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Abstract

Let p and 2p − 1 be prime powers and p ≡ 3 (mod 4). We describe a
construction of a series of Siamese twin designs with Menon parameters
(4p2, 2p2 − p, p2 − p) intersecting in a derived design with parameters
(2p2 − p, p2 − p, p2 − p − 1), and a pairwise balanced design PBD(2p2 −
p, {p2, p2 − p}, p2 − p − 1). When p and 2p − 1 are primes, the derived
design and the pairwise balanced design are cyclic. Further, these two
Menon designs with parameters (4p2, 2p2 − p, p2 − p) lead to amicable
regular Hadamard matrices of order 4p2.

1 Introduction

Let K be a subset of positive integers. A pairwise balanced design PBD(v, K, λ) is a
finite incidence structure (P ,B, I), where P and B are disjoint sets and I ⊆ P × B,
with the following properties:

1. |P| = v;

2. if an element of B is incident with k elements of P , then k ∈ K;

3. every pair of distinct elements of P is incident with exactly λ elements of B.

The elements of the set P are called points and the elements of the set B are called
blocks. A mandatory representation design MRD(v, K, λ) is a PBD(v, K, λ) in which
for each k ∈ K there is a block incident with exactly k points.

A 2-(v, k, λ) design is a finite incidence structure (P ,B, I), where P and B are disjoint
sets and I ⊆ P × B, with the following properties:
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1. |P| = v;

2. every element of B is incident with exactly k elements of P ;

3. every pair of distinct elements of P is incident with exactly λ elements of B.

A 2-(v, k, λ) design is a PBD(v, K, λ) with K = {k}. 2-designs are often called
balanced incomplete block designs (BIBDs), or just block designs. If |P| = |B| = v

and 2 ≤ k ≤ v − 2, then a 2-(v, k, λ) design is called a symmetric design.

Let D be a symmetric (v, k, λ) design and let x be a block of D. Remove x and
all points that do not belong to x from other blocks. The result is a 2-(k, λ, λ − 1)
design, a derived design of D with respect to the block x.

A 2-(v, k, λ) design, or a pairwise balanced design PBD(v, K, λ), with an automor-
phism group G is called cyclic if G contains a cycle of length v.

A Hadamard matrix of order m is an (m × m) matrix H = (hi,j), hi,j ∈ {−1, 1},
satisfying HHT = HT H = mIm, where Im is an (m × m) identity matrix. A
Hadamard matrix is regular if the row and column sums are constant. It is well
known that the existence of a symmetric (4u2, 2u2 − u, u2 − u) design is equivalent
to the existence of a regular Hadamard matrix of order 4u2 (see [7, Theorem 1.4, pp.
280]). Such symmetric designs are called Menon designs.

A {0,±1}-matrix S is called a Siamese twin design sharing the entries of I, if S =
I + K − L, where I, K, L are non-zero {0, 1}-matrices and both I + K and I + L

are incidence matrices of symmetric designs with the same parameters. If I + K

and I + L are incidence matrices of Menon designs, then S is called a Siamese twin
Menon design.

In this article we describe a construction of a series of Siamese twin Menon designs
sharing the entries of a BIBD and a PBD, using a modification of the construction
introduced in [2], and further developed in [3] and [4]. To make this article self-
contained, in the next section we repeat some facts about developments of Paley
difference sets and Paley partial difference sets stated in [2], [3] and [4].

2 Nonzero squares in finite fields

Let p be a prime power, p ≡ 3 (mod 4) and Fp be a field with p elements. Then a
(p × p) matrix D = (dij), such that

dij =

{

1, if (i − j) is a nonzero square in Fp,

0, otherwise.

is an incidence matrix of a symmetric (p, p−1
2

, p−3
4

) design. Such a symmetric design
is called a Paley design (see [5]). Let D be an incidence matrix of a complementary
symmetric design with parameters (p, p+1

2
, p+1

4
). The proof of the following lemma

can be found in [3].
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Lemma 1 Let p be a prime power, p ≡ 3 (mod 4). Then the matrices D and D

defined as above have the following properties:

D · D
T

= (D − Ip)(D + Ip)
T =

p + 1

4
Jp −

p + 1

4
Ip,

[ D | D − Ip ] · [ D − Ip | D ]T =
p − 1

2
Jp −

p − 1

2
Ip,

[ D | D ] · [ D + Ip | D − Ip ]T =
p − 1

2
Jp,

[ D | D ] · [ D − Ip | D − Ip ]T =
p − 1

2
Jp,

where Jp is the all-one matrix of dimension (p × p).

Let Σ(p) denote the group of all permutations of Fp given by

x 7→ aσ(x) + b,

where a is a nonzero square in Fp, b is any element of Fp, and σ is an automorphism
of the field Fp. Σ(p) is an automorphism group of symmetric designs with incidence
matrices D, D + Ip, D and D− Ip (see [5, pp. 9]). If p is a prime, Σ(p) is isomorphic
to a semidirect product Zp : Zp−1

2

.

