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Abstract

A graph G with diameter k is said to be goal-minimally k-diametric if for
every edge uv of G distance dG−uv(x, y) > k if and only if {x, y} = {u, v}.
It is rather difficult to construct such graphs. In this paper we give
examples of such graphs for several small values of k. In particular,
we present infinitely many goal-minimally 4-diametric graphs and 6-
diametric graphs.

1 Introduction

We consider finite, undirected, and simple graphs G with the vertex set V (G) and
the edge set E(G). Our graph-theoretical terminology and notation are based on
Chartrand and Lesniak [8]. The number of vertices [edges] of G is often referred to
as the order [size] of G and denoted by n [m, respectively]. The degree of a vertex
u is denoted by deg(u) and the maximum [minimum] degree by ∆ [δ, respectively].
If G is a connected graph, then the distance d(u, v) between two vertices u and
v is defined as the length of a u-v geodesic (a shortest path from u to v). The
eccentricity ec(u) of a vertex u is the distance to a farthest vertex from u. For any
integer i we denote Di(u) = {x ∈ V (G) | d(u, x) = i}. Thus D0(u) = {u} and
the neighborhood N(u) = D1(u). Clearly, the sets D0(u), . . . , Dec(u)(u) form the
distance decomposition of V (G) from u. The diameter diam(G) [radius rad(G)] is
the maximum [minimum, respectively] eccentricity among the vertices of G. The
girth of G is the length of a shortest cycle in G.

A graph G with diameter k is also called a k-diametric graph. It is said to be
minimal with respect to diameter or, more precisely, minimally k-diametric, if for
any edge e ∈ E(G) we have diam(G − e) > k. The distance function in G − e is
allowed to exceed k in an arbitrary pair of vertices. If we restrict this to the ends of
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the edge e, then we get the following special class of minimally k-diametric graphs.
A graph G with diameter k is said to be goal-minimal with respect to diameter or,
more precisely, goal-minimally k-diametric (k-GMD for short), if for each edge uv
of G the inequality dG−uv(x, y) > k holds if and only if {x, y} = {u, v}. Clearly,
the complete graphs are precisely the 1-GMD graphs, but already the case k = 2 is
interesting. The complete bipartite graphs Kr,s with r, s ≥ 2 are examples of 2-GMD
graphs.

The minimal graphs with respect to diameter were studied under various names
(e.g. graphs without superfluous edges, or critical, or edge-critical, or edge-diameter
critical, or diameter-minimal) by many authors (see e.g. [2, 3, 4, 7, 10, 11, 12, 15, 16,
17, 18, 19, 22, 23, 26]). Note that so-called vertex-critical graphs (with respect to
diameter) were also studied (see e.g. [5, 6, 9, 13, 25]). In this paper we deal with k-
GMD graphs and present several such graphs. The goal-minimal graphs with respect
to diameter were introduced by Kyš in [21] which called them “diameter strongly
critical graphs”. He gave several properties of such graphs. Further contributions
were done by Gliviak and Plesník [14]. Some of known results are summarized below.

Theorem 1 [21, 14] The girth of a k-GMD graph G of order at least 3 is k + 2 and
every edge of G lies in a cycle of length k + 2.

Theorem 2 [21] For any two non-adjacent vertices u and v of a k-GMD graph there
are at least two internally disjoint u-v paths of length not exceeding k.

The class of all 2-GMD graphs is rather rich.

Theorem 3 [21] Let G be a graph without 3-cycles. Then there is a 2-GMD graph
containing G as an induced subgraph.

By Theorem 1, in any k-GMD graph all cycle lengths 3, 4, . . . , k+1 are forbidden.
Thus a result of Alon et al. [1] can be applied to receive the following bound on the
size.

