A series of Siamese twin designs intersecting in a BIBD and a PBD

Dean Crnković
Department of Mathematics
Faculty of Philosophy, University of Rijeka
Omladinska 14, 51000 Rijeka
Croatia
deanc@mapef.ffri.hr

Abstract

Let p and $2 p-1$ be prime powers and $p \equiv 3(\bmod 4)$. We describe a construction of a series of Siamese twin designs with Menon parameters $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$ intersecting in a derived design with parameters $\left(2 p^{2}-p, p^{2}-p, p^{2}-p-1\right)$, and a pairwise balanced design $\operatorname{PBD}\left(2 p^{2}-\right.$ $\left.p,\left\{p^{2}, p^{2}-p\right\}, p^{2}-p-1\right)$. When p and $2 p-1$ are primes, the derived design and the pairwise balanced design are cyclic. Further, these two Menon designs with parameters $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$ lead to amicable regular Hadamard matrices of order $4 p^{2}$.

1 Introduction

Let K be a subset of positive integers. A pairwise balanced design $\operatorname{PBD}(v, K, \lambda)$ is a finite incidence structure $(\mathcal{P}, \mathcal{B}, I)$, where \mathcal{P} and \mathcal{B} are disjoint sets and $I \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

1. $|\mathcal{P}|=v$;
2. if an element of \mathcal{B} is incident with k elements of \mathcal{P}, then $k \in K$;
3. every pair of distinct elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B}.

The elements of the set \mathcal{P} are called points and the elements of the set \mathcal{B} are called blocks. A mandatory representation design $\operatorname{MRD}(v, K, \lambda)$ is a $\operatorname{PBD}(v, K, \lambda)$ in which for each $k \in K$ there is a block incident with exactly k points.

A 2-($v, k, \lambda)$ design is a finite incidence structure $(\mathcal{P}, \mathcal{B}, I)$, where \mathcal{P} and \mathcal{B} are disjoint sets and $I \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

1. $|\mathcal{P}|=v$;
2. every element of \mathcal{B} is incident with exactly k elements of \mathcal{P};
3. every pair of distinct elements of \mathcal{P} is incident with exactly λ elements of \mathcal{B}.

A 2- (v, k, λ) design is a $\operatorname{PBD}(v, K, \lambda)$ with $K=\{k\}$. 2-designs are often called balanced incomplete block designs (BIBDs), or just block designs. If $|\mathcal{P}|=|\mathcal{B}|=v$ and $2 \leq k \leq v-2$, then a $2-(v, k, \lambda)$ design is called a symmetric design.
Let \mathcal{D} be a symmetric (v, k, λ) design and let x be a block of \mathcal{D}. Remove x and all points that do not belong to x from other blocks. The result is a $2-(k, \lambda, \lambda-1)$ design, a derived design of \mathcal{D} with respect to the block x.
A 2- (v, k, λ) design, or a pairwise balanced design $\operatorname{PBD}(v, K, \lambda)$, with an automorphism group G is called cyclic if G contains a cycle of length v.
A Hadamard matrix of order m is an $(m \times m)$ matrix $H=\left(h_{i, j}\right), h_{i, j} \in\{-1,1\}$, satisfying $H H^{T}=H^{T} H=m I_{m}$, where I_{m} is an $(m \times m)$ identity matrix. A Hadamard matrix is regular if the row and column sums are constant. It is well known that the existence of a symmetric $\left(4 u^{2}, 2 u^{2}-u, u^{2}-u\right)$ design is equivalent to the existence of a regular Hadamard matrix of order $4 u^{2}$ (see [7, Theorem 1.4, pp. 280]). Such symmetric designs are called Menon designs.
A $\{0, \pm 1\}$-matrix S is called a Siamese twin design sharing the entries of I, if $S=$ $I+K-L$, where I, K, L are non-zero $\{0,1\}$-matrices and both $I+K$ and $I+L$ are incidence matrices of symmetric designs with the same parameters. If $I+K$ and $I+L$ are incidence matrices of Menon designs, then S is called a Siamese twin Menon design.