Let q be a prime power, q ≡ 1 (mod 4), and C = (cij) be a (q × q) matrix defined as
follows:

cij =

{

1, if (i − j) is a nonzero square in Fq,

0, otherwise.

C is a symmetric matrix, since −1 is a square in Fq. There are as many nonzero
squares as nonsquares in Fq, so each row of C has q−1

2
elements equal 1 and q+1

2
zeros.

The set of nonzero squares in Fq is a partial difference set, called a Paley partial
difference set (see [1, 10.15 Example, pp. 231]). For the proof of the properties of
the matrix C listed in the following lemma we refere the reader to [3].

Lemma 2 Let q be a prime power, q ≡ 1 (mod 4), and let the matrices C and C be

defined as above. Then the following properties hold:

C · (C + Iq)
T = C · (C − Iq)

T =
q − 1

4
Jq +

q − 1

4
Iq,

C · (C − Iq)
T =

q − 1

4
Jq −

q − 1

4
Iq,

(C + Iq) · C
T

=
q + 3

4
Jq −

q − 1

4
Iq,

[ C | C + Iq ] · [ C | C + Iq ]T =
q − 1

2
Jq +

q + 1

2
Iq,

[ C | C − Iq ] · [ C | C − Iq ]T =
q − 1

2
Jq +

q + 1

2
Iq,

[ C | C + Iq ] · [ C | C − Iq ]T =
q + 1

2
Jq −

q + 1

2
Iq.
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Σ(q) acts as an automorphism group of incidence structures with incidence matrices
C, C + Iq, C and C − Iq. If q is a prime, Σ(p) is isomorphic to Zq : Z q−1

2

.

3 Construction of Menon Designs

For v ∈ N we denote by jv the all-one vector of dimension v, by 0v the zero-vector
of dimension v, and by 0m×n the zero-matrix of dimension (m × n).

Let p and q = 2p− 1 be prime powers and p ≡ 3 (mod 4). Further, let D, D, C, and
C be defined as above. Define (4p2 × 4p2) matrices M1 and M2 in the following way:

M1 =































0 jT
p·q 0T

q 0T
p·q

D ⊗ (C + Iq) D ⊗ C

jp·q + jp ⊗ C +
(D − Ip) ⊗ C D ⊗ (C − Iq)

0q jT
p ⊗ (C − Iq) 0q×q jT

p ⊗ C

(D + Ip) ⊗ C (D − Ip) ⊗ (C + Iq)
0p·q + jp ⊗ (C + Iq) +

(D − Ip) ⊗ (C − Iq) D ⊗ C































M2 =































0 jT
p·q 0T

q 0T
p·q

D ⊗ (C + Iq) D ⊗ C

0p·q + jp ⊗ C +
(D − Ip) ⊗ C D ⊗ (C − Iq)

0q jT
p ⊗ (C − Iq) 0q×q jT

p ⊗ C

(D + Ip) ⊗ C (D − Ip) ⊗ (C + Iq)
jp·q + jp ⊗ (C − Iq) +

(D − Ip) ⊗ (C − Iq) D ⊗ C































Let us show that M1 and M2 are incidence matrices of Menon designs with parameters
(4p2, 2p2 − p, p2 − p). It is easy to see that M1J4p2 = M2J4p2 = (2p2 − p)J4p2 . We
have to prove that M1M

T
1 = M2M

T
2 = (p2 − p)J4p2 + p2I4p2 . Using properties of the

matrices D, D, C and C listed in Lemma 1 and Lemma 2, one computes that the
product of block matrices M1 and MT

1 , as well as the product M2M
T
2 , equals:









































2p2 − p (p2 − p)jT
pq (p2 − p)jT

q (p2 − p)jT
pq

(p2 − p)Jpq

(p2 − p)jpq + (p2 − p)Jpq×q (p2 − p)Jpq×pq

p2Ipq

(p2 − p)Jq

(p2 − p)jq (p2 − p)Jq×pq + (p2 − p)Jq×pq

p2Iq

(p2 − p)Jpq

(p2 − p)jpq (p2 − p)Jpq×pq (p2 − p)Jpq×q +
p2Ipq
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where Jm×n is the all-one matrix of dimension m × n. Thus,

M1M
T
1 = M2M

T
2 = (p2 − p)J4p2 + p2I4p2

which means that M1 and M2 are incidence matrices of symmetric designs with
parameters (4p2, 2p2 − p, p2 − p). The incidence matrices M1 and M2 lead us to
conclusion that the group Σ(p) × Σ(2p − 1) acts as an automorphism group of the
Menon designs, semistandardly with one fixed point (and block), one orbit of length
2p−1, and two orbits of length 2p2−p. If p and 2p−1 are primes, then Σ(p)×Σ(2p−1)
∼= (Zp : Zp−1

2

) × (Z2p−1 : Zp−1), and the derived designs of the Menon designs with

respect to the first block, i.e., the fixed block for an automorphism group (Zp :
Zp−1

2

) × (Z2p−1 : Zp−1), are cyclic.

