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Abstract

A graph on 2n vertices can be Skolem-labeled if the vertices can be given
labels from {1, . . . , n} such that each label i is assigned to exactly two
vertices and these vertices are at distance i. Mendelsohn and Shalaby
have characterized the Skolem-labeled paths, cycles and windmills (of
fixed vane length). In this paper, we obtain necessary conditions for the
Skolem-labeling of generalized k-windmills in which the vanes may be of
different length. We show that these conditions are sufficient in the case
where k = 3 and conjecture that any generalized k-windmill, k > 3, can
be Skolem-labeled if and only if it satisfies these necessary conditions.

1 Introduction

Skolem-type sequences are integer sequences which contain two occurrences of each
distinct entry, n, located n positions apart. These sequences have well-known connec-
tions with Steiner triple systems and with solutions to Heffter’s difference problem.
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In 1991, Mendelsohn and Shalaby [5] generalized this idea to graphs and noted
that the Skolem-labeling of a graph could be used to design schemes for testing a
communications network for node, link and distance reliability. In essence, a Skolem-
labeled graph is a higher dimensional analogue of a Skolem sequence. Each label,
n, is an integer which is used to label two vertices located at distance n. They also
provided a characterization of the paths and cycles that can be Skolem-labeled. In
[2], Baker, Bonato and Kergin approached the problem from the opposite direction
and considered a two-dimensional analogue of a Skolem sequence. In doing so, they
actually provided necessary and sufficient conditions for the existence of a Skolem-
labeling of a 2 × n ladder graph.

In [6], Mendelsohn and Shalaby extended this work to k-windmills; i.e., trees with
k disjoint paths of equal length emanating from a central vertex. They showed that
k must equal 3 and that the 3-windmills that can be Skolem-labeled are precisely
those that meet a particular parity condition. One obvious generalization is to the
more realistic situation of generalized k-windmills, where the vanes need not be of
the same length. Once this length restriction is removed, there are generalized k-
windmills which can be Skolem-labeled for each value k.

In this paper, we explore the parity and nondegeneracy conditions which are neces-
sary for the Skolem-labeling of generalized k-windmills. We then prove that in the
case of generalized 3-windmills, these conditions are also sufficient.

2 Skolem-type Sequences

2.1 Definitions and Existence Results

Skolem and other related sequences are tools used in the Skolem-labeling of graphs,
so we provide a list of definitions and existence results.

A Skolem-type sequence is a sequence (si)i∈I of integers from a set J with the Skolem
property:

for every j ∈ J, there exists a unique i ∈ I such that si = si+j = j.

For a Skolem sequence of order n, denoted Sn, J = {1, . . . , n} and I = {1, . . . , 2n}.
Such a sequence exists if and only if n ≡ 0, 1 (mod 4) [10].

For a k-extended Skolem sequence of order n , denoted k-ext Sn, which has an empty
space (called a hook or zero) in position k, J = {1, . . . , n} and I = {1, . . . , 2n + 1} \
{k}. Such a sequence exists [1], [7] if and only if either:

k is odd and n ≡ 0, 1 (mod 4), or k is even and n ≡ 2, 3 (mod 4).

A hooked Skolem sequence, hSn, is just a 2n-extended Skolem sequence.
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The sequence is an m-near Skolem [hooked Skolem] sequence of order n, denoted m-
near Sn [m-near hSn] if J = {1, . . . , n} \ {m}. An m-near Skolem sequence of order
n exists [8] if and only if either:

m is odd and n ≡ 0, 1 (mod 4), or m is even and n ≡ 2, 3 (mod 4).

For an m-near hooked Skolem sequence, the parity of m above is reversed.

If J = {d, . . . , m + d − 1}, the sequence is a [hooked] Langford sequence of length m
and defect d, Lm

d [hLm
d ]. A Langford sequence of length m and defect d exists [9] if

and only if

1) m ≥ 2d − 1 (the size constraint) and

2) m ≡ 0, 1 (mod 4) for d odd or m ≡ 0, 3 (mod 4) for d even.

A hooked Langford sequence of length m and defect d exists [9] if and only if

1) m(m + 1 − 2d) + 2 ≥ 0 and

2) m ≡ 2, 3 (mod 4) for d odd or m ≡ 1, 2 (mod 4) for d even.

A k-extended Langford sequence, k-ext Lm
d , is defined in the obvious way. The fol-

lowing conditions are necessary for the existence of a k-ext Lm
d [4]:

1) m ≥ 2d − 3 and m(2d − 1 − m)/2 + 1 ≤ k ≤ m(m − 2d + 5)/2 + 1

2) (m, k) ≡ (0, 1), (1, d), (2, 0), (3, d + 1) (mod (4, 2)).

These conditions are sufficient for small defects, d = 1, 2, 3, 4, or d ≤ (m + 4)/8 and
for large defects d = (m + 1)/2, m/2, (m − 1)/2 [3], [4].

2.2 A useful symmetric Langford sequence

Define A2d−1
d to be the sequence with:

i in positions i and 2i, for i = d, d + 1, . . . , 2d − 1, and

2d + i in positions 1 + i and 2d + 2i + 1, for i = 0, 1, . . . , d − 2.

For example, A5
3 is the sequence 6 7 3 4 5 3 6 4 7 5.

This sequence has some interesting properties.

1) Each of the entries, d, . . . , 3d− 2 occurs once in the first half of the sequence and
once in the second. In fact, a Langford sequence, Lm

d , can only have this symmetric
property if m = 2d − 1. To see this, note that an entry j occurs in positions aj in
the first half of the sequence and aj + j in the second half, so

m(m + 2d − 1)/2 =
m+d−1

∑

j=d

j
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=
m

∑

j=d

(aj + j) −
m

∑

j=d

aj

=
2m
∑

i=m+1

i −
m

∑

i=1

i

= m2

2) The second occurrence of an entry p ∈ {d, d + 1, . . . , 2d− 1} can be moved to the
beginning of the sequence to create a (2p+1)-ext L2d−1

d . The reverse of this sequence
is a (4d − 2p − 1)-ext L2d−1

d .

3) This sequence can be used to create a new sequence with multiple holes in the
middle by adding a fixed k ∈ N to each entry and inserting k holes in the middle.
This sequence is denoted by A2d−1

d + k.

For example, 67345|36475

46734536-75 is a 9-ext L5
3 , 57-63543764 is a 3-ext L5

3

A5
3 + 2 is 89567 −− 58697.

Property 3) will be extremely useful in some of the labeling techniques that follow.

3 Skolem-labeled windmills

A k-windmill is a tree consisting of k paths of equal positive length, called vanes,
which meet at a central vertex called the pivot. For clarity, we will often refer to
these windmills as ordinary windmills.

A generalized k-windmill (gk-windmill) is a windmill in which the k vanes may be of
different positive lengths.

A graph on 2n vertices can be (weakly) Skolem-labeled if each of the vertices can
be assigned a label from the set J = {1, . . . , n} such that exactly two vertices at
distance j are labeled j, for each j ∈ J . The Skolem-labeling is strong if the removal
of any edge destroys the Skolem-labeling, see the figures below.

Figure 1: A Skolem-labeling that is not strong.

t4 t2 t3 t2 t4 t3
t1

t1

t4 t2 t3 t2 t4 t3
t1

t1
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Figure 2: A strong Skolem-labeling for the same graph.

t4 t1 t1 t2 t3 t2
t3

t4

3.1 Elementary properties

A gk-windmill, which must contain at least k+1 vertices, can only be Skolem-labeled
if |V | is even. In addition, in order to use the label n, there must be a path of length
at least n. (This is the part of the Degeneracy Condition of [6] that applies to the
gk-windmills.)

For g3- and g4-windmills, this will always be the case as the path along the longest
two vanes is of length at least ⌈2(2n − 1)/4⌉ ≥ n.

An ordinary (i.e., not generalized) k-windmill can only be Skolem-labeled if (2n−1)/k
is an integer and if the length of the longest path 2(2n−1)/k is greater than or equal
to n. So only 3-windmills can be Skolem-labeled.

3.2 Skolem parity

In [6], the authors defined the following Skolem parity condition and showed that it
was necessary for the existence of a Skolem-labeling of any tree.

The Skolem parity of a vertex u of a tree T = (V, E) is

∑

v∈V

d(u, v) (mod 2),

where d(u, v) is the length of the path from u to v.

Lemma 1 [6] If T is a tree on 2n vertices, then the Skolem parity is independent of
the choice of vertex u.

Lemma 2 (Skolem parity condition) [6] If T is a Skolem-labeled tree on 2n ver-
tices, then either

1) the Skolem parity of T is even and n ≡ 0, 3 (mod 4) or

2) the Skolem parity of T is odd and n ≡ 1, 2 (mod 4).

