(2 d-1)-(n-3 d+1)=x+d-n=\frac{1}{2}(x-y)=3 \text { vertices. }
$$

If $d \neq \frac{n}{4}$, label $(1, z+1),(n-2 d+2, z+1)$ with the next largest label, $n-2 d+1$, put 1 's in $(2, z+1)$ and $(3, z+1)$ and use a $(n-2 z-2)$-ext \mathcal{L}_{2}^{n-z-2} to label the remaining vertices. Otherwise, put $n-2 d+1$ in $(3, z+1)$ and $(n-2 d+4, z+1)$, 1 's in $(1, z+1)$ and $(2, z+1)$ and use a $(n-2 z)$-ext \mathcal{L}_{2}^{n-z-2} for the remaining vertices. The only constraint here is that $3 \leq n-z-2$ or $z \leq n-5$. If $n \geq 8$, then $n-5 \geq\left\lfloor\frac{n-1}{2}\right\rfloor \geq z$. Since $y \geq 1,7 \leq x<\frac{4 n-1}{3}$ and $6 \leq n$. If $n=7$, then $z \leq\left\lfloor\frac{n-1}{2}\right\rfloor$ and $z \equiv 1(\bmod 4)$ imply that $z=1 \leq 2=7-5$, which satisfies the constraint.

4.2.5 Long Z-vanes, $n \equiv 2,3(\bmod 4)$

Here we are interested in relatively large values of z, where $x \geq n$. If $n \equiv 2,3(\bmod 4)$, then x, y and z are all odd.

In this group, X, the pivot and part of Z are labeled by a [hooked] Langford sequence of defect d. The label $d-1$ is used to deal with the problem that y and z are odd. The remaining vertices are labeled using smaller sequences.

We illustrate this first with an example. Consider $W(19: 21,9,7)$. Use any \mathcal{L}_{7}^{13} (for example, \mathcal{A}_{7}^{13}) to label X, the pivot and the 4 vertices of Z closest to the pivot.

Use 6 to label vertices $(22,3)$ and $(23,8)$, leaving an even number of unlabeled vertices on both Y and Z.

$$
\begin{array}{ccccccccc}
14 & 15 & 16 & \ldots & 16 & 10 & 17 & 11 & \mathbf{6} \\
& & & & & & & 18 & \\
& & & & & & & 12 & \\
& & & & & & & 19 & \tag{19}\\
& & & & & & & 13 & \\
& & & & & & & \mathbf{6} &
\end{array}
$$

Use \mathcal{S}_{1} and \mathcal{L}_{2}^{4} to label the remaining vertices of Z and Y, respectively.
More generally, suppose that \mathcal{L}_{d}^{n+1-d}, for some d, is used to label X, the pivot and the vertices $(x+1, z), \ldots,(x+1, z-d+4)$ of Z; the vertices $(x+1, z-d+3)$ and $(x+2, z+1)$ are labeled $d-1$. Then

$$
2 n+2-2 d=x+1+d-3
$$

so

$$
\begin{gathered}
3 d=x+y+z+3-x+2 \\
d=\frac{y+z+5}{3}
\end{gathered}
$$

Hence, $y+z \equiv 1(\bmod 3)$; however, both y and z are odd, so $y+z \equiv 4(\bmod 6)$ and d must be odd. This forces $n-1+d \equiv 0,1(\bmod 4)$. Since $n \equiv 2,3(\bmod 4)$, $d \equiv 3(\bmod 4)$ and so $y+z \equiv 4(\bmod 12)$.
For the \mathcal{L}_{d}^{n+1-d} to exist, $n+1-d \geq 2 d-1$ which implies that $x \geq n+2$. To use the sequence in this way, we must also ensure Z is long enough to accommodate the required vertices, so $z \geq d-2=\frac{y+z-1}{3}$ which implies $z \geq \frac{y-1}{2}$. There are $x+z+1-2(n+1-d)-1=2 d-y-3 \equiv 3-y(\bmod 8)$ unlabeled vertices on Z and $y-1$ on Y.
If $y \equiv 1,3(\bmod 8)$, then $d-\frac{y-3}{2} \equiv 1,0(\bmod 4)$, so $\mathcal{S}_{d-\frac{y+3}{2}}$ can be used to finish labeling Z and $\mathcal{L}_{d-\frac{y+3}{2}+1}^{\frac{y-1}{2}}$ can be used for Y whenever

$$
2 d-y-3+1 \leq \frac{y-1}{2} \text { or equivalently } 11 \leq y+4(y-z)
$$

Similarly, if $y \equiv 5$ or $7(\bmod 8)$, then $d-\frac{y+3}{2}+1 \equiv 0$ or $2(\bmod 4)$, respectively so use a 1-near $\mathcal{S}_{d-\frac{y+3}{2}+1}$ or a 2 -near $\mathcal{S}_{d-\frac{y+3}{2}+1}$, respectively. The unused entry (1 or 2) is used to label 2 vertices at one end of Y along with $\mathcal{L}_{d-\frac{y+3}{2}+2}^{\frac{y-3}{2}}$ or $h \mathcal{L}_{d-\frac{y+3}{2}+2}^{\frac{y-3}{2}}$, respectively. Here the constraint is

$$
2 d-y-3+3 \leq \frac{y-3}{2} \text { or } y+4(y-z) \geq 29
$$

We summarize this labeling.
a) $y+z \equiv 4(\bmod 12), x \geq n+2$ and $y \geq z \geq \frac{y-1}{2}$

Take $d=\frac{y+z+5}{3}$; use

$$
\begin{aligned}
& \mathcal{L}_{d}^{n+1-d} \text { for } X, \text { the pivot and }(x+1, z), \ldots,(x+1, z-d+4) ; \\
& d-1 \text { for }(x+1, z-d+3) \text { and }(x+2, z+1) ; \text { plus }
\end{aligned}
$$

$y(\bmod 8)$	end of Z	Y	$y+4(y-z) \geq$
1,3	$\mathcal{S}_{d-\frac{y+3}{2}}$	$\mathcal{L}_{d-\frac{y+3}{2}+1}^{\frac{y-1}{2}}$	11
5	1-near $\mathcal{S}_{d-\frac{y+3}{2}+1}$	$11 \mathcal{L}_{d-\frac{y+3}{2}+2}^{\frac{y-3}{2}}$	29
7	2-near $\mathcal{S}_{d-\frac{y+3}{2}+1}$	$2-2$ hooked into $h \mathcal{L}_{d-\frac{y+3}{2}+2}^{\frac{y-3}{2}}$	29