Incidence matrices M1 and M2 share the entries of

I =































0 jT
p·q 0T

q 0T
p·q

D ⊗ (C + Iq) D ⊗ C

0p·q + 0p·q×q +
(D − Ip) ⊗ C D ⊗ (C − Iq)

0q jT
p ⊗ (C − Iq) 0q×q jT

p ⊗ C

(D + Ip) ⊗ C (D − Ip) ⊗ (C + Iq)
0p·q + 0p·q×q +

(D − Ip) ⊗ (C − Iq) D ⊗ C































Thus, the following theorem holds

Theorem 1 Let p and q = 2p− 1 be prime powers and p ≡ 3 (mod 4). Further, let

the matrices D, D, C, C and I be defined as above. Then the matrix

S =































0 jT
p·q 0T

q 0T
p·q

D ⊗ (C + Iq) D ⊗ C

jp·q + jp ⊗ (C − C) +

(D − Ip) ⊗ C D ⊗ (C − Iq)
0q jT

p ⊗ (C − Iq) 0q×q jT
p ⊗ C

(D + Ip) ⊗ C (D − Ip) ⊗ (C + Iq)
−jp·q + jp ⊗ (C + 2Iq − C) +

(D − Ip) ⊗ (C − Iq) D ⊗ C































is a Siamese twin design with parameters (4p2, 2p2 − p, p2 − p) sharing the entries

of I.

The matrix I can be written as
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I =

[

0 jT
p·q 0T

q 0T
p·q

04p2
−1 X 0(4p2

−1)×q Y

]

.

The matrix X is the incidence matrix of a 2-(2p2−p, p2−p, p2−p−1) design, and Y is
the incidence matrix of a pairwise balanced design PBD(2p2−p, {p2, p2−p}, p2−p−1),
both having an automorphism group isomorphic to Σ(p) × Σ(2p − 1). Note that X

is the incidence matrix of the derived design of the Menon designs with incidence
matrices M1 and M2, with respect to the first block. The pairwise balanced design
PBD(2p2 − p, {p2, p2 − p}, p2 − p − 1) with the incidence matrix Y is a mandatory
representation design MRD(2p2 − p, {p2, p2 − p}, p2 − p− 1). When p and 2p− 1 are
primes, the derived design and the pairwise balanced design are cyclic.

4 Amicable Hadamard Matrices

Two square matrices M and N of order n are said to be amicable if MN t = NM t.
Using the amicability property, the following theorem follows directly (see [6]):

Theorem 2 If matrices A and B are amicable Hadamard matrices of order n, then

a matrix X = A + iB, i2 = −1, is a complex orthogonal matrix, i.e. XXH = 2nIn,

where (·)H is the Hermitian conjugate.

Note that every Hadamard matrix is amicable with itself, but this is a trivial case
which is certainly not interesting. In this article we construct two Menon (4p2, 2p2 −
p, p2 − p) designs, when p and 2p − 1 are prime powers and p ≡ 3 (mod 4), leading
to amicable Hadamard matrices. In all examples that we examine, these two designs
were mutually non-isomorphic.

The matrices M1 and M2 give rise to regular Hadamard matrices. Let us denote the
Hadamard matrices corresponding to M1 and M2 by H1 and H2, respectively. For
matrices M1 and M2 products M1M

T
2 and M2M

T
1 both equal:































2p2 − p (p2 − p)jT
p·q (p2 − p)jT

q (p2 − p)jT
p·q

(p2 − p + 1)Jp ⊗ C (p2 − p + 1)Jp ⊗ Jq

(p2 − p)jp·q −(p − 1)Jp ⊗ Iq+p2Ipq (p2 − p)Jp·q×q −
+(p2 − p − 1)Jp ⊗ C (p − 1)Jp ⊗ Iq

(p2 − p)jq (p2 − p)Jq×p·q (p2 − p)Jq + p2Iq (p2 − p)Jq×p·q

(p2 − p + 1)Jp ⊗ Jq (p2 − p − 1)Jp ⊗ C

(p2 − p)jp·q − (p2 − p)Jp·q×q −(p + 1)Jp ⊗ Iq+p2Ipq

(p − 1)Jp ⊗ Iq +(p2 − p + 1)Jp ⊗ C































Therefore H1H
T
2 = H2H

T
1 , so H1 and H2 are amicable Hadamard matrices. That

proves the following theorem:
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Theorem 3 Let p and 2p − 1 be prime powers and p ≡ 3 (mod 4). The matrices

H1 and H2 are amicable Hadamard matrices of order 4p2. Further, the matrix X =
H1 + iH2, i2 = −1, is a complex orthogonal matrix, i.e. XXH = 8p2I4p2 , where (·)H

is the Hermitian conjugate.
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