In the case of gk-windmills, the Skolem parity condition reduces to the following
simple condition.
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Theorem 3 If G is a Skolem-labeled gk-windmill with 2n vertices and k vanes, m
of which are of odd length, then either:

1) n ≡ 0, 1 (mod 4) and m ≡ 1 (mod 4) or

2) n ≡ 2, 3 (mod 4) and m ≡ 3 (mod 4).

Proof. Suppose G = (V, E) is a Skolem-labeled gk-windmill with vanes of length
x1, . . . , xk. Using the pivot p to calculate the Skolem parity, we obtain

∑

v∈V

d(p, v) =
k

∑

i=1

xi(xi + 1)/2

= 1/2[
∑

x2
i +

∑

xi]

= 1/2[
∑

x2
i + (2n − 1)]

= 1/2[
∑

x2
i − 1] + n

Since this is an integer, the number of odd vanes must be odd. Then by Lemma 2,

number of odd vanes ≡ 1 (mod 4) ⇐⇒
∑

x2
i − 1 ≡ 0 (mod 4) ⇐⇒ n ≡ 0, 1 (mod 4)

number of odd vanes ≡ 3 (mod 4) ⇐⇒
∑

x2
i −1 ≡ 2 (mod 4) ⇐⇒ n ≡ 2, 3 (mod 4).

Therefore, an ordinary k-windmill, G can only be Skolem-labeled if its k = 3 equal
vanes all have odd length m = (2n− 1)/3. Hence n ≡ 2, 3 (mod 4) and 2n ≡ 1 (mod
3), so 2n ≡ 4, 22 (mod 24) and m ≡ 1, 7 (mod 8) as in [6].

3.3 Nondegeneracy condition

In general, the conditions that we have identified above are not sufficient to guarantee
that a gk-windmill can be Skolem-labeled. Although having a path of length at least
n guarantees that the label n can be placed, it does not guarantee that n−1 can also
be placed. The graph given below meets the Skolem parity condition since n = 5 = m
and it contains a path of length n = 5; however, it cannot be Skolem-labeled, so an
additional condition is required.

Theorem 4 (Nondegeneracy condition) If G is a Skolem-labeled gk-windmill
with 2n vertices and vanes of length x1, . . . , xk, then

n(n + 1) ≤
k

∑

i=1

xi(xi + 1).
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Figure 3: A graph in which 4 cannot be placed.
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Proof. Let G = (V, E) be a Skolem-labeled gk-windmill with 2n vertices, vanes
y1, . . . , yk of length x1, . . . , xk, respectively, and pivot p. Each vertex v 6= p can be
denoted by a pair (i, j) where v is on vane yi and j = d(v, p). Let p be denoted by
(0, 0).

Since G is Skolem-labeled, each element m ∈ {1, . . . , n} is associated with 2 vertices
(i, j), (i′, j′) where d((i, j), (i′, j′)) = m. Then

m =

{

j + j′ if i 6= i′

| j − j′ | if i = i′.

}

Summing over all the labels, we obtain

n(n + 1)/2 =
n

∑

m=1

m =
∑

i6=i′

(j + j′) +
∑

i=i′

| j − j′ | ≤
n

∑

m=1

(j + j′).

Since this last sum is just the sum of the distances from each of the vertices to the
pivot, we could calculate this vane-by-vane, so

n(n + 1)/2 ≤
n

∑

m=1

(j + j′) =
k

∑

i=1

xi(xi + 1)/2.

Theorem 5 Any g3- or g4-windmill satisfies the nondegeneracy condition.

Proof. Let G be a gk-windmill with 2n vertices and vanes of length x1, . . . , xk. Since

k
∑

i=1

xi(xi + 1)/2 =
k

∑

i=1

xi
∑

j=1

j,

and
xk
∑

j=1

j +
xt
∑

j=1

j ≤
xk−1
∑

j=1

j +
xt+1
∑

j=1

j, if xk ≤ xt,

∑k
i=1 xi(xi + 1)/2 attains a minimum when the vertices are as evenly distributed

among the vanes as possible.
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If k = 3, n must be at least 2 and

3
∑

i=1

xi(xi + 1) ≥ 3(
2n − 1

3
)(

2n − 1

3
+ 1) ≥ n(n + 1).

If k = 4, 2n−1
4

is never an integer. If n = 2s, the most even distribution of the vertices
would be s, s, s, s − 1; if n = 2s + 1, it is s + 1, s, s, s. Hence, in each of these cases,

k
∑

i=1

xi(xi + 1) ≥ n(n + 1).

Remark 1 Once k > 4, however, the nondegeneracy condition is not automatically
satisfied. A g5-windmill with vanes of lengths 2, 2, 2, 2, 1 fails the nondegeneracy
condition as does the g6-windmill illustrated above.

Remark 2 Note that n(n + 1) =
∑k

i=1 xi(xi + 1) only when no label appears twice
on the same vane. This implies that 1 must be used to label the pivot plus one
adjacent vertex and the two 2’s must straddle the pivot, so the only g3-windmill of
this type is the ordinary 3-windmill with vanes of length 1.

In the remainder of the paper, we show that every g3-windmill that satisfies the
Skolem parity condition can be Skolem-labeled. We also make the following conjec-
ture.

Conjecture 1 Any gk-windmill that satisfies the Skolem parity and nondegeneracy
conditions can be Skolem-labeled.

4 Labeling techniques for g3-windmills

Let G = W (n : x, y, z) be a generalized 3-windmill, on 2n vertices, with vanes X,
containing x vertices, Y containing y and Z containing z vertices, where x ≥ y ≥ z.
Then

2n = x + y + z + 1.

For ease in identifying the vertices, we place the graph on a grid and use the following
coordinate system:

X contains vertices (1, z + 1) to (x, z + 1),

Y contains vertices (x + 2, z + 1) to (x + 1 + y, z + 1),

Z contains vertices (x + 1, 1) to (x + 1, z)

p, the pivot, is located at (x + 1, z + 1).
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4.1 Pruning

Let G be a generalized windmill. If we can use the largest labels to label the vertices
at the extreme ends of two vanes, we can reduce the problem to finding a Skolem
labeling for a smaller tree. In essence, we will have pruned the original tree. In this
section, we define a pruning algorithm that works for g3-windmills. We note that
variations of the pruning algorithm work for other gk-windmills.

Let G be a g3-windmill on 2n vertices with x < n. Note that x ≥ 2n−1
3

. Define

d = n − x and construct A2d−1
d . This sequence has largest entry 3d − 2. Since the

largest label to be used is n, define k = n − 3d + 2, which is greater than zero as
x ≥ 2n−1

3
. The sequence A2d−1

d + k has length 2(2d− 1) + k = 4d− 2 + n− 3d + 2 =
2n − x = y + z + 1 and contains entries d + k = n − 2d + 2, . . . , n which are placed
in the 2d − 1 positions at either end of the sequence. The middle k positions are
empty. If we use this sequence to label the path consisting of Y , the pivot and Z,
then the last 2d− 1 positions of Y and Z will be labeled and we are left with a tree
on 2n−2(2d−1) = 3x−y−z+1 vertices. Note that the pivot is never labeled in this
procedure since 2d−1 = 2n−2x−1 = x+y+z+1−2x−1 = y+z−x = z−(x−y) ≤ z,
so we are left with either a g3-windmill or a path.

Example 1 Let G = W (12 : 9, 8, 6). Then d = 3 and k = 5. We use the sequence,
A5

3 + 5, which is
11 12 8 9 10 −−−−− 8 11 9 12 10,

to assign labels to the 5 vertices at the ends of the Y Z-path. Once we remove these
vertices the resulting graph is W (7 : 9, 3, 1).

Theorem 6 Let G be a g3-windmill on 2n vertices, with x < n, and G′ be the tree
produced by pruning G. Then G satisfies the Skolem parity condition if and only if
G′ is either a g3-windmill which satisfies the Skolem parity condition or a path which
can be Skolem-labeled.

Proof. Let G be a g3-windmill on 2n vertices with x < n and G′ the tree produced
by pruning G. Then G′ contains 2n′ = 4x − 2n + 2 vertices arranged on vanes of
length x′ = x, y′ = y − 2d + 1 and z′ = z − 2d + 1. Note that y′ and z′ have the
opposite parity to y and z. This tree will be a g3-windmill unless z = 2d − 1.

Suppose that G satisfies the Skolem parity condition.

If n ≡ 2 or 3 (mod 4), then x, y and z are all odd. After pruning, only x′ is odd and
n′ = 2x′ − n + 1 ≡ 1 or 0 (mod 4), respectively. Then if z′ > 0, G′ is a g3-windmill
which satisfies the Skolem parity condition. If z′ = 0, then G′ can be labeled by a
Skolem sequence of order n′.