Theorem 4 [14] For any k-GMD graph of order n and size m we have

m ≤
1

2
(n1+1/⌊ k+1

2
⌋ + n)

In paper [14] another related bound was derived:

Theorem 5 [14] Let G be a k-GMD graph with k ≥ 3, minimum degree δ and order
n. Then for any vertex u ∈ V (G) we have:

(a) If k is odd, then

n ≥

{

deg(u)(k + 1)/2 + max{2ec(u) − k − 1, 1} if δ = 2
deg(u)[(δ − 1)(k+1)/2 − 1]/(δ − 2) + max{2ec(u) − k − 1, 1} if δ > 2

(b) If k is even, then

n ≥

{

deg(u)(k/2 + 1) + 2ec(u) − k if δ = 2
deg(u)[(δ − 1)k/2 − 1]/(δ − 2) + 2ec(u) − k if δ > 2
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Since k+1
2

≤ ec(u) and we can take for u a vertex of maximum degree, we get:

Corollary 1 [14] Let G be a k-GMD graph with k ≥ 3, maximum degree ∆, mini-
mum degree δ and order n. Then we have:

(a) If k is odd, then

n ≥

{

∆(k + 1)/2 + 1 if δ = 2
∆[(δ − 1)(k+1)/2 − 1]/(δ − 2) + 1 if δ > 2

(b) If k is even, then

n ≥

{

∆(k/2 + 1) + 2 if δ = 2
∆[(δ − 1)k/2 − 1]/(δ − 2) + 2 if δ > 2

This gives an upper bound for ∆ immediately.
As to bounding the order from above, the well known Moore bound (see e.g. [8],

p. 312) is applicable but a better one was derived:

Theorem 6 [14] Let G be a k-GMD graph with k ≥ 3, maximum degree ∆, minimum
degree δ and order n. Then we have:

n ≤ 1 + δ
[(∆ − 1)k−1 − 1

∆ − 2
+

(∆ − 1)k−2(∆ − 2)

2

]

For example, if k = 3 we get the following simple bounds.

Corollary 2 [14] Let G be a 3-GMD graph with maximum degree ∆ and minimum
degree δ. Then the order n of G fulfills the following inequalities

1 + δ∆ ≤ n ≤ 1 + δ
[

∆ +
(∆ − 1)(∆ − 2)

2

]

Kyš [21] presented two infinite classes of 4-GMD graphs. They are subdivisions
of complete graphs and subdivisions of complete bipartite graphs without an edge,
respectively. As to other diameters, he gave one example of a 3-GMD graph and
one example of a 6-GMD graph. Moreover, he raised the conjecture that for every
integer k ≥ 1 there exists a k-GMD graph. This conjecture appeared rather difficult
to prove. As reported in [14], a computer search gave about fifty examples of 3-GMD
graphs (the maximum order was 38). To exclude isomorphic graphs the following
approach was applied: For each generated graph a list of cardinalities of the distance
decomposition for every vertex was produced and then lexicographically ordered lists
were compared. (We admit that also some non-isomorphic graphs could be excluded.)
It is the purpose of this paper to give further examples of k-GMD graphs. In Section
2 we cover a few odd diameters by presenting computer results for k = 3, 5 and 7.
In Section 3 we present a construction of 4-GMD graphs which includes both Kyš’s
constructions [21] as special cases and produces infinitely many new graphs. Another
construction is presented in Section 4 that provides infinitely many 6-GMD graphs.
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Table 1: A 4-regular 3-GMD graph of order 20

1: 2 6 7 17 2: 3 8 20 3: 4 9 16 4: 5 6 10 5: 7 8 11

6: 12 19 7: 9 13 8: 12 14 9: 12 15 10: 13 14 15

11: 15 16 17 12: 18 13: 16 18 14: 17 19 15: 20

16: 19 17: 18 18: 20 19: 20

Figure 1: A 5-GMD graph of order 19

Finally Section 5 provides examples for other small even diameters: k = 8, 10, 12
and 14.

Some graphs are presented by figures where we have drawn standard diagrams,
but some others are given by tables. Every table describes a graph G of order n
where V (G) = {1, 2, . . . , n}. Edges are defined by a list of vertex neighbors (a vertex
followed by colon and adjacent vertices). However, each edge is given exactly once.
Thus some vertices have reduced neighbor sets and those with empty neighbor sets
are deleted. For example, a complete graph of order 4 (with vertices 1, 2, 3, 4) can
be described as follows: 1: 2 3 4, 2: 3 4, 3: 4.