In this article we describe a construction of a series of Siamese twin Menon designs sharing the entries of a BIBD and a PBD, using a modification of the construction introduced in [2], and further developed in [3] and [4]. To make this article selfcontained, in the next section we repeat some facts about developments of Paley difference sets and Paley partial difference sets stated in [2], [3] and [4].

2 Nonzero squares in finite fields

Let p be a prime power, $p \equiv 3(\bmod 4)$ and F_{p} be a field with p elements. Then a $(p \times p)$ matrix $D=\left(d_{i j}\right)$, such that

$$
d_{i j}= \begin{cases}1, & \text { if }(i-j) \text { is a nonzero square in } F_{p} \\ 0, & \text { otherwise }\end{cases}
$$

is an incidence matrix of a symmetric $\left(p, \frac{p-1}{2}, \frac{p-3}{4}\right)$ design. Such a symmetric design is called a Paley design (see [5]). Let \bar{D} be an incidence matrix of a complementary symmetric design with parameters $\left(p, \frac{p+1}{2}, \frac{p+1}{4}\right)$. The proof of the following lemma can be found in [3].

Lemma 1 Let p be a prime power, $p \equiv 3(\bmod 4)$. Then the matrices D and \bar{D} defined as above have the following properties:

$$
\begin{gathered}
D \cdot \bar{D}^{T}=\left(\bar{D}-I_{p}\right)\left(D+I_{p}\right)^{T}=\frac{p+1}{4} J_{p}-\frac{p+1}{4} I_{p} \\
{\left[D \mid \bar{D}-I_{p}\right] \cdot\left[\bar{D}-I_{p} \mid D\right]^{T}=\frac{p-1}{2} J_{p}-\frac{p-1}{2} I_{p}} \\
{[D \mid D] \cdot\left[D+I_{p} \mid \bar{D}-I_{p}\right]^{T}=\frac{p-1}{2} J_{p}} \\
{[\bar{D} \mid D] \cdot\left[\bar{D}-I_{p} \mid \bar{D}-I_{p}\right]^{T}=\frac{p-1}{2} J_{p}}
\end{gathered}
$$

where J_{p} is the all-one matrix of dimension $(p \times p)$.
Let $\Sigma(p)$ denote the group of all permutations of F_{p} given by

$$
x \mapsto a \sigma(x)+b,
$$

where a is a nonzero square in F_{p}, b is any element of F_{p}, and σ is an automorphism of the field F_{p}. $\Sigma(p)$ is an automorphism group of symmetric designs with incidence matrices $D, D+I_{p}, \bar{D}$ and $\bar{D}-I_{p}$ (see [5, pp. 9]). If p is a prime, $\Sigma(p)$ is isomorphic to a semidirect product $Z_{p}: Z_{\frac{p-1}{2}}$.
Let q be a prime power, $q \equiv 1(\bmod 4)$, and $C=\left(c_{i j}\right)$ be a $(q \times q)$ matrix defined as follows:

$$
c_{i j}= \begin{cases}1, & \text { if }(i-j) \text { is a nonzero square in } F_{q} \\ 0, & \text { otherwise }\end{cases}
$$

C is a symmetric matrix, since -1 is a square in F_{q}. There are as many nonzero squares as nonsquares in F_{q}, so each row of C has $\frac{q-1}{2}$ elements equal 1 and $\frac{q+1}{2}$ zeros. The set of nonzero squares in F_{q} is a partial difference set, called a Paley partial difference set (see [1, 10.15 Example, pp. 231]). For the proof of the properties of the matrix C listed in the following lemma we refere the reader to [3].