If n ≡ 0 or 1 (mod 4) and x is odd, then y and z are even. After pruning, x′, y′

and z′ are all odd and n′ = 2x′ − n + 1 ≡ 3 or 2 (mod 4), respectively, so G′ is a
g3-windmill which satisfies the Skolem parity condition.
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If n ≡ 0 or 1 (mod 4) and x is even, then one of y and z is even and the other
is odd. After pruning, x′ will still be even, as will exactly one of y′ and z′, and
n′ = 2x′ − n + 1 ≡ 1 or 0 (mod 4), respectively. If z′ > 0, then G′ is a g3-windmill
which satisfies the Skolem parity condition. If z′ = 0, then G′ can be labeled by a
Skolem sequence of order n′.

Now suppose that G′ is a g3-windmill which satisfies the Skolem parity condition.

If n′ ≡ 2 or 3 (mod 4), then x′, y′ and z′ are all odd, so x is odd and y and z are
even. Then n = 2x − n′ + 1 ≡ 1 or 0 (mod 4), respectively. Hence, G satisfies the
Skolem parity condition. If n′ ≡ 0 or 1 (mod 4) and x′ is odd, then y′ and z′ are
both even and x, y, z are all odd, so n = 2x − n′ + 1 ≡ 3 or 2 (mod 4), respectively.
Hence, G satisfies the Skolem parity condition.

If n′ ≡ 0 or 1 (mod 4) and x′ is even, then exactly one of y′ and z′ is even and the
other is odd, so x is even and exactly one of y and z is even and the other odd. Then
n = 2x − n′ + 1 ≡ 1 or 0 (mod 4), respectively, and G satisfies the Skolem parity
condition.

Finally, suppose that G′ is a path (so z = 2d − 1) which can be Skolem-labeled. So
n′ ≡ 0 or 1 (mod 4). Since 2n′ = x′ + y′ + 1, exactly one of x′ and y′ must be odd.
If x′ is odd, then y = y′ + z and z are also both odd and n = 2x − n′ + 1 ≡ 3 or 2
(mod 4), respectively. If y′ is odd, then y = y′ + z is even, x is even, z is odd and
n = 2x − n′ + 1 ≡ 1 or 0 (mod 4). Hence G satisfies the Skolem parity condition.

Remark 3 Since a g3-windmill can only be pruned if n > x, a g3-windmill cannot be
pruned more than once. After the pruning, n′ = 2x−n+1 = x−(n−x−1) ≤ x = x′.

4.2 Direct labeling techniques

Let G = W (n : x, y, z) be a g3-windmill which satisfies the Skolem parity condition.
Then G has exactly one vane of odd length if n ≡ 0, 1(mod 4) and three vanes of
odd length if n ≡ 2, 3(mod 4). We provide a number of labeling techniques.

4.2.1 n ≡ 0, 1 (mod 4), z even

In this group, a [near] Skolem sequence is used to label Z, while a [hooked] Langford
sequence, [plus the omitted labels from the near Skolem sequence], are used on the
XY -path.

a) n ≡ 0, 1 (mod 4), z ≡ 0, 2 (mod 8).

Place a L
(x+y+1)/2
(z+2)/2 on the XY -path and a Sz/2 on Z.

Since z/2 ≡ 0, 1 (mod 4), this Skolem sequence clearly exists, so we need only verify
that the Langford sequence exists. Since n ≡ 0, 1 (mod 4), G has exactly one vane, X
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or Y , of odd length. In either case, x ≥ y+1 ≥ z+1, which implies x+y+1 ≥ 2z+2,
so the size constraint is satisfied. If z ≡ 0 (mod 8),

(z + 2)/2 is odd and (x + y + 1)/2 = (2n − z)/2 ≡ 0 or 1 (mod 4);

if z ≡ 2 (mod 8), then

(z + 2)/2 is even and (x + y + 1)/2 ≡ 3 or 0 (mod 4).

b) n ≡ 0, 1 (mod 4), z ≡ 2, 4 (mod 8), (2n − 8)/3 ≥ z.

Place a hL
(x+y−1)/2
(z+4)/2 on the XY -path, leaving the vertices (x − 1 + y, z + 1) and

(x + 1 + y, z + 1) at the end of Y unlabeled. Label these two vertices 2. Place a
2-near S(z+2)/2 on Z.

Since (2n − 8)/3 ≥ z,

(x + y − 1)/2 = (2n − z − 2)/2 ≥ (3z + 8 − z − 2)/2 = z + 3 = 2[(z + 4)/2] − 1.

If z ≡ 2 (mod 8), then

(z + 4)/2 is odd and (x + y − 1)/2 = (2n − z − 2)/2 ≡ 2 or 3 (mod 4);

if z ≡ 4 (mod 8), then

(z + 4)/2 is even and (x + y − 1)/2 ≡ 1 or 2 (mod 4).

c) n ≡ 0, 1 (mod 4), z ≡ 0, 6 (mod 8), (2n − 8)/3 ≥ z.

Place a L
(x+y−1)/2
(z+4)/2 on the XY -path, leaving the last two vertices of Y unlabeled.

Label these vertices 1. Place a 1-near S(z+2)/2 on Z.

As in construction b, (x + y − 1)/2 ≥ z + 3. If z ≡ 0 (mod 8),

(z + 4)/2 is even and (x + y − 1)/2 = (2n − z − 2)/2 ≡ 3 or 0 (mod 4);

if z ≡ 6 (mod 8),

(z + 4)/2 is odd and (x + y − 1)/2 ≡ 0 or 1 (mod 4).

4.2.2 n ≡ 0, 1 (mod 4), y even

This is similar to 4.2.1 above except that the [near] Skolem sequence is placed on
Y . Since y is even, either x or z must be odd. Existence of the given sequences is
verified as in 4.2.1.

a) n ≡ 0, 1 (mod 4), y ≡ 0, 2 (mod 8), (2n − 2)/3 ≥ y.

Place a L
(x+z+1)/2
(y+2)/2 on the XZ-path and a Sy/2 on Y .
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b) n ≡ 0, 1 (mod 4), y ≡ 2, 4 (mod 8), (2n − 8)/3 ≥ y.

Place a hL
(x+z−1)/2
(y+4)/2 on the XZ-path leaving the vertices (x + 1, 3) and (x + 1, 1)

unlabeled. Label them 2. Put a 2-near S(y+2)/2 on Y .

c) n ≡ 0, 1 (mod 4), y ≡ 0, 6 (mod 8), (2n − 8)/3 ≥ y.

Place a L
(x+z−1)/2
(y+4)/2 on the XZ-path leaving vertices (x+1, 2) and (x+1, 1) unlabeled.

Label these vertices 1. Put a 1-near S(y+2)/2 on Y .

4.2.3 Long X-vanes

A [hooked] Langford sequence is used to label the long X-vane plus one or two
additional vertices and the remaining vertices are covered by an extended Skolem
sequence.

a) n ≡ 2, 3 (mod 4), y + z ≡ 4, 6 (mod 8), x ≥ (4n − 1)/3.

Place a L
(n−((y+z+2)/2)+1)
(y+z+2)/2 on X and the pivot and a (z + 1)-ext S(z+y)/2 along the

ZY -path.

Since n − (y + z + 2)/2 + 1 = (x + 1)/2, we have (x + 1)/2 ≥ y + z + 1 whenever
x ≥ (4n − 1)/3. If y + z ≡ 4 (mod 8), then

(y + z)/2 ≡ 2 (mod 4), (y + z + 2)/2 is odd and

n − (y + z + 2)/2 + 1 ≡ 0 or 1 (mod 4).

If y + z ≡ 6 (mod 8), then

(y + z)/2 ≡ 3 (mod 4), (y + z + 2)/2 is even and

n − (y + z + 2)/2 + 1 ≡ 3 or 0 (mod 4).

b) n ≡ 2, 3 (mod 4), y + z ≡ 0, 2 (mod 8), x ≥ (4n − 1)/3.

Place a hL
(n−((y+z+2)/2)+1)
(y+z+2)/2 on X plus the pivot and vertex (x + 2, z + 1) of Y and a

(z + 2)-ext S(z+y)/2 along the ZY -path.

If y + z ≡ 0 (mod 8), then

(y + z)/2 ≡ 0 (mod 4), (y + z + 2)/2 is odd and

n − (y + z + 2)/2 + 1 ≡ 2 or 3 (mod 4).

If y + z ≡ 2 (mod 8), then

(y + z)/2 ≡ 1 (mod 4), (y + z + 2)/2 is even and

n − (y + z + 2)/2 + 1 ≡ 1 or 2 (mod 4).
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4.2.4 Short Z-vanes

In this construction, we label windmills with relatively short Z-vanes by using:
A2d−1

d + (n − 3d + 2), for a suitable choice of d given below, to label [most of] Z
plus a block of vertices near the middle of X with labels n − 2d + 2 to n, inclusive.

a) n ≡ 0, 3 (mod 4) and z ≡ 3 (mod 4) or n ≡ 1, 2 (mod 4) and z ≡

1 (mod 4) .