A similar discussion can be used for $y+z \equiv 2,0(\bmod 12)$.
b) $y+z \equiv 2(\bmod 12), x \geq n+1$ and $y \geq z>\frac{y}{2}$

Take $d=\frac{y+z+4}{3}$; use
$h \mathcal{L}_{d}^{n+1-d}$ for X, the pivot and $(x+1, z), \ldots,(x+1,2 d-y-2)$;
$d-1$ for $(x+2, z+1)$ and $(x+1,2 d-y-1)$, which is the hook of $h \mathcal{L}_{d}^{n+1-d}$; plus

$y(\bmod 8)$	end of Z	Y	$y+4(y-z) \geq$
1,7	$\mathcal{S}_{d-\frac{y+3}{2}}$	$\mathcal{L}_{d-\frac{y+3}{2}+1}^{\frac{y-1}{2}}$	7
3	1-near $\mathcal{S}_{d-\frac{y+3}{2}+1}$	$11 \mathcal{L}_{d-\frac{-y+3}{2}+2}^{\frac{y-3}{2}}$	25
5	2-near $\mathcal{S}_{d-\frac{y+3}{2}+1}$	$2-2$ hooked into $h \mathcal{L}_{d-\frac{y+3}{2}+2}^{\frac{y-3}{2}}$	25

c) $y+z \equiv 0(\bmod 12), x \geq n+6$ and $y \geq z>\frac{y}{2}$

Take $d=\frac{y+z+9}{3}$; use
\mathcal{L}_{d}^{n+1-d} for X, the pivot and $(x+1,2 d-y-1), \ldots,(x+1, z)$ plus

y $(\bmod 8)$	$d-1$	end of Z	Y	$y+$ $4(y-z) \geq$
5,7	$(x+1, z-d+4)$, $(x+3, z+1)$	4 -ext $\mathcal{S}_{d-\frac{y+3}{2}}$	$h \mathcal{L}_{d-\frac{y+3}{2}+1}^{2}$ (hook is filled by $d-1)$	27
1,3	$(x+1, z-d+3)$, $(x+2, z+1)$	5 -ext $\mathcal{S}_{d-\frac{y+3}{2}}$	$\mathcal{L}_{d-\frac{y+3}{2}+1}^{\frac{y-1}{2}}$	27

The appropriate 4- or 5 -extended sequence must exist, so $d-\frac{y+3}{2} \geq 2$ which implies $z \geq \frac{y+3}{2}$. This also guarantees that Z is long enough to accommodate the sequences. However, $z \neq \frac{y+1}{2}$; otherwise $3 y+1=2 y+y+1=2 y+2 z=2(y+z) \equiv 0(\bmod 24)$; a contradiction. So the construction holds for all $z>\frac{y}{2}$.
Note that if $y+z \equiv 0(\bmod 12)$, then $x \neq n, n+3, n+4$; otherwise, $n \equiv 3,2,3(\bmod$ $4)$, respectively and $y+z=2 n-1-x \equiv 2(\bmod 4)$, a contradiction. The cases $x=n+1, n+2$ are covered in 4.2.7, so the only outstanding case is $x=n+5$.

Now suppose that $x=n+5$. Then $n \equiv 2(\bmod 4)$ and $y+z=n-6$, so this case applies if $n \equiv 6(\bmod 12)$. Since $z \leq \frac{y+z}{2}=\frac{n-6}{2}$ and $\frac{n-6}{2}$ is even, $z \leq \frac{n-8}{2}$. Therefore,

$$
\begin{aligned}
10 n-6 x-7 z & \geq \frac{1}{2}(20 n-12 n-60-7 n+56) \\
& =\frac{1}{2}(n-4) .
\end{aligned}
$$

Since $\frac{1}{2}(n-4) \geq 19$ whenever $n \geq 42$, 4.2 .4 can be used for all $n \geq 42$. For each remaining case, $W(n: n+5, n-6-z, z), 16<n<42$ (since $x<\frac{4 n-1}{3}$), $n \equiv 6(\bmod 12), z$ is odd and $z \leq \frac{n-8}{2}$. This means that $n=30$ and $z \leq 11$ or $n=18$ and $z \leq 5$. In the first case, $10 n-6 x-7 z \geq 24$ if $z \leq 9$ and $10 n-6 x-7 z \geq 21$
is $z \leq 3$, so 4.2 .4 can be applied. This leaves $W(30: 35,13,11)$ and $W(18: 23,7,5)$, see Appendix 1.

4.2.6 More Long Z-vanes, $n \equiv 2,3(\bmod 4)$

Once again, consider $n \equiv 2,3(\bmod 4)$, so x, y and z are odd. This labeling is similar to 4.2 .5 , but one label is moved from a vertex of Z to a vertex of Y to accommodate the label $d-1$.

Consider, first, $W(19: 19,9,9)$. Use any \mathcal{L}_{7}^{13} (for example, \mathcal{A}_{7}^{13}) to label X, the pivot and the 6 vertices of Z closest to the pivot.

$$
\begin{array}{llllllll}
14 & 15 & 16 & \ldots & 15 & 9 & 16 & 10 \\
& & & & & & & 17 \\
& & & & & & 11 \\
& & & & & & 18 \\
& & & & & & 12 \\
& & & & & & 19 \\
& & & & & & 13 \\
& & & & & & - \\
& & & & & & - \\
& & & & & & -
\end{array}
$$

Since 7 is the smallest label in \mathcal{L}_{7}^{13}, no label can occur twice on the 6 vertices of Z that we have labeled, so any of these labels could be moved to the corresponding vertex on Y. Move the label 17 from vertex $(20,9)$ to vertex $(21,10)$, label vertices $(20,9)$ and $(20,3)$ with 6 and use \mathcal{S}_{1}, and \mathcal{L}_{2}^{4} to label the remaining vertices of Z and Y, respectively.