Lemma 2 Let q be a prime power, $q \equiv 1(\bmod 4)$, and let the matrices C and \bar{C} be defined as above. Then the following properties hold:

$$
\begin{gathered}
C \cdot\left(C+I_{q}\right)^{T}=\bar{C} \cdot\left(\bar{C}-I_{q}\right)^{T}=\frac{q-1}{4} J_{q}+\frac{q-1}{4} I_{q}, \\
C \cdot\left(\bar{C}-I_{q}\right)^{T}=\frac{q-1}{4} J_{q}-\frac{q-1}{4} I_{q}, \\
\left(C+I_{q}\right) \cdot \bar{C}^{T}=\frac{q+3}{4} J_{q}-\frac{q-1}{4} I_{q}, \\
{\left[C \mid C+I_{q}\right] \cdot\left[C \mid C+I_{q}\right]^{T}=\frac{q-1}{2} J_{q}+\frac{q+1}{2} I_{q},} \\
{\left[\bar{C} \mid \bar{C}-I_{q}\right] \cdot\left[\bar{C} \mid \bar{C}-I_{q}\right]^{T}=\frac{q-1}{2} J_{q}+\frac{q+1}{2} I_{q},} \\
{\left[C \mid C+I_{q}\right] \cdot\left[\bar{C} \mid \bar{C}-I_{q}\right]^{T}=\frac{q+1}{2} J_{q}-\frac{q+1}{2} I_{q} .}
\end{gathered}
$$

$\Sigma(q)$ acts as an automorphism group of incidence structures with incidence matrices $C, C+I_{q}, \bar{C}$ and $\bar{C}-I_{q}$. If q is a prime, $\Sigma(p)$ is isomorphic to $Z_{q}: Z_{\frac{q-1}{2}}$.

3 Construction of Menon Designs

For $v \in N$ we denote by j_{v} the all-one vector of dimension v, by 0_{v} the zero-vector of dimension v, and by $0_{m \times n}$ the zero-matrix of dimension $(m \times n)$.
Let p and $q=2 p-1$ be prime powers and $p \equiv 3(\bmod 4)$. Further, let D, \bar{D}, C, and \bar{C} be defined as above. Define $\left(4 p^{2} \times 4 p^{2}\right)$ matrices M_{1} and M_{2} in the following way:
$M_{1}=\left[\begin{array}{c|c|c|c}0 & j_{p \cdot q}^{T} & 0_{q}^{T} & 0_{p \cdot q}^{T} \\ \hline & D \otimes\left(C+I_{q}\right) & & D \otimes C \\ j_{p \cdot q} & + & j_{p} \otimes C & +\bar{D} \otimes\left(\bar{C}-I_{q}\right) \\ \hline 0_{q} & \left.j_{p}^{T} \otimes\left(\bar{C}-I_{p}\right) \otimes \bar{C}\right) & 0_{q \times q} & j_{p}^{T} \otimes \bar{C} \\ \hline & \left(D+I_{p}\right) \otimes C & & \left(\bar{D}-I_{p}\right) \otimes\left(C+I_{q}\right) \\ 0_{p \cdot q} & + & j_{p} \otimes\left(C+I_{q}\right) & ++ \\ & \left(\bar{D}-I_{p}\right) \otimes\left(\bar{C}-I_{q}\right) & & D \otimes \bar{C}\end{array}\right]$
$M_{2}=\left[\begin{array}{c|c|c|c}0 & j_{p \cdot q}^{T} & 0_{q}^{T} & 0_{p \cdot q}^{T} \\ \hline & D \otimes\left(C+I_{q}\right) & & D \otimes C \\ 0_{p \cdot q} & + & j_{p} \otimes \bar{C} & +\bar{D} \otimes\left(\bar{C}-I_{q}\right) \\ \hline 0_{q} & \left(\bar{D}-I_{p}\right) \otimes \bar{C} & & j_{p}^{T} \otimes\left(\bar{C}-I_{q}\right) \\ j_{q \times q} & j_{p}^{T} \otimes \bar{C} \\ \hline j_{p \cdot q} & \left(D+I_{p}\right) \otimes C & & \left(\bar{D}-I_{p}\right) \otimes\left(C+I_{q}\right) \\ & + & j_{p} \otimes\left(\bar{C}-I_{q}\right) & ++ \\ & \left(\bar{D}-I_{p}\right) \otimes\left(\bar{C}-I_{q}\right) & & D \otimes \bar{C}\end{array}\right]$