Let d = z+1
2

. A2d−1
d + (n − 3d + 2) can be used to label Z and some vertices on X,

see ovals in the diagram. There are two remaining paths denoted by B and C, see
the figure below.

�
�

�
�

r�

�

�

�

B C

The path labeled B contains

x − (2d − 1) − (n − 3d + 1) = x + d − n =
x − y

2
vertices.

If n ≡ 0 (mod 4) and z ≡ 3 (mod 4), then x must be even, so x + d − n is even and
x − y ≡ 0 (mod 4). This holds in each case.

If (x−y)/4 ≡ 0 or 1 (mod 4), then Sx−y

4

exists and can be used to label the (x−y)/2

vertices of B. The path C contains

x + y + 1 − z −
(

x − y

2

)

= 2n − 2z −
(

x − y

2

)

vertices

which can be labeled using a L
n−z−( x−y

4 )
x−y

4
+1

. This sequence exists for all cases of n and

z under consideration provided that

2
(

x − y

4
+ 1

)

− 1 ≤ n − z −
(

x − y

4

)

⇐⇒ 2x − 2y + 8 − 4 ≤ 4n − 4z − x + y

⇐⇒ 3x − 3(2n − x − z − 1) + 4z + 4 ≤ 4n

⇐⇒ 6x + 7z + 7 ≤ 10n.

A similar discussion can be used if (x − y)/4 ≡ 2 or 3 (mod 4). The results are
summarized in the following table.
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(x−y)/4 B C size constraint
(mod 4)

0, 1 Sx−y

4

L
n−z−( x−y

4 )
x−y

4
+1

10n ≥ 6x + 7z + 7

3 1-near Sx−y

4
+1 1 1 then L

n−z−( x−y

4 )−1
x−y

4
+2

10n ≥ 6x + 7z +19

2 2-near Sx−y

4
+1 2−2 hooked into hL

n−z−( x−y

4 )−1
x−y

2
+2

10n ≥ 6x + 7z +19

b) n ≡ 0, 3(mod 4) and z ≡ 1(mod 4) or n ≡ 1, 2(mod 4) and z ≡

3(mod 4) .

Let d = z−1
2

. Then A2d−1
d +(n−3d+2) can be used to label 2d−1 = z−2 vertices of

Z plus z − 2 vertices near the middle of X. The remaining vertices of Z are labeled
1 (location given below for each case). There are two possibilities:

i) 1 in (x + 1, z) and (x + 1, z − 1) :

Then B contains

x − (2d − 1) − (n − 3d − 1) = x + d − n + 2 =
x − y + 2

2
vertices.

In each case, x + d − n + 2 is even, so x − y + 2 ≡ 0(mod 4).

ii) 1 in (x + 1, 1) and (x + 1, 2) :

Then B contains

x − (2d − 1) − (n − 3d + 1) = x + d − n =
1

2
(x − y − 2) vertices

and x − y − 2 ≡ x − y + 2 ≡ 0(mod 4).

The labelings are summarized in the table below:

(x − y + 2)/4 (mod 4) B C size constraint

0,3 use i) 1-near Sx−y+2

4
+1 L

n−z−( x−y+2

4 )+1
x−y+2

4
+2

10n ≥ 6x + 7z + 17

1 use ii) 1-near Sx−y+2

4

L
n−z−( x−y+2

4 )+2
x−y+2

4
+1

10n ≥ 6x + 7z + 13

2 use ii) L
x−y+2

4
−1∗

3 2−2 hooked into 10n ≥ 6x + 7z + 17

hL
n−z−( x−y+2

4 )+1
x−y+2

4
+2

∗22 ≤ x − y

In order to use the last construction, 5 ≤ x−y+2
4

− 1, so 22 ≤ x− y (which forces n to
be quite large). However, the only smaller case occurs when x−y+2

4
= 2, so x−y = 6.

We adapt the construction in a) to cover W (n : x, x − 6, z).

Let d = z+1
2

and use A2d−1
d +(n−3d+2) to label the vertices of Z plus some vertices

of X. We have used labels n − 2d + 2 to n inclusive. Then B contains
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x − (2d − 1) − (n − 3d + 1) = x + d − n =
1

2
(x − y) = 3 vertices.

If d 6= n
4
, label (1, z+1), (n−2d+2, z+1) with the next largest label, n−2d+1, put

1’s in (2, z+1) and (3, z+1) and use a (n−2z−2)-ext Ln−z−2
2 to label the remaining

vertices. Otherwise, put n−2d+1 in (3, z+1) and (n−2d+4, z+1), 1’s in (1, z+1)
and (2, z + 1) and use a (n − 2z)-ext Ln−z−2

2 for the remaining vertices. The only
constraint here is that 3 ≤ n− z − 2 or z ≤ n− 5. If n ≥ 8, then n− 5 ≥ ⌊n−1

2
⌋ ≥ z.

Since y ≥ 1, 7 ≤ x < 4n−1
3

and 6 ≤ n. If n = 7, then z ≤ ⌊n−1
2
⌋ and z ≡ 1(mod 4)

imply that z = 1 ≤ 2 = 7 − 5, which satisfies the constraint.

4.2.5 Long Z-vanes, n ≡ 2, 3(mod 4)

Here we are interested in relatively large values of z, where x ≥ n. If n ≡ 2, 3(mod 4),
then x, y and z are all odd.

In this group, X, the pivot and part of Z are labeled by a [hooked] Langford sequence
of defect d. The label d − 1 is used to deal with the problem that y and z are odd.
The remaining vertices are labeled using smaller sequences.

We illustrate this first with an example. Consider W (19 : 21, 9, 7). Use any L13
7 (for

example, A13
7 ) to label X, the pivot and the 4 vertices of Z closest to the pivot.

Use 6 to label vertices (22,3) and (23,8), leaving an even number of unlabeled vertices
on both Y and Z.

14 15 16 . . . 16 10 17 11 6 - - - - - - - -
18
12
19
13
6
-
-

Use S1 and L4
2 to label the remaining vertices of Z and Y , respectively.

More generally, suppose that Ln+1−d
d , for some d, is used to label X, the pivot and

the vertices (x + 1, z), . . . , (x + 1, z − d + 4) of Z; the vertices (x + 1, z − d + 3) and
(x + 2, z + 1) are labeled d − 1. Then

2n + 2 − 2d = x + 1 + d − 3

so
3d = x + y + z + 3 − x + 2

d =
y + z + 5

3
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Hence, y + z ≡ 1(mod 3); however, both y and z are odd, so y + z ≡ 4(mod 6)
and d must be odd. This forces n − 1 + d ≡ 0, 1(mod 4). Since n ≡ 2, 3(mod 4),
d ≡ 3(mod 4) and so y + z ≡ 4(mod 12).

For the Ln+1−d
d to exist, n + 1 − d ≥ 2d − 1 which implies that x ≥ n + 2. To use

the sequence in this way, we must also ensure Z is long enough to accommodate
the required vertices, so z ≥ d − 2 = y+z−1

3
which implies z ≥ y−1

2
. There are

x + z + 1 − 2(n + 1 − d) − 1 = 2d − y − 3 ≡ 3 − y(mod 8) unlabeled vertices on Z
and y − 1 on Y .

If y ≡ 1, 3(mod 8), then d − y−3
2

≡ 1, 0(mod 4), so Sd− y+3

2

can be used to finish

labeling Z and L
y−1

2

d− y+3

2
+1

can be used for Y whenever

2d − y − 3 + 1 ≤
y − 1

2
or equivalently 11 ≤ y + 4(y − z).

Similarly, if y ≡ 5 or 7(mod 8), then d − y+3
2

+ 1 ≡ 0 or 2(mod 4), respectively so
use a 1-near Sd− y+3

2
+1 or a 2-near Sd− y+3

2
+1, respectively. The unused entry (1 or

2) is used to label 2 vertices at one end of Y along with L
y−3

2

d− y+3

2
+2

or hL
y−3

2

d− y+3

2
+2

,

respectively. Here the constraint is

2d − y − 3 + 3 ≤
y − 3

2
or y + 4(y − z) ≥ 29.