More generally as in 4.2.5, the value d is key to this labeling. First, use the $2(n+$ $1-d)$ entries of \mathcal{L}_{d}^{n+1-d} to label the $x+1+d-1$ vertices of X, the pivot and $(x+1, z), \ldots,(x+1, z-d+2)$ of Z. Note that only $d-1$ positions of Z are used,
so no entry of \mathcal{L}_{d}^{n+1-d} can occur twice on Z. Shift the label on vertex $(x+1, z)$ to $(x+2, z+1)$ and label vertices $(x+1, z-d+1)$ and $(x+1, z)$ with $d-1$. Since

$$
2 n+2-2 d=x+1+d-1(*)
$$

we have

$$
3 d=x+y+z+3-x \text { and } d=\frac{y+z+3}{3}
$$

Hence, $y+z \equiv 0(\bmod 3)$; however both y and z are odd, so $y+z \equiv 0(\bmod 6)$ and d must be odd. This forces $n+1-d \equiv 0,1(\bmod 4)$. Since $n \equiv 2,3(\bmod 4)$, $d \equiv 3(\bmod 4)$ and so $y+z \equiv 6(\bmod 12)$. The constraints here are:

$$
n+1-d \geq 2 d-1, \text { so } x \geq n \text { by }(*) \text { and } z>d-1=\frac{y+z}{3}, \text { so } z>\frac{y}{2} .
$$

There are $x+z+1-2(n+1-d)-1=2 d-y-3$ unlabeled vertices on z and $y-1$ on Y which we label with appropriate sequences.
We summarize these labelings.
a) $y+z \equiv 6(\bmod 12), x \geq n$ and $y \geq z>\frac{y}{2}$

Take $d=\frac{y+z+3}{3}$; use

$$
\mathcal{L}_{d}^{n+1-d} \text { for } X, \text { the pivot and }(x+1, z), \ldots,(x+1, z-d+2)
$$

the label from $(x+1, z)$ for $(x+2, z+1)$;
$d-1$ for $(x+1, z)$ and $(x+1, z-d+1)$; plus

$y(\bmod 8)$	end of Z	Y	$y+4(y-z) \geq$
1,3	$\mathcal{S}_{d-\left(\frac{y+3}{2}\right)}$	$\mathcal{L}_{d-\left(\frac{y+3}{2}\right)+1}^{\frac{y-1}{2}}$	3
5	1-near $\mathcal{S}_{d-\left(\frac{y+3}{2}\right)+1}$	$11 \mathcal{L}_{d-\left(\frac{y+3}{2}\right)+2}^{\frac{y-3}{}}$	21
7	2-near $\mathcal{S}_{d-\left(\frac{y+3}{2}\right)+1}$	$2-2$ hooked into $h \mathcal{L}_{d-\left(\frac{y+3}{2}\right)+2}^{\frac{y-3}{2}}$	21

To use this construction, $z-d+1 \geq 1$, so $z \geq \frac{y+3}{2}$ and $d-\left(\frac{y+3}{2}\right) \geq 0$. If $y \equiv 7(\bmod$ 8), $d-\left(\frac{y+3}{2}\right)+1$ would have to be greater than or equal to 2 , so $z \geq \frac{y+9}{2}$; however, if $y \equiv 7(\bmod 8), z \neq \frac{y+3}{2}, \frac{y+5}{2}, \frac{y+7}{2}$ since $y+z \equiv 6(\bmod 12)$.
Finally, suppose $z=\frac{y+1}{2}$. Then $y+z=\frac{3 y+1}{2} \not \equiv 6(\bmod 12)$ for $y \equiv 1,3,5$ or $7(\bmod$ 8). So this case does not apply.

A similar discussion for $y+z \equiv 8,10(\bmod 12)$ gives the following labelings.
b) $y+z \equiv 8(\bmod 12), x \geq n+1$ and $y \geq z>\frac{y}{2}$

Take $d=\frac{y+z+4}{3}$; use
\mathcal{L}_{d}^{n+1-d} for X, the pivot and $(x+1, z), \ldots,(x+1, z-d+3)$;
the label from $(x+1, z)$ for $(x+2, z+1)$;
$d-1$ for $(x+1, z)$ and $(x+1, z-d+1)$; plus

$y(\bmod 8)$	end of Z	Y	$y+4(y-z) \geq$
1,7	$h \mathcal{S}_{d-\frac{y+3}{2}}$	$\mathcal{L}_{d-\frac{y+3}{2}+1}^{\frac{y-1}{2}}$	7
3	1-near $\mathcal{S}_{d-\frac{y+3}{2}+1}$	$11 \mathcal{L}_{d-\frac{y+3}{2}+2}^{\frac{y-3}{2}}$	25
5	2-near $h \mathcal{S}_{d-\frac{y+3}{2}+1}$	$2-2$ hooked into $h \mathcal{L}_{d-\frac{y+3}{2}+2}^{\frac{y-3}{2}}$	25 if $z>\frac{y+19}{2}$
5	see below		$\frac{y}{2}<z<\frac{y+19}{2}$

To use this construction for $y \equiv 1$ or $7(\bmod 8), z-d+1 \geq 4$, so $z \geq \frac{y+13}{2}$ and $d-\frac{y+3}{2} \geq 2$. However, since $y+z \equiv 8(\bmod 12)$, and $y \equiv 1$ or $7(\bmod 8)$ there are no odd values of $z, \frac{y}{2}<z<\frac{y+13}{2}$.
To use the construction for $y \equiv 3(\bmod 8), z-d+1 \geq 2$, so $z \geq \frac{y+7}{2}$, however, there are no other values of $z, \frac{y}{2}<z<\frac{y+7}{2}$.
Finally to use this for $y \equiv 5(\bmod 8), z+d-1 \geq 6$, so $z \geq \frac{y+19}{2}$ and $d-\frac{y+3}{2}+1 \geq 4$. There is one additional possible value for $z, z=\frac{y+1}{2}$. In this case, set $d=\frac{y+z+4}{3}=$ $z+1 . \mathcal{L}_{d}^{n+1-d}$ can be used to label X, the pivot and all of Z except the vertex $(x+1,1)$. Since $d>z$, the label in $(x+1, z)$ can be moved to $(x+2, z+1)$. Use $z-1$ to label $(x+1,1)$ and $(x+1, z)$ and z for $(x+3, z+1)$ and $(x+z+3, z+1)$. This is always possible since $z+3 \leq y+1=2 z$ for all $z \geq 3$. The rest of Y can be labeled using a z-ext \mathcal{S}_{z-2} since $2(z-2)=y-3$ and $z \equiv 3(\bmod 4)$.
c) $y+z \equiv 10(\bmod 12), x \geq n-1$ and $y \geq z \geq \frac{y+5}{2}$

Take $d=\frac{y+z+2}{3}$; use
\mathcal{L}_{d}^{n+1-d} for X, the pivot and $(x+1, z), \ldots,(x+1, z-d+1)$;
the label from $(x+1, z-1)$ for $(x+3, z+1)$;
$d-1$ for $(x+1, z-1)$ and $(x+1, z-d)$; plus