Let us show that M_{1} and M_{2} are incidence matrices of Menon designs with parameters $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$. It is easy to see that $M_{1} J_{4 p^{2}}=M_{2} J_{4 p^{2}}=\left(2 p^{2}-p\right) J_{4 p^{2}}$. We have to prove that $M_{1} M_{1}^{T}=M_{2} M_{2}^{T}=\left(p^{2}-p\right) J_{4 p^{2}}+p^{2} I_{4 p^{2}}$. Using properties of the matrices D, \bar{D}, C and \bar{C} listed in Lemma 1 and Lemma 2, one computes that the product of block matrices M_{1} and M_{1}^{T}, as well as the product $M_{2} M_{2}^{T}$, equals:

$2 p^{2}-p$	$\left(p^{2}-p\right) j_{p q}^{T}$	$\left(p^{2}-p\right) j_{q}^{T}$	$\left(p^{2}-p\right) j_{p q}^{T}$
$\left(p^{2}-p\right) j_{p q}$	$\begin{gathered} \hline\left(p^{2}-p\right) J_{p q} \\ + \\ p^{2} I_{p q} \\ \hline \end{gathered}$	$\left(p^{2}-p\right) J_{p q \times q}$	$\left(p^{2}-p\right) J_{p q \times p q}$
$\left(p^{2}-p\right) j_{q}$	$\left(p^{2}-p\right) J_{q \times p q}$	$\begin{gathered} \hline\left(p^{2}-p\right) J_{q} \\ + \\ p^{2} I_{q} \\ \hline \end{gathered}$	$\left(p^{2}-p\right) J_{q \times p q}$
$\left(p^{2}-p\right) j_{p q}$	$\left(p^{2}-p\right) J_{p q \times p q}$	$\left(p^{2}-p\right) J_{p q \times q}$	$\begin{gathered} \left(p^{2}-p\right) J_{p q} \\ + \\ p^{2} I_{p q} \end{gathered}$

where $J_{m \times n}$ is the all-one matrix of dimension $m \times n$. Thus,

$$
M_{1} M_{1}^{T}=M_{2} M_{2}^{T}=\left(p^{2}-p\right) J_{4 p^{2}}+p^{2} I_{4 p^{2}}
$$

which means that M_{1} and M_{2} are incidence matrices of symmetric designs with parameters $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$. The incidence matrices M_{1} and M_{2} lead us to conclusion that the group $\Sigma(p) \times \Sigma(2 p-1)$ acts as an automorphism group of the Menon designs, semistandardly with one fixed point (and block), one orbit of length $2 p-1$, and two orbits of length $2 p^{2}-p$. If p and $2 p-1$ are primes, then $\Sigma(p) \times \Sigma(2 p-1)$ $\cong\left(Z_{p}: Z_{\frac{p-1}{2}}\right) \times\left(Z_{2 p-1}: Z_{p-1}\right)$, and the derived designs of the Menon designs with respect to the first block, i.e., the fixed block for an automorphism group (Z_{p} : $\left.Z_{\frac{p-1}{2}}\right) \times\left(Z_{2 p-1}: Z_{p-1}\right)$, are cyclic.
Incidence matrices M_{1} and M_{2} share the entries of
$I=\left[\begin{array}{c|c|c|c}0 & j_{p \cdot q}^{T} & 0_{q}^{T} & 0_{p \cdot q}^{T} \\ \hline & D \otimes\left(C+I_{q}\right) & & D \otimes C \\ 0_{p \cdot q} & \left(\bar{D}-I_{p}\right) \otimes \bar{C} & 0_{p \cdot q \times q} & \bar{D} \otimes\left(\bar{C}-I_{q}\right) \\ \hline 0_{q} & j_{p}^{T} \otimes\left(\bar{C}-I_{q}\right) & 0_{q \times q} & j_{p}^{T} \otimes \bar{C} \\ \hline & \left(D+I_{p}\right) \otimes C & & \left(\bar{D}-I_{p}\right) \otimes\left(C+I_{q}\right) \\ 0_{p \cdot q} & + & 0_{p \cdot q \times q} & + \\ & \left(\bar{D}-I_{p}\right) \otimes\left(\bar{C}-I_{q}\right) & & D \otimes \bar{C}\end{array}\right]$