We summarize this labeling.

a) y + z ≡ 4(mod 12), x ≥ n + 2 and y ≥ z ≥ y−1

2

Take d = y+z+5
3

; use

Ln+1−d
d for X, the pivot and (x + 1, z), . . . , (x + 1, z − d + 4);

d − 1 for (x + 1, z − d + 3) and (x + 2, z + 1); plus

y (mod 8) end of Z Y y + 4(y − z) ≥

1,3 Sd− y+3

2

L
y−1

2

d− y+3

2
+1

11

5 1-near Sd− y+3

2
+1 11L

y−3

2

d− y+3

2
+2

29

7 2-near Sd− y+3

2
+1 2 − 2 hooked into hL

y−3

2

d− y+3

2
+2

29

A similar discussion can be used for y + z ≡ 2, 0 (mod 12).

b) y + z ≡ 2(mod 12), x ≥ n + 1 and y ≥ z > y

2

Take d = y+z+4
3

; use
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hLn+1−d
d for X, the pivot and (x + 1, z), . . . , (x + 1, 2d − y − 2);

d− 1 for (x + 2, z + 1) and (x + 1, 2d− y − 1), which is the hook of hLn+1−d
d ;

plus

y (mod 8) end of Z Y y + 4(y − z) ≥

1,7 Sd− y+3

2

L
y−1

2

d− y+3

2
+1

7

3 1-near Sd− y+3

2
+1 11L

y−3

2

d− y+3

2
+2

25

5 2-near Sd− y+3

2
+1 2 − 2 hooked into hL

y−3

2

d− y+3

2
+2

25

c) y + z ≡ 0(mod 12), x ≥ n + 6 and y ≥ z > y

2

Take d = y+z+9
3

; use

Ln+1−d
d for X, the pivot and (x + 1, 2d − y − 1), . . . , (x + 1, z) plus

y d − 1 end of Z Y y+
(mod 8) 4(y−z) ≥

5,7 (x + 1, z − d + 4), 4-ext Sd− y+3

2

hL
y−1

2

d− y+3

2
+1

27

(x + 3, z + 1) (hook is filled by d−1)

1,3 (x + 1, z − d + 3), 5-ext Sd− y+3

2

L
y−1

2

d− y+3

2
+1

27

(x + 2, z + 1)

The appropriate 4- or 5-extended sequence must exist, so d− y+3
2

≥ 2 which implies
z ≥ y+3

2
. This also guarantees that Z is long enough to accommodate the sequences.

However, z 6= y+1
2

; otherwise 3y + 1 = 2y + y + 1 = 2y + 2z = 2(y + z) ≡ 0(mod 24);
a contradiction. So the construction holds for all z > y

2
.

Note that if y + z ≡ 0 (mod 12), then x 6= n, n + 3, n + 4; otherwise, n ≡ 3, 2, 3 (mod
4), respectively and y + z = 2n − 1 − x ≡ 2 (mod 4), a contradiction. The cases
x = n + 1, n + 2 are covered in 4.2.7, so the only outstanding case is x = n + 5.

Now suppose that x = n + 5. Then n ≡ 2 (mod 4) and y + z = n − 6, so this case
applies if n ≡ 6 (mod 12). Since z ≤ y+z

2
= n−6

2
and n−6

2
is even, z ≤ n−8

2
. Therefore,

10n − 6x − 7z ≥
1

2
(20n − 12n − 60 − 7n + 56)

=
1

2
(n − 4).

Since 1
2
(n − 4) ≥ 19 whenever n ≥ 42, 4.2.4 can be used for all n ≥ 42. For

each remaining case, W (n : n + 5, n − 6 − z, z), 16 < n < 42 (since x < 4n−1
3

),
n ≡ 6(mod 12), z is odd and z ≤ n−8

2
. This means that n = 30 and z ≤ 11 or n = 18

and z ≤ 5. In the first case, 10n − 6x − 7z ≥ 24 if z ≤ 9 and 10n − 6x − 7z ≥ 21
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is z ≤ 3, so 4.2.4 can be applied. This leaves W (30 : 35, 13, 11) and W (18 : 23, 7, 5),
see Appendix 1.

4.2.6 More Long Z-vanes, n ≡ 2, 3 (mod 4)

Once again, consider n ≡ 2, 3 (mod 4), so x,y and z are odd. This labeling is similar
to 4.2.5, but one label is moved from a vertex of Z to a vertex of Y to accommodate
the label d − 1.

Consider, first, W (19 : 19, 9, 9). Use any L13
7 (for example, A13

7 ) to label X, the pivot
and the 6 vertices of Z closest to the pivot.

14 15 16 . . . 15 9 16 10 - - - - - - - - -
17
11
18
12
19
13
-
-
-

Since 7 is the smallest label in L13
7 , no label can occur twice on the 6 vertices of Z

that we have labeled, so any of these labels could be moved to the corresponding
vertex on Y . Move the label 17 from vertex (20,9) to vertex (21,10), label vertices
(20,9) and (20,3) with 6 and use S1, and L4

2 to label the remaining vertices of Z and
Y , respectively.

14 15 16 . . . 15 9 16 10 17 - - - - - - - -
6
11
18
12
19
13
6
1
1

More generally as in 4.2.5, the value d is key to this labeling. First, use the 2(n +
1 − d) entries of Ln+1−d

d to label the x + 1 + d − 1 vertices of X, the pivot and
(x + 1, z), . . . , (x + 1, z − d + 2) of Z. Note that only d − 1 positions of Z are used,
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so no entry of Ln+1−d
d can occur twice on Z. Shift the label on vertex (x + 1, z) to

(x + 2, z + 1) and label vertices (x + 1, z − d + 1) and (x + 1, z) with d − 1. Since

2n + 2 − 2d = x + 1 + d − 1 (∗)

we have

3d = x + y + z + 3 − x and d =
y + z + 3

3
.

Hence, y + z ≡ 0 (mod 3); however both y and z are odd, so y + z ≡ 0(mod 6)
and d must be odd. This forces n + 1 − d ≡ 0, 1(mod 4). Since n ≡ 2, 3(mod 4),
d ≡ 3(mod 4) and so y + z ≡ 6(mod 12). The constraints here are:

n + 1 − d ≥ 2d − 1, so x ≥ n by (∗) and z > d − 1 =
y + z

3
, so z >

y

2
.

There are x+ z + 1− 2(n + 1− d)− 1 = 2d− y − 3 unlabeled vertices on z and y − 1
on Y which we label with appropriate sequences.

We summarize these labelings.

a) y + z ≡ 6 (mod 12), x ≥ n and y ≥ z > y

2

Take d = y+z+3
3

; use

Ln+1−d
d for X, the pivot and (x + 1, z), . . . , (x + 1, z − d + 2);

the label from (x + 1, z) for (x + 2, z + 1);

d − 1 for (x + 1, z) and (x + 1, z − d + 1); plus

y (mod 8) end of Z Y y + 4(y − z) ≥

1,3 Sd−( y+3

2 ) L
y−1

2

d−( y+3

2 )+1
3

5 1-near Sd−( y+3

2 )+1 11L
y−3

2

d−( y+3

2 )+2
21

7 2-near Sd−( y+3

2 )+1 2 − 2 hooked into hL
y−3

2

d−( y+3

2 )+2
21

To use this construction, z−d+1 ≥ 1, so z ≥ y+3
2

and d−
(

y+3
2

)

≥ 0. If y ≡ 7 (mod

8), d −
(

y+3
2

)

+ 1 would have to be greater than or equal to 2, so z ≥ y+9
2

; however,

if y ≡ 7 (mod 8), z 6= y+3
2

, y+5
2

, y+7
2

since y + z ≡ 6 (mod 12).

Finally, suppose z = y+1
2

. Then y + z = 3y+1
2

6≡ 6(mod 12) for y ≡ 1, 3, 5 or 7 (mod
8). So this case does not apply.

A similar discussion for y + z ≡ 8, 10 (mod 12) gives the following labelings.

b) y + z ≡ 8 (mod 12), x ≥ n + 1 and y ≥ z > y

2
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Take d = y+z+4
3

; use

Ln+1−d
d for X, the pivot and (x + 1, z), . . . , (x + 1, z − d + 3);

the label from (x + 1, z) for (x + 2, z + 1);

d − 1 for (x + 1, z) and (x + 1, z − d + 1); plus

y (mod 8) end of Z Y y + 4(y − z) ≥

1,7 hSd− y+3

2

L
y−1

2

d− y+3

2
+1

7

3 1-near Sd− y+3

2
+1 11L

y−3

2

d− y+3

2
+2

25

5 2-near hSd− y+3

2
+1 2 − 2 hooked into hL

y−3

2

d− y+3

2
+2

25 if z > y+19
2

5 see below y
2

< z < y+19
2

To use this construction for y ≡ 1 or 7 (mod 8), z − d + 1 ≥ 4, so z ≥ y+13
2

and
d − y+3

2
≥ 2. However, since y + z ≡ 8 (mod 12), and y ≡ 1 or 7 (mod 8) there are

no odd values of z, y
2

< z < y+13
2

.

To use the construction for y ≡ 3 (mod 8), z − d + 1 ≥ 2, so z ≥ y+7
2

, however, there
are no other values of z, y

2
< z < y+7

2
.