$y(\bmod 8)$	end of Z	Y	$y+4(y-z) \geq$
3,5	$\mathcal{S}_{d-\frac{y+3}{2}}$	$h \mathcal{L}_{d-\frac{y+3}{2}+1}^{2}$	0
7	1-near $\mathcal{S}_{d-\frac{y+3}{2}+1}$	$h \mathcal{L}_{d-\frac{y+3}{2}+2}^{\frac{y-3}{2}}, 11$	17
1	2-near $\mathcal{S}_{d-\frac{y+3}{2}+1}$	$2-2$ hooked into $\mathcal{L}_{d-\frac{y+3}{2}+2}^{\frac{y-3}{2}}$	17

To use this construction, $z-d \geq 1$, so $z \geq \frac{y+5}{2}$ and $d-\frac{y+3}{2} \geq 0$. If $y \equiv 5(\bmod 8)$, $d-\frac{y+3}{2}+1 \geq 2$, so $z \geq \frac{y+11}{2}$. Since $y+z \equiv 10(\bmod 12)$, there is only one case for $z, \frac{y+11}{2}>z>\frac{y}{2}$, which is not covered by the above construction: $z=\frac{y+5}{2}$ and $y \equiv 5$ $(\bmod 8)$. In this case, $d=\frac{2 z-5+z+2}{3}=z-1$, so instead of the third line of the table we use $h \mathcal{S}_{d-2}$.

4.2.7 Special constructions for $n \equiv 2$ or $3(\bmod 4)$

a) Let $x=n$. Then $n \equiv 3(\bmod 4)$. The following labelings can be used.

$z \equiv(\bmod 8)$	n in positions	Z-vane	$X Y$ path	constraints
1,3	$(2, z+1),(x+1, z)$	$\mathcal{L}_{3}^{\frac{z-1}{2}}$	2 -ext $\mathcal{S}_{2} \mathcal{L}_{\frac{z+5}{n-\left(\frac{z+5}{2}\right)}}$	$z \geq 11$
5	$(3, z+1),(x+1, z-1)$	$h \mathcal{L}_{2}^{\frac{z-1}{2}}$	$\mathcal{S}_{1} h \mathcal{L}_{\frac{z+3}{n-\left(\frac{z+3}{2}\right)}}^{2}$	$z \geq 7$
7	$(2, z+1),(x+1, z)$	$\mathcal{L}_{2}^{\frac{z-1}{2}}$	$h \mathcal{L}_{\frac{z+3}{2}}^{n-\left(\frac{z+3}{2}\right)} \mathcal{S}_{1}$	$z \geq 7$

The only remaining cases are: $z=1,3,5,9$.
$W(n: n, n-2,1):$ put n in the sole vertex of Z and the second vertex $(2,2) X$; fill the $X Y$-path with a $h \mathcal{S}_{n-1}$.
$W(n: n, n-4,3):$ put n in $(2,4)$ and $(x+1,3)$; fill Z with \mathcal{S}_{1} and the $X Y$-path with $h \mathcal{L}_{2}^{n-2}$.
$W(n: n, n-6,5):$ put n in $(3,6)$ and $(x+1,4)$; fill Z with $h \mathcal{L}_{2}^{2}$ (i.e., 23203) and the $X Y$-path with \mathcal{S}_{1} and \mathcal{L}_{4}^{n-4}. Note that $5=z \leq \frac{n-1}{2}$, so $n \geq 11$ and \mathcal{L}_{4}^{n-4} exists. $W(n: n, n-10,9):$ put n in positions $(2,10)$ and $(x+1,3), \mathcal{S}_{4}$ on Z and $h \mathcal{L}_{5}^{n-5}$ on the $X Y$-path. Note that $9=z \leq \frac{n-1}{2}$, so $n \geq 19$ and $h \mathcal{L}_{5}^{n-5}$ exists.
b) Let $x=n+1$. Then $n \equiv 2(\bmod 4)$. The following labelings can be used.

$z(\bmod 8)$	n in positions	Z-vane	$X Y$ path	constraints
1,7	$(3, z+1),(x+1, z)$	$\mathcal{L}_{2}^{\frac{z-1}{2}}$	$\mathcal{S}_{1} \mathcal{L}_{\frac{z+3}{2}}^{n-\left(\frac{z+3}{2}\right)}$	$z \geq 7$
3	$(3, z+1),(x+1, z)$	$\mathcal{L}_{3}^{\frac{z-1}{2}}$	$\mathcal{S}_{1} 2-2 h \mathcal{L}_{\frac{z+5}{n-\left(\frac{z+5}{2}\right)}}^{2}$	$z \geq 11$
5	$(4, z+1),(x+1, z-1)$	$h \mathcal{L}_{2}^{\frac{z-1}{2}}$	$\mathcal{S}_{1} h \mathcal{L}_{\frac{z+3}{2}}^{n-\left(\frac{z+3}{2}\right)}$	$z \geq 7$

The only remaining cases are: $z=1,3,5$.
$W(n: n+1, n-3,1)$: put n in the sole vertex of Z and in $(3, z+1)$; fill with a 3 -ext \mathcal{S}_{n-1}.
$W(n: n+1, n-5,3):$ put n in positions $(3, z+1)$ of X and $(x+1, z)$ of $Z ; \mathcal{S}_{1}$ in the remaining positions of Z and use a 3 -ext \mathcal{L}_{2}^{n-2} to fill the $X Y$-path.
$W(n: n+1, n-7,5):$ put n in positions $(4, z+1)$ of X and $(x+1, z-1)$ of $Z ; h \mathcal{S}_{2}$ on Z and 4-ext \mathcal{L}_{3}^{n-3} on the $X Y$-path.
c) Let $x=n+2$. Then $n \equiv 3(\bmod 4)$ and the labelings are given in the table below.