2 Small odd diameters

In paper [14] we have reported about fifty 3-GMD graphs obtained by a computer
search; we presented 12 of them. Among those only one was regular (it has 12
vertices and degree 3). Since that the collection has been extended by a few new
graphs found by a computer. Now we know sixty 3-GMD graphs in total (their order
ranges from n = 8 to n = 38 and there are gaps: for example, there is no 3-GMD
graph of order 10 or 11) and between them there are five 4-regular: they have 19, 20,
21, 22, and 23 vertices. That of order 19 appeared to be known Robertson’s graph
[24] and that of order 20 is given in Table 1.

Our computer search gave also a collection of forty five 5-GMD graphs. Their
orders fulfill the interval from 19 to 30 excepting number 29. Two of them are in
Figures 1 and 2. The collection contains only two 5-GMD graphs without vertices
of degree two; they are 3-regular and have 26 and 28 vertices. That of order 28 is
drawn in Figure 2.

Our computer search gave only four 7-GMD graphs; their orders are 35 (two
graphs), 39, and 43; all have also some vertices of degree 2. One of them is in
Table 2.
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Figure 2: A 3-regular 5-GMD graph of order 28

Table 2: A 7-GMD graph of order 35

1: 2 9 35 2: 3 20 3: 4 4: 5 14 5: 6 29

6: 7 7: 8 23 8: 9 9: 10 10: 11

11: 12 31 12: 13 13: 14 25 14: 15 15: 16

16: 17 33 17: 18 18: 19 28 19: 20 20: 21

21: 22 22: 23 32 23: 24 24: 25 25: 26

26: 27 35 27: 28 28: 29 29: 30 30: 31

31: 32 32: 33 33: 34 34: 35

Remark. Very recently Gyürki [20] discovered a few regular 3-GMD graphs and
one 5-GMD graph of larger orders.

3 Diameter 4

In this section we design an infinite family of 4-GMD graphs. Let us consider a
complete graph Kp with p ≥ 4 vertices. Let V and E denote its vertex set and edge

V

V

1 qK
^

p

w

w

i

j

i

j

H(p,V ,...,V  )

Figure 3: Constructing 4-GMD graphs from K̂p

set, respectively. Inserting into every edge xy ∈ E one new vertex sxy we obtain a
subdivision K̂p with vertex set V ∪ S of cardinality |V |+ |E| and edge set, say, T of
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cardinality 2|E|. The original vertices (belonging to V )) are called basic vertices and
those belonging to S are called subdividing vertices of K̂p. Graph K̂p is a 4-GMD
graph as observed by Kyš [21]. We are going to modify this graph further. Let q ≥ 0
be an integer and sets V1, . . . , Vq ⊂ V be such that:

(i) |Vi| ≥ 3 for every i = 1, . . . , q.
(ii) |Vi ∩ Vj | ≤ 1 whenever i 6= j for all i, j = 1, . . . , q.
(iii) There are 4 distinct basic vertices b1, b2, b3, b4 with the following property. Let

Ṽ (b1, b2) denote the set of basic vertices consisting of vertices b1, b2 and all vertices
of a set Vi containing b1 and b2 (if any). Let Ṽ (b3, b4) be defined similarly. Then we
ask that Ṽ (b1, b2) ∩ Ṽ (b3, b4) = ∅.

Note that (iii) is fulfilled e.g. if there is no set Vi containing b1, b2 and no set Vj

containing b3, b4 or if q ≥ 2 and the sets V1, . . . , Vq are pairwise disjoint.
Following Figure 3, we take K̂p and for every i = 1, . . . , q do:

(1) Delete all vertices sxy with x, y ∈ Vi.
(2) Add a new vertex wi and join it to every vertex x ∈ Vi by a new edge.

The resulting graph is denoted by H(p, V1, . . . , Vq). Clearly, if q = 0 then we have
K̂p, which is the first class of 4-GMD graphs constructed by Kyš in [21]. If q = 1
and |V1| = p − 2 we get a part of his second class of 4-GMD graphs. If q = 2 and
V1 ∩ V2 = ∅ then we get the remaining graphs of his second class of 4-GMD graphs.
In general, we have:

Theorem 7 Any graph H(p, V1, . . . , Vq) is a 4-GMD graph.