Thus, the following theorem holds

Theorem 1 Let p and $q=2 p-1$ be prime powers and $p \equiv 3(\bmod 4)$. Further, let the matrices D, \bar{D}, C, \bar{C} and I be defined as above. Then the matrix
$S=\left[\begin{array}{c|c|c|c}0 & j_{p \cdot q}^{T} & 0_{q}^{T} & 0_{p \cdot q}^{T} \\ \hline j_{p \cdot q} & D \otimes\left(C+I_{q}\right) & & D \otimes C \\ & \left(\bar{D}-I_{p}\right) \otimes \bar{C} & j_{p} \otimes(C-\bar{C}) & + \\ \hline 0_{q} & j_{p}^{T} \otimes\left(\bar{C}-I_{q}\right) & 0_{q \times q} & \bar{D} \otimes\left(\bar{C}-I_{q}\right) \\ \hline & \left(D+I_{p}\right) \otimes C & j_{p}^{T} \otimes \bar{C} \\ -j_{p \cdot q} & + & j_{p} \otimes\left(C+2 I_{q}-\bar{C}\right) & \left(\bar{D}-I_{p}\right) \otimes\left(C+I_{q}\right) \\ & \left(\bar{D}-I_{p}\right) \otimes\left(\bar{C}-I_{q}\right) & + \\ & & D \otimes \bar{C}\end{array}\right]$
is a Siamese twin design with parameters $\left(4 p^{2}, 2 p^{2}-p, p^{2}-p\right)$ sharing the entries of I.

The matrix I can be written as

$$
I=\left[\begin{array}{c|c|c|c}
0 & j_{p \cdot q}^{T} & 0_{q}^{T} & 0_{p \cdot q}^{T} \\
\hline 0_{4 p^{2}-1} & X & 0_{\left(4 p^{2}-1\right) \times q} & Y
\end{array}\right] .
$$

The matrix X is the incidence matrix of a 2- $\left(2 p^{2}-p, p^{2}-p, p^{2}-p-1\right)$ design, and Y is the incidence matrix of a pairwise balanced design $\operatorname{PBD}\left(2 p^{2}-p,\left\{p^{2}, p^{2}-p\right\}, p^{2}-p-1\right)$, both having an automorphism group isomorphic to $\Sigma(p) \times \Sigma(2 p-1)$. Note that X is the incidence matrix of the derived design of the Menon designs with incidence matrices M_{1} and M_{2}, with respect to the first block. The pairwise balanced design $\operatorname{PBD}\left(2 p^{2}-p,\left\{p^{2}, p^{2}-p\right\}, p^{2}-p-1\right)$ with the incidence matrix Y is a mandatory representation design $\operatorname{MRD}\left(2 p^{2}-p,\left\{p^{2}, p^{2}-p\right\}, p^{2}-p-1\right)$. When p and $2 p-1$ are primes, the derived design and the pairwise balanced design are cyclic.

4 Amicable Hadamard Matrices

Two square matrices M and N of order n are said to be amicable if $M N^{t}=N M^{t}$. Using the amicability property, the following theorem follows directly (see [6]):

Theorem 2 If matrices A and B are amicable Hadamard matrices of order n, then a matrix $X=A+i B, i^{2}=-1$, is a complex orthogonal matrix, i.e. $X X^{H}=2 n I_{n}$, where $(\cdot)^{H}$ is the Hermitian conjugate.