$z(\bmod 8)$	n in positions	Z-vane	$X-Y$ path	constraints
1,3	$(4, z+1),(x+1, z)$	$\mathcal{L}_{3}^{\frac{z-1}{2}}$	4 -ext $\mathcal{S}_{2} \mathcal{L}_{\frac{z+5}{2}}^{n-\left(\frac{z+5}{2}\right)}$	$z \geq 11$
5	$(5, z+1),(x+1, z-1)$	$h \mathcal{L}_{5}^{\frac{z-1}{2}}$	5 -ext $\mathcal{S}_{4} \mathcal{L}_{\frac{z+9}{2}}^{2-\left(\frac{z+9}{2}\right)}$	$z \geq 19$
7	$(4, z+1),(x+1, z)$	$\mathcal{L}_{4}^{\frac{z-1}{2}}$	4 -ext $\mathcal{S}_{3} \mathcal{L}_{\frac{z+7}{2}}^{n-\left(\frac{z+7}{2}\right)}$	$z \geq 15$

The only remaining cases are: $z=1,3,5,7,9,13$. We provide labelings for these cases below.
$W(n: n+2, n-4,1)$: Put n in positions $(4,2)$ of X and $(x+1,1)$ of Z; fill the $X Y$-path with a 4 -ext \mathcal{S}_{n-1}.
$W(n: n+2, n-6,3)$: Note that $n-6 \geq 3$ and $n \equiv 3(\bmod 4)$, so $n \geq 11$. Put 2 in positions $(x, 4)$ of X and $(x+1,3)$ of $Z ; \mathcal{S}_{1}$ in the remaining positions of Z; fill the rest of the $X Y$-path with an $(n+2)$-ext \mathcal{L}_{3}^{n-2}.
$W(n: n+2, n-8,5):$ Here $n \geq 15$. Put $\mathcal{A}_{3}^{5}+(n-7)$ along Z and in positions $(6,6), \ldots,(11,6)$ of $X ; 2-211$ in positions $(1,6), \ldots(5,6)$ of $X ; n-5$ in $(2,6)$ and $(n-3,6)$ of X. The remaining vertices of the $X Y$-path are labeled using an $(n-13)$-ext \mathcal{L}_{3}^{n-8}.
$W(n: n+2, n-10,7):$ Here $n \geq 19$. For $n \geq 23$, put $\mathcal{A}_{4}^{7}+(n-10)$ on Z and in positions $(7,8), \ldots,(13,8)$ of $X ; \mathcal{L}_{2}^{3}$ in $(1,8), \ldots,(6,8)$ of $X ; \mathcal{S}_{1}$ in $(14,8),(15,8)$ of X and fill the rest of the $X Y$-path with $\mathcal{L}_{5}^{n-11} . W(19: 21,9,7)$ can be labeled using 4.2 .4 because $6(21)+7(7)+7=182 \leq 190$.
$W(n: n+2, n-12,9):$ Here $n \geq 23$. Put \mathcal{S}_{1} in $(x+1,1),(x+1,2)$ of $Z ; \mathcal{A}_{4}^{7}+$ $(n-10)$ in the remaining positions of Z and positions $(7,10), \ldots,(13,10)$ of $X ; \mathcal{L}_{2}^{3}$ in $(1,10), \ldots,(6,10)$ of X and fill the rest of the $X Y$-path with \mathcal{L}_{5}^{n-11}.
$W(n: n+2, n-16,13)$: So $n \geq 31$. Put \mathcal{S}_{1} in $(x+1,1),(x+1,2)$ of $Z ; \mathcal{A}_{6}^{11}+(n-16)$ in the rest of Z and positions $(9,14), \ldots,(19,14)$ of X; a 1-near \mathcal{S}_{5} in $(1,14), \ldots,(8,14)$ of X and fill the rest of the $X Y$-path with \mathcal{L}_{6}^{n-16}.

5 Skolem labeling $g 3$-windmills

Theorem 7 Every g3-windmill that satisfies the Skolem parity condition can be Skolem-labeled.

Proof: Let $G=W(n: x, y, z)$ be a $g 3$-windmill which satisfies the Skolem parity
condition. First, we note that if $x<n$, the graph can be pruned, so we need only consider graphs with $x \geq n$. Then $y+z+1=2 n-x \leq 2 n-n=n$, so $z \leq \frac{n-1}{2}$.

Case 1. $n \equiv 0,1(\bmod 4)$.
i) Suppose first that z is even. If $n \geq 13$, then $z \leq \frac{n-1}{2} \leq \frac{2 n-8}{3}$, so construction 4.2.1 can be used. If $n<13$, then $z<6$, so z is either 2 or 4 . For $z=2,4.2 .1$ can be used for all n. If $z=4$, then $n \geq 9$; so 4.2 .1 can be used for all $n \geq 10$. This leaves only $W(9: 9,4,4)$ to label:

9	7	5	3	1	1	3	5	7	9	2	4	6	8
									2				
									8				

ii) Now suppose that z is odd. Since $n \equiv 0,1(\bmod 4), x$ and y must be even. Construction 4.2.2 can always be used if $y \leq(2 n-8) / 3$, so we need only consider $y>\frac{2 n-8}{3}$.
In general, 4.2.4 can be used whenever $6 x+7 z \leq 10 n-19$. Since $x \geq n, x+y>\frac{5 n-8}{3}$, so $z=2 n-1-x-y<\frac{n+5}{3}$. Therefore,

$$
\begin{aligned}
6 x+7 z & =6(x+z)+z \\
& =6(2 n-1-y)+z \\
& <\frac{25 n+35}{3}
\end{aligned}
$$

This is less than $10 n-19$ whenever $19 \leq n$, so 4.2 .4 can be used in all these cases. In addition, 4.2.4 can also be used for some smaller values of n.

Consider $n=17$. Then $8.7<y$ and $17 \leq x$; however, both x and y are even so $10 \leq y$ and $18 \leq x$. Therefore, $z=2 n-1-x-y \leq 5$. Then

$$
\begin{aligned}
6 x+7 z & =6(2 n-1-y-z)+7 z \\
& =12 n-6-6 y+z \\
& \leq 143 \\
& \leq 10 n-19
\end{aligned}
$$

So 4.2 .4 can be used in all the remaining cases with $n=17$. A similar discussion applies when $n=16$ or 13 .

The only remaining windmills are:

$$
\begin{aligned}
& W(12: 12,6,5), W(12: 12,8,3), W(12: 12,10,1), W(12: 14,6,3), W(12: 14,8,1) \\
& W(9: 10,4,3), W(9: 10,6,1), W(9: 12,4,1) \\
& W(8: 8,4,3), W(8: 8,6,1), W(5: 6,2,1), W(4: 4,2,1)
\end{aligned}
$$

All of these, with 3 exceptions, can be labeled using the specific techniques of 4.2.4. For $W(4: 4,2,1)$, use

$$
\begin{array}{lllllll}
4 & 1 & 1 & 3 & 4 & 2 & 3 \\
& & & & &
\end{array}
$$

For $W(9: 12,4,1)$, put a 5 -extended Skolem sequence of order 8 along X, the pivot and Y and use 9 to label the remaining 2 vertices. For $W(12: 14,6,3)$, put a 14 extended Langford sequence with $d=3$ and $m=10$ along X, the pivot and Y, then use a hooked Skolem sequence of order 2 to label the remaining vertices.