Proof: Let H = H(p, V1, . . . , Vq). Put pi = |Vi| for all i. Our construction can
be realized as follows. For every i = 1, . . . , q we merge all pi(pi − 1)/2 midvertices
of the 2-paths connecting vertices of Vi into one group vertex wi and thus all the
edges of these 2-paths incident to the same basic vertex are merged into one group
edge. According to the assumptions (i) and (ii) these group elements are determined
uniquely. For a midvertex x symbol x̄ denotes its group vertex if x was merged, else
we put x̄ = x. Therefore for distances we have dH(x̄, ȳ) ≤ dK̂p

(x, y) and consequently,

diam(H) ≤ diam(K̂p) = 4. Further, we see that each edge of H lies in a 6-cycle and
lies in no shorter cycle. Thus for any two vertices u, v of H and any edge e of H we
have dH−e(u, v) = 5 when e = (u, v) and dH−e(u, v) ≤ 4 when e 6= (u, v). To prove
that H is of diameter 4 it suffices to find two vertices with distance 4. But this is
ensured by the assumption (iii). More precisely, the subdividing vertex sb1,b2 or its
group vertex and the subdividing vertex sb3,b4 or its group vertex have their distance
equal to 4.

All the received 4-GMD graphs are of minimum degree 2. But other 4-GMD are
possible. For example in Fig. 4 we have a 4-GMD graph of minimum degree 3. (This
3-regular vertex symmetric graph of order 16 is known as the Möbius-Kantor graph
or generalized Petersen graph P8,3 [27].)
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Figure 4: A 4-GMD graph with minimum degree 3

4 Diameter 6

Here we present an infinite class of 6-GMD graphs. Our construction depends on
two parameters p, q ≥ 2. In Figure 5 we have depicted such a 6-GMD graph with

u

v

w

Figure 5: Illustrating the construction of 6-GMD graphs for p = 4 and q = 3

p = 4 and q = 3. In general, we take p copies of a complete bipartite graph Kq,q.
Further we take two copies of a star K1,q; let u and v be their central vertices. Then
for each copy of Kq,q we join by q edges the q vertices of one partite set to the q
vertices of N(u) (one-to-one) and symmetrically, the q vertices of the other partite
set are joined to the q vertices of N(v) by further q edges. Finally, in each copy of
Kq,q every edge is subdivided by inserting one new vertex. The reader can easily
verify that the resulting graph is a 6-GMD graph of order n = pq2 + 2pq + 2q + 2
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and size m = 2pq2 + 2pq + 2q. Moreover, if we add a further vertex w and two edges
uw and vw, we get a 6-GMD graph too.

5 Further small even diameters

While our k-GMD graphs for odd k have been found by a computer, those with even
diameters are handmade. We tried to generalize our construction of 6-GMD graphs.

Figure 6: The first 8-GMD graph of order 46

Figure 7: The second 8-GMD graph of order 46

Although no general construction has been found at least some isolated examples
were produced. The idea was to connect the leaves of two binary trees of height
k/2 − 1 by a 2-regular bipartite graph B, where one partite set is formed by the
leaves of the first tree and the other partite set by the leaves of the second tree and
finally to subdivide each edge of B. This yielded three 8-GMD graphs of order 46.
They are in Figures 6, 7, and in Table 3.

Analogous considerations led to three 10-GMD graphs of order 94. Here we
present just one of them in Table 4.