Finally to use this for y ≡ 5 (mod 8), z + d− 1 ≥ 6, so z ≥ y+19
2

and d− y+3
2

+1 ≥ 4.
There is one additional possible value for z, z = y+1

2
. In this case, set d = y+z+4

3
=

z + 1. Ln+1−d
d can be used to label X, the pivot and all of Z except the vertex

(x + 1, 1). Since d > z, the label in (x + 1, z) can be moved to (x + 2, z + 1). Use
z − 1 to label (x + 1, 1) and (x + 1, z) and z for (x + 3, z + 1) and (x + z + 3, z + 1).
This is always possible since z + 3 ≤ y + 1 = 2z for all z ≥ 3. The rest of Y can be
labeled using a z-ext Sz−2 since 2(z − 2) = y − 3 and z ≡ 3 (mod 4).

c) y + z ≡ 10 (mod 12), x ≥ n − 1 and y ≥ z ≥ y+5

2

Take d = y+z+2
3

; use

Ln+1−d
d for X, the pivot and (x + 1, z), . . . , (x + 1, z − d + 1);

the label from (x + 1, z − 1) for (x + 3, z + 1);

d − 1 for (x + 1, z − 1) and (x + 1, z − d); plus

y (mod 8) end of Z Y y + 4(y − z) ≥

3,5 Sd− y+3

2

hL
y−1

2

d− y+3

2
+1

0

7 1-near Sd− y+3

2
+1 hL

y−3

2

d− y+3

2
+2

, 11 17

1 2-near Sd− y+3

2
+1 2 − 2 hooked into L

y−3

2

d− y+3

2
+2

17
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To use this construction, z − d ≥ 1, so z ≥ y+5
2

and d − y+3
2

≥ 0. If y ≡ 5 (mod 8),
d − y+3

2
+ 1 ≥ 2, so z ≥ y+11

2
. Since y + z ≡ 10 (mod 12), there is only one case for

z, y+11
2

> z > y
2
, which is not covered by the above construction: z = y+5

2
and y ≡ 5

(mod 8). In this case, d = 2z−5+z+2
3

= z − 1, so instead of the third line of the table
we use hSd−2.

4.2.7 Special constructions for n ≡ 2 or 3 (mod 4)

a) Let x = n. Then n ≡ 3 (mod 4). The following labelings can be used.

z ≡ (mod 8) n in positions Z-vane XY path constraints

1,3 (2, z + 1), (x + 1, z) L
z−1

2

3 2-ext S2L
n−( z+5

2 )
z+5

2

z ≥ 11

5 (3, z + 1), (x + 1, z − 1) hL
z−1

2

2 S1hL
n−( z+3

2 )
z+3

2

z ≥ 7

7 (2, z + 1), (x + 1, z) L
z−1

2

2 hL
n−( z+3

2 )
z+3

2

S1 z ≥ 7

The only remaining cases are: z = 1, 3, 5, 9.

W (n : n, n − 2, 1) : put n in the sole vertex of Z and the second vertex (2,2) X; fill
the XY -path with a hSn−1.

W (n : n, n − 4, 3) : put n in (2,4) and (x + 1, 3); fill Z with S1 and the XY -path
with hLn−2

2 .

W (n : n, n − 6, 5): put n in (3,6) and (x + 1, 4); fill Z with hL2
2 (i.e., 2 3 2 0 3) and

the XY -path with S1 and Ln−4
4 . Note that 5 = z ≤ n−1

2
, so n ≥ 11 and Ln−4

4 exists.

W (n : n, n − 10, 9): put n in positions (2,10) and (x + 1, 3), S4 on Z and hLn−5
5 on

the XY -path. Note that 9 = z ≤ n−1
2

, so n ≥ 19 and hLn−5
5 exists.

b) Let x = n + 1. Then n ≡ 2 (mod 4). The following labelings can be used.

z (mod 8) n in positions Z-vane XY path constraints

1,7 (3, z + 1), (x + 1, z) L
z−1

2

2 S1L
n−( z+3

2 )
z+3

2

z ≥ 7

3 (3, z + 1), (x + 1, z) L
z−1

2

3 S12-2hL
n−( z+5

2 )
z+5

2

z ≥ 11

5 (4, z + 1), (x + 1, z − 1) hL
z−1

2

2 S1hL
n−( z+3

2 )
z+3

2

z ≥ 7

The only remaining cases are: z = 1, 3, 5.

W (n : n + 1, n− 3, 1): put n in the sole vertex of Z and in (3, z + 1); fill with a 3-ext
Sn−1.

W (n : n + 1, n − 5, 3): put n in positions (3, z + 1) of X and (x + 1, z) of Z; S1 in
the remaining positions of Z and use a 3-ext Ln−2

2 to fill the XY -path.
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W (n : n + 1, n− 7, 5): put n in positions (4, z + 1) of X and (x + 1, z − 1) of Z; hS2

on Z and 4-ext Ln−3
3 on the XY -path.

c) Let x = n+2. Then n ≡ 3(mod 4) and the labelings are given in the table below.

z (mod 8) n in positions Z-vane X − Y path constraints

1,3 (4, z + 1), (x + 1, z) L
z−1

2

3 4-ext S2L
n−( z+5

2 )
z+5

2

z ≥ 11

5 (5, z + 1), (x + 1, z − 1) hL
z−1

2

5 5-ext S4L
n−( z+9

2 )
z+9

2

z ≥ 19

7 (4, z + 1), (x + 1, z) L
z−1

2

4 4-ext S3L
n−( z+7

2 )
z+7

2

z ≥ 15

The only remaining cases are: z = 1, 3, 5, 7, 9, 13. We provide labelings for these
cases below.

W (n : n + 2, n − 4, 1): Put n in positions (4,2) of X and (x + 1, 1) of Z; fill the
XY -path with a 4-ext Sn−1.

W (n : n + 2, n − 6, 3): Note that n − 6 ≥ 3 and n ≡ 3(mod 4), so n ≥ 11. Put 2 in
positions (x, 4) of X and (x + 1, 3) of Z; S1 in the remaining positions of Z; fill the
rest of the XY -path with an (n + 2)-ext Ln−2

3 .

W (n : n + 2, n − 8, 5): Here n ≥ 15. Put A5
3 + (n − 7) along Z and in positions

(6, 6), . . . , (11, 6) of X; 2 − 2 1 1 in positions (1, 6), . . . (5, 6) of X; n − 5 in (2,6)
and (n − 3, 6) of X. The remaining vertices of the XY -path are labeled using an
(n − 13)-ext Ln−8

3 .

W (n : n + 2, n − 10, 7): Here n ≥ 19. For n ≥ 23, put A7
4 + (n − 10) on Z and in

positions (7, 8), . . . , (13, 8) of X; L3
2 in (1, 8), . . . , (6, 8) of X; S1 in (14,8), (15,8) of

X and fill the rest of the XY -path with Ln−11
5 . W (19 : 21, 9, 7) can be labeled using

4.2.4 because 6(21) + 7(7) + 7 = 182 ≤ 190.

W (n : n + 2, n − 12, 9): Here n ≥ 23. Put S1 in (x + 1, 1), (x + 1, 2) of Z; A7
4 +

(n − 10) in the remaining positions of Z and positions (7, 10), . . . , (13, 10) of X; L3
2

in (1, 10), . . . , (6, 10) of X and fill the rest of the XY -path with Ln−11
5 .

W (n : n+2, n−16, 13): So n ≥ 31. Put S1 in (x+1, 1), (x+1, 2) of Z; A11
6 +(n−16) in

the rest of Z and positions (9, 14), . . . , (19, 14) of X; a 1-near S5 in (1, 14), . . . , (8, 14)
of X and fill the rest of the XY -path with Ln−16

6 .

5 Skolem labeling g3-windmills

Theorem 7 Every g3-windmill that satisfies the Skolem parity condition can be
Skolem-labeled.

Proof: Let G = W (n : x, y, z) be a g3-windmill which satisfies the Skolem parity
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condition. First, we note that if x < n, the graph can be pruned, so we need only
consider graphs with x ≥ n. Then y + z + 1 = 2n − x ≤ 2n − n = n, so z ≤ n−1

2
.

Case 1. n ≡ 0, 1 (mod 4).

i) Suppose first that z is even. If n ≥ 13, then z ≤ n−1
2

≤ 2n−8
3

, so construction 4.2.1
can be used. If n < 13, then z < 6, so z is either 2 or 4. For z = 2, 4.2.1 can be used
for all n. If z = 4, then n ≥ 9; so 4.2.1 can be used for all n ≥ 10. This leaves only
W (9 : 9, 4, 4) to label:

9 7 5 3 1 1 3 5 7 9 2 4 6 8
2
4
6
8

ii) Now suppose that z is odd. Since n ≡ 0, 1(mod 4), x and y must be even.
Construction 4.2.2 can always be used if y ≤ (2n − 8)/3, so we need only consider
y > 2n−8

3
.

In general, 4.2.4 can be used whenever 6x+7z ≤ 10n−19. Since x ≥ n, x+y > 5n−8
3

,
so z = 2n − 1 − x − y < n+5

3
. Therefore,

6x + 7z = 6(x + z) + z

= 6(2n − 1 − y) + z

<
25n + 35

3
.