Case 2. Let $n \equiv 2,3(\bmod 4)$. Then x, y and z are all odd. If $x \geq(4 n-1) / 3,4.2 .3$ can be used and if $x=n, n+1$ or $n+2,4.2 .7$ can be used, so it suffices to consider $n+2<x<(4 n-1) / 3$.
i) First, consider those remaining windmills with relatively short Z-vanes: $z<\frac{y}{2}$. Let $x=n+k$. Then $3 \leq k \leq \frac{n-2}{3}$ and $y+z=n-1-k$.
If $z \leq \frac{y-3}{2}$, then $3 z \leq n-4-k$ and

$$
\begin{aligned}
10 n-6 x-7 z-19 & \geq(5 n-11 k-29) / 3 \\
& \geq(4 n-65) / 9
\end{aligned}
$$

which is nonnegative if $n \geq 17$, so 4.2 .4 can be used to label these windmills.
Similarly, if $z=\frac{y-1}{2}$, then

$$
10 n-6 x-7 z-19 \geq(4 n-107) / 9
$$

so 4.2 .4 can be used if $n \geq 27$. Note that since $z=\frac{y-1}{2}, n-1-k=y+z=3 z+1$, so $\frac{n-2-k}{3} \in \mathbf{Z}^{+}$and the only remaining windmills with $17<n<27$ are W (26 : $29,15,7), W(23: 29,11,5)$ and $W(22: 27,11,5)$, all of which can be labeled using 4.2.4.

Now suppose that $n \leq 15$ and $z<\frac{y}{2}$, then the only windmills are: $W(15$: $19,7,3), W(15: 19,9,1), W(14: 17,7,3)$ and $W(14: 17,9,1)$. The last three can be labeled using 4.2.4. For $W(15: 19,7,3)$, use $h \mathcal{S}_{2}$ to label Z and vertex $(x+2, z+1)$ of Y (note that the hook would fall on the pivot) and 7 -ext \mathcal{L}_{3}^{13} for the remaining vertices.
ii) Now consider the remaining windmills. Then $n+3 \leq x<(4 n-1) / 3$ and $z>\frac{y}{2}$. Each of these can be labeled using 4.2 .5 or 4.2 .6 unless $y+4(y-z)$ is too small. In general, 4.2.5 and 4.2.6 can always be used whenever $y+4(y-z) \geq 29$; however, the constant is actually smaller in many cases. First we identify the remaining cases and then we provide labelings for them.
Since $z \geq 1, y>y-z$. Then $y+4(y-z)-29>5(y-z)-29$ which would be greater than 0 whenever $y-z \geq 6$. Note that $y-z$ is even since both y, z are odd, so we need only consider $y-z=0,2,4$.

Suppose $y-z=4$. Then $\frac{y}{2}<z=y-4$, so $8<y$. If $y \geq 13$, then $y+4(y-z) \geq$ $13+16=29$, so they can all be labeled by 4.2 .5 or 4.2 .6 . If $y=11 \equiv 3(\bmod 8)$, then $y+4(y-z)=11+16=27$, so 4.2 .5 or 4.2 .6 can be used. If $y=9 \equiv 1(\bmod$ $8)$, then $y+4(y-z)=9+16=25$, but $y+z=9+5=14 \equiv 2(\bmod 12)$, so 4.2 .5 b) can be used.

Now suppose $y-z=2$. Then $\frac{y}{2}<z=y-2$, so $4<y$. If $y \geq 21$, then $21+4(2)=29$, so 4.2 .5 or 4.2 .6 can be used. 4.2 .5 and 4.2 .6 can also be used in the following cases:
if $y=19$, then $y+z=36 \equiv 0(\bmod 12)$ and $y+4(y-z)=27$;
if $y=17$, then $y+z=32 \equiv 8(\bmod 12)$ and $y+4(y-z)=25 \geq 7$;
if $y=9$, then $y+z=16 \equiv 4(\bmod 12)$ and $y+4(y-z)=17 \geq 11$.
The remaining values of y are: $15,13,11,7,5$. Since $2 y-2=y+z=2 n-1-x$ and $n+3 \leq x<(4 n-1) / 3$, we have

$$
2(n-1) / 3<2 y-2 \leq n-4 \text { or } 2 y+2 \leq n<3 y-2 .
$$

Since $x=2 n-1-y-z=2 n-1-2 y+2=2 n-2 y+1$, the only (n, x) pairs left to label are:

$$
\begin{aligned}
& \text { for } y=15,(34,39),(35,41),(38,47),(39,49),(42,55) ; \\
& \text { for } y=13,(30,35),(31,37),(34,43),(35,45) ; \\
& \text { for } y=11,(26,31),(27,33),(30,39) \\
& \text { for } y=7,(18,23) .
\end{aligned}
$$

4.2 .4 can be used for $W(38: 47,15,13), W(26: 31,11,9)$ and $W(18: 23,7,5)$. For the others, see the Appendix.

Finally, suppose that $y=z$ which implies that $y+z=2 y \equiv 2,6$ or $10(\bmod 12)$ so only 3 of the cases in 4.2.5 and 4.2.6 are applicable. If $y \geq 25$, then $y+4(y-z) \geq 25$, so 4.2 .5 or 4.2 .6 can be used. If $y=23,21,17,11,9,7,5$ or 3 , the appropriate labeling from 4.2.5 or 4.2 .6 can also be used. The only remaining cases are: $y=z=$ $19,15,13,1$.

Since $2 y=y+z=2 n-1-x$ and $n+3 \leq x<(4 n-1) / 3$, we have

$$
2 y+4 \leq n<3 y+1
$$

Therefore, since $n \equiv 2,3(\bmod 4), x=2 n-2 y-1$ and $n+3 \leq x<\frac{4 n-1}{3}$, the only (n, x) pairs left to label are:
for $y=19,(42,45),(43,47),(46,53),(47,55),(50,61),(51,63),(54,69),(55,71)$;
for $y=15,(34,37),(35,39),(38,45),(39,47),(42,53),(43,55)$;
for $y=13,(30,33),(31,35),(34,41),(35,43),(38,49),(39,51)$.
4.2.4 can be used for $W(42: 45,19,19), W(47: 55,19,19)$ and $W(30: 33,13,13)$. For the rest, see the Appendix.