Also three 12-GMD graphs of order 190 were found; one of them is given in Table
5. Finally two 14-GMD graphs of order 382 were produced and Table 6 shows one of
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Table 3: The third 8-GMD graph of order 46

1: 2 3 2: 4 5 3: 6 7 4: 8 9 5: 10 11

6: 12 13 7: 14 15 8: 31 32 9: 33 34 10: 35 36

11: 37 38 12: 39 43 13: 41 44 14: 40 45 15: 42 46

16: 17 18 17: 19 20 18: 21 22 19: 23 24 20: 25 26

21: 27 28 22: 29 30 23: 31 39 24: 35 40 25: 33 41

26: 37 42 27: 32 45 28: 36 43 29: 34 46 30: 38 44

Table 4: A 10-GMD graph of order 94

1: 2 3 2: 4 5 3: 6 7 4: 8 9 5: 10 11

6: 12 13 7: 14 15 8: 16 17 9: 18 19 10: 20 21

11: 22 23 12: 24 25 13: 26 27 14: 28 29 15: 30 31

16: 63 64 17: 65 66 18: 67 68 19: 69 70 20: 71 72

21: 73 74 22: 75 76 23: 77 78 24: 79 80 25: 81 82

26: 83 84 27: 85 86 28: 87 88 29: 89 90 30: 91 92

31: 93 94 32: 33 34 33: 35 36 34: 37 38 35: 39 40

36: 41 42 37: 43 44 38: 45 46 39: 47 48 40: 49 50

41: 51 52 42: 53 54 43: 55 56 44: 57 58 45: 59 60

46: 61 62 47: 63 79 48: 71 87 49: 67 83 50: 75 91

51: 65 81 52: 73 89 53: 69 85 54: 77 93 55: 64 84

56: 72 92 57: 68 80 58: 76 88 59: 66 86 60: 74 94

61: 70 82 62: 78 90

them. Unfortunately, we did not succeed in continuation of this sequence and thus
14 is the maximum diameter of a k-GMD graph we have found so far.
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Table 5: A 12-GMD graph of order 190

1: 2 3 2: 4 5 3: 6 7 4: 8 9 5: 10 11

6: 12 13 7: 14 15 8: 16 17 9: 18 19 10: 20 21

11: 22 23 12: 24 25 13: 26 27 14: 28 29 15: 30 31

16: 32 33 17: 34 35 18: 36 37 19: 38 39 20: 40 41

21: 42 43 22: 44 45 23: 46 47 24: 48 49 25: 50 51

26: 52 53 27: 54 55 28: 56 57 29: 58 59 30: 60 61

31: 62 63 32: 127 128 33: 129 130 34: 131 132 35: 133 134

36: 135 136 37: 137 138 38: 139 140 39: 141 142 40: 143 144

41: 145 146 42: 147 148 43: 149 150 44: 151 152 45: 153 154

46: 155 156 47: 157 158 48: 159 160 49: 161 162 50: 163 164

51: 165 166 52: 167 168 53: 169 170 54: 171 172 55: 173 174

56: 175 176 57: 177 178 58: 179 180 59: 181 182 60: 183 184

61: 185 186 62: 187 188 63: 189 190 64: 65 66 65: 67 68

66: 69 70 67: 71 72 68: 73 74 69: 75 76 70: 77 78

71: 79 80 72: 81 82 73: 83 84 74: 85 86 75: 87 88

76: 89 90 77: 91 92 78: 93 94 79: 95 96 80: 97 98

81: 99 100 82: 101 102 83: 103 104 84: 105 106 85: 107 108

86: 109 110 87: 111 112 88: 113 114 89: 115 116 90: 117 118

91: 119 120 92: 121 122 93: 123 124 94: 125 126 95: 127 159

96: 143 175 97: 135 167 98: 151 183 99: 131 163 100: 147 179

101: 139 171 102: 155 187 103: 129 177 104: 145 161 105: 137 185

106: 153 169 107: 133 181 108: 149 165 109: 141 189 110: 157 173

111: 128 188 112: 152 164 113: 136 180 114: 144 172 115: 132 184

116: 156 160 117: 140 176 118: 148 168 119: 130 166 120: 154 190

121: 138 174 122: 146 182 123: 134 162 124: 158 186 125: 142 170

126: 150 178
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Table 6: A 14-GMD graph of order 382