This is less than 10n − 19 whenever 19 ≤ n, so 4.2.4 can be used in all these cases.
In addition, 4.2.4 can also be used for some smaller values of n.

Consider n = 17. Then 8.7 < y and 17 ≤ x; however, both x and y are even so
10 ≤ y and 18 ≤ x. Therefore, z = 2n − 1 − x − y ≤ 5. Then

6x + 7z = 6(2n − 1 − y − z) + 7z

= 12n − 6 − 6y + z

≤ 143

≤ 10n − 19.

So 4.2.4 can be used in all the remaining cases with n = 17. A similar discussion
applies when n = 16 or 13.

The only remaining windmills are:

W (12:12, 6, 5), W (12:12, 8, 3), W (12:12, 10, 1), W (12:14, 6, 3), W (12:14, 8, 1);

W (9 : 10, 4, 3), W (9 : 10, 6, 1), W (9 : 12, 4, 1);

W (8 : 8, 4, 3), W (8 : 8, 6, 1), W (5 : 6, 2, 1), W (4 : 4, 2, 1).
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All of these, with 3 exceptions, can be labeled using the specific techniques of 4.2.4.
For W (4 : 4, 2, 1), use

4 1 1 3 4 2 3
2

For W (9 : 12, 4, 1), put a 5-extended Skolem sequence of order 8 along X, the pivot
and Y and use 9 to label the remaining 2 vertices. For W (12 : 14, 6, 3), put a 14-
extended Langford sequence with d = 3 and m = 10 along X, the pivot and Y , then
use a hooked Skolem sequence of order 2 to label the remaining vertices.

Case 2. Let n ≡ 2, 3 (mod 4). Then x, y and z are all odd. If x ≥ (4n− 1)/3, 4.2.3
can be used and if x = n, n + 1 or n + 2, 4.2.7 can be used, so it suffices to consider
n + 2 < x < (4n − 1)/3.

i) First, consider those remaining windmills with relatively short Z-vanes: z < y
2
.

Let x = n + k. Then 3 ≤ k ≤ n−2
3

and y + z = n − 1 − k.

If z ≤ y−3
2

, then 3z ≤ n − 4 − k and

10n − 6x − 7z − 19 ≥ (5n − 11k − 29)/3

≥ (4n − 65)/9

which is nonnegative if n ≥ 17, so 4.2.4 can be used to label these windmills.

Similarly, if z = y−1
2

, then

10n − 6x − 7z − 19 ≥ (4n − 107)/9,

so 4.2.4 can be used if n ≥ 27. Note that since z = y−1
2

, n− 1 − k = y + z = 3z + 1,
so n−2−k

3
∈ Z+ and the only remaining windmills with 17 < n < 27 are W (26 :

29, 15, 7), W (23 : 29, 11, 5) and W (22 : 27, 11, 5), all of which can be labeled using
4.2.4.

Now suppose that n ≤ 15 and z < y
2
, then the only windmills are: W (15 :

19, 7, 3), W (15 : 19, 9, 1), W (14 : 17, 7, 3) and W (14 : 17, 9, 1). The last three can be
labeled using 4.2.4. For W (15 : 19, 7, 3), use hS2 to label Z and vertex (x + 2, z + 1)
of Y (note that the hook would fall on the pivot) and 7-ext L13

3 for the remaining
vertices.

ii) Now consider the remaining windmills. Then n + 3 ≤ x < (4n − 1)/3 and z > y
2
.

Each of these can be labeled using 4.2.5 or 4.2.6 unless y + 4(y − z) is too small. In
general, 4.2.5 and 4.2.6 can always be used whenever y + 4(y − z) ≥ 29; however,
the constant is actually smaller in many cases. First we identify the remaining cases
and then we provide labelings for them.

Since z ≥ 1, y > y − z. Then y + 4(y − z) − 29 > 5(y − z) − 29 which would be
greater than 0 whenever y − z ≥ 6. Note that y − z is even since both y, z are odd,
so we need only consider y − z = 0, 2, 4.
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Suppose y − z = 4. Then y
2

< z = y − 4, so 8 < y. If y ≥ 13, then y + 4(y − z) ≥
13 + 16 = 29, so they can all be labeled by 4.2.5 or 4.2.6. If y = 11 ≡ 3 (mod 8),
then y + 4(y − z) = 11 + 16 = 27, so 4.2.5 or 4.2.6 can be used. If y = 9 ≡ 1 (mod
8), then y + 4(y − z) = 9 + 16 = 25, but y + z = 9 + 5 = 14 ≡ 2 (mod 12), so 4.2.5
b) can be used.

Now suppose y−z = 2. Then y
2

< z = y−2, so 4 < y. If y ≥ 21, then 21+4(2) = 29,
so 4.2.5 or 4.2.6 can be used. 4.2.5 and 4.2.6 can also be used in the following cases:

if y = 19, then y + z = 36 ≡ 0 (mod 12) and y + 4(y − z) = 27;

if y = 17, then y + z = 32 ≡ 8 (mod 12) and y + 4(y − z) = 25 ≥ 7;

if y = 9, then y + z = 16 ≡ 4 (mod 12) and y + 4(y − z) = 17 ≥ 11.

The remaining values of y are: 15, 13, 11, 7, 5. Since 2y − 2 = y + z = 2n− 1− x and
n + 3 ≤ x < (4n − 1)/3, we have

2(n − 1)/3 < 2y − 2 ≤ n − 4 or 2y + 2 ≤ n < 3y − 2.

Since x = 2n − 1 − y − z = 2n − 1 − 2y + 2 = 2n − 2y + 1, the only (n, x) pairs left
to label are:

for y = 15, (34, 39), (35, 41), (38, 47), (39, 49), (42, 55);

for y = 13, (30, 35), (31, 37), (34, 43), (35, 45);

for y = 11, (26, 31), (27, 33), (30, 39)

for y = 7, (18, 23).

4.2.4 can be used for W (38 : 47, 15, 13), W (26 : 31, 11, 9) and W (18 : 23, 7, 5). For
the others, see the Appendix.

Finally, suppose that y = z which implies that y + z = 2y ≡ 2, 6 or 10 (mod 12) so
only 3 of the cases in 4.2.5 and 4.2.6 are applicable. If y ≥ 25, then y+4(y−z) ≥ 25,
so 4.2.5 or 4.2.6 can be used. If y = 23, 21, 17, 11, 9, 7, 5 or 3, the appropriate labeling
from 4.2.5 or 4.2.6 can also be used. The only remaining cases are: y = z =
19, 15, 13, 1.

Since 2y = y + z = 2n − 1 − x and n + 3 ≤ x < (4n − 1)/3, we have

2y + 4 ≤ n < 3y + 1.

Therefore, since n ≡ 2, 3 (mod 4), x = 2n − 2y − 1 and n + 3 ≤ x < 4n−1
3

, the only
(n, x) pairs left to label are:

for y = 19, (42, 45), (43, 47), (46, 53), (47, 55), (50, 61), (51, 63), (54, 69), (55, 71);

for y = 15, (34, 37), (35, 39), (38, 45), (39, 47), (42, 53), (43, 55);

for y = 13, (30, 33), (31, 35), (34, 41), (35, 43), (38, 49), (39, 51).
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4.2.4 can be used for W (42 : 45, 19, 19), W (47 : 55, 19, 19) and W (30 : 33, 13, 13).
For the rest, see the Appendix.

Remark 4 The most difficult part of this proof was keeping track of which g3-
windmills had been labeled by the various constructions. While we were creating the
constructions, we made use of a computer program which determined how many of
the windmills of a particular size were labeled by the techniques to-date. The final
version of this is available at: http://www.math.mun.ca/∼manzer/.

6 Strong Skolem labelings

Unfortunately, not all of the labelings used above are strong. The use of sequences as
building blocks clarifies the constructions; however, it often results in the introduction
of non-essential edges. The problem is somewhat ameliorated when pruning is used
or when a near sequence forms part of the labeling. Pruning makes all the edges
of the Y- and Z-vanes essential. If a near sequence is used, the omitted labels are
inserted elsewhere and help to tie the windmill together.

Conjecture 2 Every g3-windmill that meets the Skolem parity condition can be
strongly Skolem labeled.

Conjecture 3 Every gk-windmill that meets the Skolem parity and nondegeneracy
conditions can be strongly Skolem-labeled.

In [5] and [6], Mendelsohn and Shalaby also introduce the notion of [strong] hooked
Skolem-labelings in which they permit some vertices, the hooks, to be labeled 0.
These hooks may be in any position. Such a labeling with as few hooks as possible
is called a minimum hooked Skolem-labeling. They then show that any path, cycle
[5] or k-windmill, k ≥ 3, that satisfies their degeneracy condition [6] has a [strong]
Skolem or minimum hooked Skolem-labeling with the exception of the 3-windmills
with vanes of length 2 or vanes of length 3 and the 4-windmills with vanes of length
1 or 2.