Remark 4 The most difficult part of this proof was keeping track of which g3windmills had been labeled by the various constructions. While we were creating the constructions, we made use of a computer program which determined how many of the windmills of a particular size were labeled by the techniques to-date. The final version of this is available at: http://www.math.mun.ca/~manzer/.

6 Strong Skolem labelings

Unfortunately, not all of the labelings used above are strong. The use of sequences as building blocks clarifies the constructions; however, it often results in the introduction of non-essential edges. The problem is somewhat ameliorated when pruning is used or when a near sequence forms part of the labeling. Pruning makes all the edges of the Y- and Z-vanes essential. If a near sequence is used, the omitted labels are inserted elsewhere and help to tie the windmill together.

Conjecture 2 Every g3-windmill that meets the Skolem parity condition can be strongly Skolem labeled.

Conjecture 3 Every gk-windmill that meets the Skolem parity and nondegeneracy conditions can be strongly Skolem-labeled.

In [5] and [6], Mendelsohn and Shalaby also introduce the notion of [strong] hooked Skolem-labelings in which they permit some vertices, the hooks, to be labeled 0 . These hooks may be in any position. Such a labeling with as few hooks as possible is called a minimum hooked Skolem-labeling. They then show that any path, cycle [5] or k-windmill, $k \geq 3$, that satisfies their degeneracy condition [6] has a [strong] Skolem or minimum hooked Skolem-labeling with the exception of the 3 -windmills with vanes of length 2 or vanes of length 3 and the 4 -windmills with vanes of length 1 or 2.

While the problem of minimum hooked labelings for $g 3$-windmills is left for future work, we do expect similar results to hold. Here we will consider weak hooked labelings. As we have shown that every $g 3$-windmill which meets the Skolem parity condition can be [weakly] Skolem-labeled, weak hooked Skolem-labelings will only be of interest in $g 3$-windmills which do not meet the Skolem parity condition or which have an odd number of vertices. We mention the following partial result, but suspect that there is a minimum hooked Skolem labeling with at most 2 hooks in all cases.

Theorem 8 Any g3-windmill, W, on v vertices, which cannot be Skolem-labeled has a weak hooked Skolem-labeling with at most 3 hooks.

Proof. Suppose first that W has $v=2 n$ vertices. If $n \equiv 0(\bmod 4)$ with 3 odd-length vanes or if $n \equiv 2(\bmod 4)$ with one odd-length vane, label the last two vertices on the longest vane 0 . If $n \equiv 1(\bmod 4)$, then W has 3 odd-length vanes. Label the last vertex on each of the two longest vanes 0 . If $n \equiv 3(\bmod 4), W$ has one odd-length vane. Label the last vertex on each of the even-length vanes 0 . In each case, except when $n=2$, the remaining vertices form a $g 3$-windmill which can be Skolem-labeled. If $n=2$, the remaining 2 vertices can be labeled 1 .

Now suppose that W has an odd number of vertices, say $v=2 n+1$. Then W has 0 or 2 odd-length vanes. If $n \equiv 0,1(\bmod 4)$ with no odd-length vanes or if $n \equiv 2,3$ $(\bmod 4)$ with 2 odd-length vanes, then label the last vertex on any even-length vane 0 . If $n \equiv 0,1(\bmod 4)$ with 2 odd-length vanes, label the last vertex on the longest odd-length vane 0 . Finally, suppose that W has no odd-length vanes. If $n \equiv 3$ $(\bmod 4)$, label the last vertex on each vane 0 . If $n \equiv 2(\bmod 4)$, label the 3 last vertices on the longest vane 0 ; note that this implies that the longest vane contains at least 3 (actually 4 since vane lengths are even) vertices, so the case of a windmill with 3 vanes of length 2 is not covered. The remaining vertices in all cases form a $g 3$-windmill which can be Skolem-labeled except when W has 2 vanes of length 1 and $n \equiv 0,1(\bmod 4)$. In that case, the remaining $2 n$ vertices form a path which can be Skolem-labeled.

The 3 -windmill with vanes of length 2 does not have a one-hook strong Skolemlableling [6]; however, it does have a weak labeling with one hook. Label the two vertices of a single vane 1 and the remaining 5 vertices with a 1-near hooked Skolem sequence of order 3.

Tying this altogether, we conclude with a final conjecture.

Conjecture 4 All g3-windmills can either be strongly Skolem-labeled or have a minimum hooked Skolem-labeling with at most 2 hooks with the exception of the 3windmills with vanes of length 2 or vanes of length 3 .

7 Appendix

7.1 For the following windmills, take $d=\frac{z+1}{2}$ and use $\mathcal{A}_{d}^{2 d-1}+(n-3 d+2)$ to label Z and the corresponding vertices of X. Then there is a path, B, of $x-n+d$ unlabeled vertices, $(1, z+1), \ldots,(x-n+d, z+1)$, at the end of X and a path, C, of $y+n-3 d+2$ unlabeled vertices, $(x-n+3 d-1, z+1), \ldots,(x+y+1, z+1)$, along X and Y.

The largest unused label is $n-2 d+1=n-z$, which is used to label vertices $(a, z+1)$ and $(a+n-z, z+1)$ in B and C respectively where a is given in the table below. The remaining vertices are also labeled as below.

parameters	$n-z$ in $(-, z+1)$	B	C
$(27: 33,11,9)$	3	3 -ext \mathcal{S}_{5}	\mathcal{L}_{6}^{12}
$(30: 35,13,11)$	5	5-ext \mathcal{S}_{5}	$h \mathcal{L}_{6}^{13}$
$(31: 35,13,13)$	7	-ext \mathcal{S}_{5}	\mathcal{L}_{6}^{12}
$(34: 43,13,11)$	4	4-ext \mathcal{S}_{7}	\mathcal{L}_{8}^{15}
$(34: 37,15,15)$	9	9-ext \mathcal{S}_{5}	$h \mathcal{L}_{6}^{13}$
$(35: 41,15,13)$	6	6-ext \mathcal{S}_{6}	$h \mathcal{L}_{7}^{15}$
$(38: 45,15,15)$	8	8-ext \mathcal{S}_{7}	\mathcal{L}_{8}^{15}
$(39: 49,15,13)$	5	5-ext \mathcal{S}_{8}	\mathcal{L}_{9}^{17}
$(46: 53,19,19)$	11	11-ext \mathcal{S}_{8}	$h \mathcal{L}_{9}^{18}$