1: 2 3 2: 4 5 3: 6 7 4: 8 9 5: 10 11

6: 12 13 7: 14 15 8: 16 17 9: 18 19 10: 20 21

11: 22 23 12: 24 25 13: 26 27 14: 28 29 15: 30 31

16: 32 33 17: 34 35 18: 36 37 19: 38 39 20: 40 41

21: 42 43 22: 44 45 23: 46 47 24: 48 49 25: 50 51

26: 52 53 27: 54 55 28: 56 57 29: 58 59 30: 60 61

31: 62 63 32: 64 65 33: 66 67 34: 68 69 35: 70 71

36: 72 73 37: 74 75 38: 76 77 39: 78 79 40: 80 81

41: 82 83 42: 84 85 43: 86 87 44: 88 89 45: 90 91

46: 92 93 47: 94 95 48: 96 97 49: 98 99 50: 100 101

51: 102 103 52: 104 105 53: 106 107 54: 108 109 55: 110 111

56: 112 113 57: 114 115 58: 116 117 59: 118 119 60: 120 121

61: 122 123 62: 124 125 63: 126 127 64: 255 256 65: 257 258

66: 259 260 67: 261 262 68: 263 264 69: 265 266 70: 267 268

71: 269 270 72: 271 272 73: 273 274 74: 275 276 75: 277 278

76: 279 280 77: 281 282 78: 283 284 79: 285 286 80: 287 288

81: 289 290 82: 291 292 83: 293 294 84: 295 296 85: 297 298

86: 299 300 87: 301 302 88: 303 304 89: 305 306 90: 307 308

91: 309 310 92: 311 312 93: 313 314 94: 315 316 95: 317 318

96: 319 351 97: 339 352 98: 327 353 99: 347 354 100: 323 355

101: 335 356 102: 331 357 103: 343 358 104: 321 359 105: 341 360

106: 329 361 107: 349 362 108: 325 363 109: 337 364 110: 333 365

111: 345 366 112: 320 367 113: 340 368 114: 328 369 115: 348 370

116: 324 371 117: 336 372 118: 332 373 119: 344 374 120: 322 375

121: 342 376 122: 330 377 123: 350 378 124: 326 379 125: 338 380

126: 334 381 127: 346 382 128: 129 130 129: 131 132 130: 133 134

131: 135 136 132: 137 138 133: 139 140 134: 141 142 135: 143 144

136: 145 146 137: 147 148 138: 149 150 139: 151 152 140: 153 154

141: 155 156 142: 157 158 143: 159 160 144: 161 162 145: 163 164

146: 165 166 147: 167 168 148: 169 170 149: 171 172 150: 173 174

151: 175 176 152: 177 178 153: 179 180 154: 181 182 155: 183 184

156: 185 186 157: 187 188 158: 189 190 159: 191 192 160: 193 194

161: 195 196 162: 197 198 163: 199 200 164: 201 202 165: 203 204

166: 205 206 167: 207 208 168: 209 210 169: 211 212 170: 213 214

171: 215 216 172: 217 218 173: 219 220 174: 221 222 175: 223 224

176: 225 226 177: 227 228 178: 229 230 179: 231 232 180: 233 234

181: 235 236 182: 237 238 183: 239 240 184: 241 242 185: 243 244

186: 245 246 187: 247 248 188: 249 250 189: 251 252 190: 253 254

191: 255 319 192: 287 320 193: 271 321 194: 303 322 195: 263 323

196: 295 324 197: 279 325 198: 311 326 199: 259 327 200: 291 328

201: 275 329 202: 307 330 203: 267 331 204: 299 332 205: 283 333

206: 315 334 207: 257 335 208: 289 336 209: 273 337 210: 305 338

211: 265 339 212: 297 340 213: 281 341 214: 313 342 215: 261 343

216: 293 344 217: 277 345 218: 309 346 219: 269 347 220: 301 348

221: 285 349 222: 317 350 223: 256 361 224: 296 381 225: 272 353

226: 312 373 227: 264 365 228: 288 377 229: 280 357 230: 304 369

231: 260 359 232: 300 379 233: 276 351 234: 316 371 235: 268 363

236: 292 375 237: 284 355 238: 308 367 239: 258 366 240: 298 378

241: 274 358 242: 314 370 243: 266 362 244: 290 382 245: 282 354

246: 306 374 247: 262 364 248: 302 376 249: 278 356 250: 318 368

251: 270 360 252: 294 380 253: 286 352 254: 310 372
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