While the problem of minimum hooked labelings for g3-windmills is left for future
work, we do expect similar results to hold. Here we will consider weak hooked
labelings. As we have shown that every g3-windmill which meets the Skolem parity
condition can be [weakly] Skolem-labeled, weak hooked Skolem-labelings will only be
of interest in g3-windmills which do not meet the Skolem parity condition or which
have an odd number of vertices. We mention the following partial result, but suspect
that there is a minimum hooked Skolem labeling with at most 2 hooks in all cases.

Theorem 8 Any g3-windmill, W , on v vertices, which cannot be Skolem-labeled has
a weak hooked Skolem-labeling with at most 3 hooks.
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Proof. Suppose first that W has v = 2n vertices. If n ≡ 0 (mod 4) with 3 odd-length
vanes or if n ≡ 2 (mod 4) with one odd-length vane, label the last two vertices on
the longest vane 0. If n ≡ 1 (mod 4), then W has 3 odd-length vanes. Label the last
vertex on each of the two longest vanes 0. If n ≡ 3 (mod 4), W has one odd-length
vane. Label the last vertex on each of the even-length vanes 0. In each case, except
when n = 2, the remaining vertices form a g3-windmill which can be Skolem-labeled.
If n = 2, the remaining 2 vertices can be labeled 1.

Now suppose that W has an odd number of vertices, say v = 2n + 1. Then W has
0 or 2 odd-length vanes. If n ≡ 0, 1 (mod 4) with no odd-length vanes or if n ≡ 2, 3
(mod 4) with 2 odd-length vanes, then label the last vertex on any even-length vane
0. If n ≡ 0, 1 (mod 4) with 2 odd-length vanes, label the last vertex on the longest
odd-length vane 0. Finally, suppose that W has no odd-length vanes. If n ≡ 3
(mod 4), label the last vertex on each vane 0. If n ≡ 2 (mod 4), label the 3 last
vertices on the longest vane 0; note that this implies that the longest vane contains
at least 3 (actually 4 since vane lengths are even) vertices, so the case of a windmill
with 3 vanes of length 2 is not covered. The remaining vertices in all cases form a
g3-windmill which can be Skolem-labeled except when W has 2 vanes of length 1
and n ≡ 0, 1 (mod 4). In that case, the remaining 2n vertices form a path which can
be Skolem-labeled.

The 3-windmill with vanes of length 2 does not have a one-hook strong Skolem-
lableling [6]; however, it does have a weak labeling with one hook. Label the two
vertices of a single vane 1 and the remaining 5 vertices with a 1-near hooked Skolem
sequence of order 3.

Tying this altogether, we conclude with a final conjecture.

Conjecture 4 All g3-windmills can either be strongly Skolem-labeled or have a min-
imum hooked Skolem-labeling with at most 2 hooks with the exception of the 3-
windmills with vanes of length 2 or vanes of length 3.

7 Appendix

7.1 For the following windmills, take d = z+1
2

and use A2d−1
d +(n−3d+2) to label Z

and the corresponding vertices of X. Then there is a path, B, of x−n+ d unlabeled
vertices, (1, z+1), . . . , (x−n+d, z+1), at the end of X and a path, C, of y+n−3d+2
unlabeled vertices, (x − n + 3d − 1, z + 1), . . . , (x + y + 1, z + 1), along X and Y .

The largest unused label is n−2d+1 = n−z, which is used to label vertices (a, z+1)
and (a + n − z, z + 1) in B and C respectively where a is given in the table below.
The remaining vertices are also labeled as below.
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parameters n − z in (-, z + 1) B C
(27: 33,11,9) 3 3-ext S5 L12

6

(30: 35,13,11) 5 5-ext S5 hL13
6

(31: 35,13,13) 7 7-ext S5 L12
6

(34: 43,13,11) 4 4-ext S7 L15
8

(34: 37,15,15) 9 9-ext S5 hL13
6

(35: 41,15,13) 6 6-ext S6 hL15
7

(38: 45,15,15) 8 8-ext S7 L15
8

(39: 49,15,13) 5 5-ext S8 L17
9

(46: 53,19,19) 11 11-ext S8 hL18
9

7.2 We can modify this method slightly by placing the two labels n−z and n−z−1
before labeling the rest of B and C.

parameters n − z n − z − 1 B C
(39: 47,15,15) (8, z + 1) (10, z + 1) 1 1 3 5 6 3 7 - 5 - 6 4 2 7 2 4 L16

7

(43: 47,19,19) (10, z + 1) (12, z + 1) 3 1 1 3 2 5 2 6 4 - 5 - 4 6 L16
7

7.3 For the windmills listed below, put

i) (n − j) in (2 + 2j, z + 1) and (n + 2 + j, z + 1), for j = 0, . . . , x − n − 1;

ii) (n − j) in (2 + 2j, z + 1) and (x + 1, z − n + x − j), for j = x − n, . . . , ⌊n−3
2
⌋;

iii) a doubled S⌊n+2

4
⌋ in vertices (1 + 2j, z + 1), for j = 0, . . . , ⌊n

2
⌋;

iv) n − ⌊n+1
2
⌋ in vertices (2 + 2⌊n−1

2
⌋, z + 1) and (n + 1 + ⌊n−1

2
⌋, z + 1).

The remaining vertices of Y and Z are labeled as in the table below (listed from the
position closest to the pivot out).

parameters rest of Y rest of Z
(30: 39,11,9) 7 9 11 13 - 5 3 1 1 3 5 7 9 11 13
(31: 37,13,11) 11 13 9 7 1 1 3 5 - 3 7 9 5 11 13
(34: 39,15,13) 13 15 11 9 7 3 1 1 3 5 - 7 9 11 5 13 15
(35: 45,13,11) 9 11 13 15 7 5 - 1 1 3 5 7 3 9 11 13 15
(50: 61,19,19) 15 13 17 19 21 23 5 11 9 7 3 5 - 3 13 15 7 9 11 17 19 21 23 1 1
(51: 63,19,19) 15 13 17 19 21 23 5 11 9 7 3 5 - 3 13 15 7 9 11 17 19 21 23 1 1

7.4 For the following windmills, modify the above construction by using the indicated
label for vertex (2 + 2⌊n−1

2
⌋, z + 1) on X and the corresponding vertex on Y .

parameters (2+2⌊n−1
2 ⌋, z + 1) Y rest of Z

(34 : 41, 13, 13)
(35 : 43, 13, 13)

}

15 11 7 13 9 5 17 15 3 7 5 3 11 9 13 17 1 1

(35: 39,15,15) 13 15 17 11 9 7 1 1 3 13 5 3 7 9 11 5 15 17



SKOLEM-LABELING 203

7.5 The labelings for the following windmills are similar to those above except the
long run of labels starts with the first vertex of X rather than the second. Use

i) (n − j) in (1 + 2j, z + 1) and (n + 1 + j, z + 1), for j = 0, 1, . . . , ⌊n−3
2
⌋;

ii) the double of the extended sequence (for brevity we use k − Sn for a k-ext Sn)
given in the table for the even positions on X;

iii) the label given in column iii of the table for vertex (1 + 2⌊n−1
2
⌋, z + 1) on X and

the hole in the extended sequence of ii.

parameters even iii Z Y

(38: 49,13,13) 9-S9 19 7 11 13 15 17 3 5 7 3 1 1 5 20 20 5 11 13 15 17 5

(39: 51,13,13) 9-S9 17 9 11 7 13 15 3 20 19 3 7 1 1 11 5 9 13 15 19 5 20

(42: 53,15,15) 10-S10 21 11 13 15 17 19 9 7 3 1 1 3 11 22 5 13 15 17 19 5
22 7 9

(43: 55,15,15) 12-S10 19 11 13 17 9 3 21 7 3 1 1 11 22 9 7 22 5 13 15 17 21 5

(54: 69,19,19) 13-S13 27 13 15 17 19 21 23 25 11 9 5 1 7 15 17 19 21 23

1 3 13 5 3 28 9 11 25 7

(55: 71,19,19) 15-S13 25 13 11 15 17 19 21 23 9 28 27 5 7 15 17 19 21 23
3 11 13 3 5 9 1 1 27 7 28

7.6 A variation of the last labeling can be used for W(42:55,15,13):

i) (42 − j) in (1 + 2j, 14) and (43 + j, 14), for j = 0, . . . , 13;

ii) (42 − j) in (1 + 2j, 14) and (55, 26 − j), for j = 14, . . . , 19;

iii) a doubled 10-ext S10 in vertices (2 + 2j, 14), for j = 0, . . . , 20;

iv) 21 in vertices (20, 14) and (41, 14).

Y and Z are filled (from the pivot out), respectively with 9 7 11 13 15 17 19 3 7 9 3
1 1 11 22 and 22 5 13 15 17 19 5.
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