7.2 We can modify this method slightly by placing the two labels $n-z$ and $n-z-1$ before labeling the rest of B and C.

parameters	$n-z$	$n-z-1$	B	C
$(39: 47,15,15)$	$(8, z+1)$	$(10, z+1)$	$1135637-5-642724$	\mathcal{L}_{7}^{16}
$(43: 47,19,19)$	$(10, z+1)$	$(12, z+1)$	$311325264-5-46$	\mathcal{L}_{7}^{16}

7.3 For the windmills listed below, put
i) $(n-j)$ in $(2+2 j, z+1)$ and $(n+2+j, z+1)$, for $j=0, \ldots, x-n-1$;
ii) $(n-j)$ in $(2+2 j, z+1)$ and $(x+1, z-n+x-j)$, for $j=x-n, \ldots,\left\lfloor\frac{n-3}{2}\right\rfloor$;
iii) a doubled $\mathcal{S}_{\left\lfloor\frac{n+2}{4}\right\rfloor}$ in vertices $(1+2 j, z+1)$, for $j=0, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$;
iv) $n-\left\lfloor\frac{n+1}{2}\right\rfloor$ in vertices $\left(2+2\left\lfloor\frac{n-1}{2}\right\rfloor, z+1\right)$ and $\left(n+1+\left\lfloor\frac{n-1}{2}\right\rfloor, z+1\right)$.

The remaining vertices of Y and Z are labeled as in the table below (listed from the position closest to the pivot out).

parameters	rest of Y	rest of Z
$(30: 39,11,9)$	$791113-531135$	791113
$(31: 37,13,11)$	$1113971135-3795$	1113
$(34: 39,15,13)$	$1315119731135-79115$	1315
$(35: 45,13,11)$	$911131575-113573$	9111315
$(50: 61,19,19)$	$1513171921235119735-313157911$	1719212311
$(51: 63,19,19)$	$1513171921235119735-313157911$	1719212311

7.4 For the following windmills, modify the above construction by using the indicated label for vertex $\left(2+2\left\lfloor\frac{n-1}{2}\right\rfloor, z+1\right)$ on X and the corresponding vertex on Y.

parameters	$\left(2+2\left\lfloor\frac{n-1}{2}\right\rfloor, z+1\right)$	Y	rest of Z
$\left.\begin{array}{l}(34: 41,13,13) \\ (35: 43,13,13)\end{array}\right\}$	15	117139517153753119	131711
$(35: 39,15,15)$	13	15171197113135379115	1517

7.5 The labelings for the following windmills are similar to those above except the long run of labels starts with the first vertex of X rather than the second. Use
i) $(n-j)$ in $(1+2 j, z+1)$ and $(n+1+j, z+1)$, for $j=0,1, \ldots,\left\lfloor\frac{n-3}{2}\right\rfloor$;
ii) the double of the extended sequence (for brevity we use $k-\mathcal{S}_{n}$ for a k-ext \mathcal{S}_{n}) given in the table for the even positions on X;
iii) the label given in column iii of the table for vertex $\left(1+2\left\lfloor\frac{n-1}{2}\right\rfloor, z+1\right)$ on X and the hole in the extended sequence of ii.

parameters	even	iii	Z	Y
$(38: 49,13,13)$	$9-\mathcal{S}_{9}$	19	711131517357311520	205111315175
$(39: 51,13,13)$	$9-\mathcal{S}_{9}$	17	9117131532019371111	59131519520
$(42: 53,15,15)$	$10-\mathcal{S}_{10}$	21	111315171997311311 2279	225131517195
$(43: 55,15,15)$	$12-\mathcal{S}_{10}$	19	11131793217311112297	225131517215
$(54: 69,19,19)$	$13-\mathcal{S}_{13}$	27	1315171921232511951 13135328911	71517192123 257
$(55: 71,19,19)$	$15-\mathcal{S}_{13}$	25	13111517192123928275 3111335911	71517192123 27728

7.6 A variation of the last labeling can be used for $\mathrm{W}(42: 55,15,13)$:
i) $(42-j)$ in $(1+2 j, 14)$ and $(43+j, 14)$, for $j=0, \ldots, 13$;
ii) $(42-j)$ in $(1+2 j, 14)$ and $(55,26-j)$, for $j=14, \ldots, 19$;
iii) a doubled 10 -ext \mathcal{S}_{10} in vertices $(2+2 j, 14)$, for $j=0, \ldots, 20$;
iv) 21 in vertices $(20,14)$ and $(41,14)$.
Y and Z are filled (from the pivot out), respectively with 9711131517193793 111122 and 225131517195.

Acknowledgement

The authors wish to thank Matthew Chiasson, Mount Allison University, for many helpful discussions.

References

[1] C. A. Baker, Extended Skolem sequences, J. Combin. Des. 3 (1995), 363-379.
[2] Catharine Baker, Anthony Bonato, Patrick Kergin, Skolem arrays and Skolem labellings of ladder graphs, Ars Combin. 63 (2002), 97-107.
[3] Vaclav Linek and Zhike Jiang, Extended Langford sequences with small defects, J. Combin. Theory Ser. A 84 (1998), 38-54.
[4] Vaclav Linek and Shai Mor, On partitions of $\{1, \ldots, 2 m+1\} \backslash\{k\}$ into differences $d, \ldots, d+m-1$: extended Langford sequences of large defect, J. Combin. Des. 12 (2004), 421-442.
[5] E. Mendelsohn and N. Shalaby, Skolem labelled graphs, Discrete Math. 97 (1991), 301-317.
[6] E. Mendelsohn and N. Shalaby, On Skolem labelling of windmills, Ars Combin., 53 (1999), 161-172.
[7] E. S. O'Keefe, Verification of a conjecture of Th. Skolem, Math Scand., 9 (1961), 80-82.
[8] N. Shalaby The existence of near-Skolem and hooked near-Skolem sequences, Discrete Math. 135 (1994), 303-319.
[9] J. E. Simpson, Langford sequences: Perfect and hooked, Discrete Math. 44 (1983), 97-104.
[10] Th. Skolem, On certain distributions of integers in pairs with given differences, Math. Scand. 5 (1957) 57-68.

[^0]: * Supported by an NSERC Discovery Grant.
 \dagger Supported by an NSERC USRA.