Note that every Hadamard matrix is amicable with itself, but this is a trivial case which is certainly not interesting. In this article we construct two Menon $\left(4 p^{2}, 2 p^{2}-\right.$ $\left.p, p^{2}-p\right)$ designs, when p and $2 p-1$ are prime powers and $p \equiv 3(\bmod 4)$, leading to amicable Hadamard matrices. In all examples that we examine, these two designs were mutually non-isomorphic.
The matrices M_{1} and M_{2} give rise to regular Hadamard matrices. Let us denote the Hadamard matrices corresponding to M_{1} and M_{2} by H_{1} and H_{2}, respectively. For matrices M_{1} and M_{2} products $M_{1} M_{2}^{T}$ and $M_{2} M_{1}^{T}$ both equal:
$\left[\begin{array}{c|c|c|c}2 p^{2}-p & \left(p^{2}-p\right) j_{p \cdot q}^{T} & \left(p^{2}-p\right) j_{q}^{T} & \left(p^{2}-p\right) j_{p \cdot q}^{T} \\ \hline\left(p^{2}-p\right) j_{p \cdot q} & \begin{array}{c}\left(p^{2}-p+1\right) J_{p} \otimes C \\ -(p-1) J_{p} \otimes I_{q}+p^{2} I_{p q} \\ +\left(p^{2}-p-1\right) J_{p} \otimes \bar{C}\end{array} & \left(p^{2}-p\right) J_{p \cdot q \times q} & \begin{array}{c}\left(p^{2}-p+1\right) J_{p} \otimes J_{q} \\ - \\ (p-1) J_{p} \otimes I_{q}\end{array} \\ \hline\left(p^{2}-p\right) j_{q} & \left(p^{2}-p\right) J_{q \times p \cdot q} & \left(p^{2}-p\right) J_{q}+p^{2} I_{q} & \left(p^{2}-p\right) J_{q \times p \cdot q} \\ \hline\left(p^{2}-p\right) j_{p \cdot q} & \left(p^{2}-p+1\right) J_{p} \otimes J_{q} \\ & - & \left(p^{2}-p\right) J_{p \cdot q \times q} & \begin{array}{c}\left(p^{2}-p-1\right) J_{p} \otimes C \\ -(p+1) J_{p} \otimes I_{q}+p^{2} I_{p q} \\ +\left(p^{2}-p+1\right) J_{p} \otimes \bar{C}\end{array}\end{array}\right]$

Therefore $H_{1} H_{2}^{T}=H_{2} H_{1}^{T}$, so H_{1} and H_{2} are amicable Hadamard matrices. That proves the following theorem:

Theorem 3 Let p and $2 p-1$ be prime powers and $p \equiv 3(\bmod 4)$. The matrices H_{1} and H_{2} are amicable Hadamard matrices of order $4 p^{2}$. Further, the matrix $X=$ $H_{1}+i H_{2}, i^{2}=-1$, is a complex orthogonal matrix, i.e. $X X^{H}=8 p^{2} I_{4 p^{2}}$, where $(\cdot)^{H}$ is the Hermitian conjugate.

References

[1] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, England, 1999.
[2] D. Crnković, A series of regular Hadamard matrices, Des. Codes Cryptogr. 39, no. 2 (2006), 247-251.
[3] D. Crnković, A series of Siamese twin designs, Discrete Math. (2008) (in press); doi:10.1016/j.disc.2007.12.012.
[4] D. Crnković, A series of Menon designs and 1-rotational designs, Finite Fields Appl. 13, no. 4 (2007), 1001-1005.
[5] E. Lander, Symmetric Designs: An Algebraic Approach, Cambridge University Press, Cambridge, England, 1983.
[6] J. Seberry, B. J. Wysocki and T. A. Wysocki, On some applications of Hadamard matrices, Metrika 62, no. 2-3 (2005), 221-239.
[7] W.D. Wallis, A. P. Street and J. S. Wallis, Combinatorics: Room Squares, SumFree Sets, Hadamard matrices, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

