Examples of goal-minimally k-diametric graphs for some small values of k

JÁn Plesník*
Department of Mathematical Analysis and Numerical Mathematics Faculty of Mathematics, Physics and Informatics
Comenius University
Mlynska dolina, 84248 Bratislava
Slovakia

Abstract

A graph G with diameter k is said to be goal-minimally k-diametric if for every edge $u v$ of G distance $d_{G-u v}(x, y)>k$ if and only if $\{x, y\}=\{u, v\}$. It is rather difficult to construct such graphs. In this paper we give examples of such graphs for several small values of k. In particular, we present infinitely many goal-minimally 4 -diametric graphs and 6 diametric graphs.

1 Introduction

We consider finite, undirected, and simple graphs G with the vertex set $V(G)$ and the edge set $E(G)$. Our graph-theoretical terminology and notation are based on Chartrand and Lesniak [8]. The number of vertices [edges] of G is often referred to as the order [size] of G and denoted by n [m, respectively]. The degree of a vertex u is denoted by $\operatorname{deg}(u)$ and the maximum [minimum] degree by $\Delta[\delta$, respectively]. If G is a connected graph, then the distance $d(u, v)$ between two vertices u and v is defined as the length of a $u-v$ geodesic (a shortest path from u to v). The eccentricity $e c(u)$ of a vertex u is the distance to a farthest vertex from u. For any integer i we denote $D_{i}(u)=\{x \in V(G) \mid d(u, x)=i\}$. Thus $D_{0}(u)=\{u\}$ and the neighborhood $N(u)=D_{1}(u)$. Clearly, the sets $D_{0}(u), \ldots, D_{e c(u)}(u)$ form the distance decomposition of $V(G)$ from u. The diameter $\operatorname{diam}(G)[\operatorname{radius} \operatorname{rad}(G)]$ is the maximum [minimum, respectively] eccentricity among the vertices of G. The girth of G is the length of a shortest cycle in G.

A graph G with diameter k is also called a k-diametric graph. It is said to be minimal with respect to diameter or, more precisely, minimally k-diametric, if for any edge $e \in E(G)$ we have $\operatorname{diam}(G-e)>k$. The distance function in $G-e$ is allowed to exceed k in an arbitrary pair of vertices. If we restrict this to the ends of

[^0]the edge e, then we get the following special class of minimally k-diametric graphs. A graph G with diameter k is said to be goal-minimal with respect to diameter or, more precisely, goal-minimally k-diametric (k-GMD for short), if for each edge $u v$ of G the inequality $d_{G-u v}(x, y)>k$ holds if and only if $\{x, y\}=\{u, v\}$. Clearly, the complete graphs are precisely the 1-GMD graphs, but already the case $k=2$ is interesting. The complete bipartite graphs $K_{r, s}$ with $r, s \geq 2$ are examples of 2-GMD graphs.

The minimal graphs with respect to diameter were studied under various names (e.g. graphs without superfluous edges, or critical, or edge-critical, or edge-diameter critical, or diameter-minimal) by many authors (see e.g. [2, 3, 4, 7, 10, 11, 12, 15, 16, $17,18,19,22,23,26]$). Note that so-called vertex-critical graphs (with respect to diameter) were also studied (see e.g. [5, 6, 9, 13, 25]). In this paper we deal with k GMD graphs and present several such graphs. The goal-minimal graphs with respect to diameter were introduced by Kyš in [21] which called them "diameter strongly critical graphs". He gave several properties of such graphs. Further contributions were done by Gliviak and Plesník [14]. Some of known results are summarized below.

Theorem 1 [21,14] The girth of a k-GMD graph G of order at least 3 is $k+2$ and every edge of G lies in a cycle of length $k+2$.

Theorem 2 [21] For any two non-adjacent vertices u and v of a k-GMD graph there are at least two internally disjoint u-v paths of length not exceeding k.

The class of all 2-GMD graphs is rather rich.
Theorem 3 [21] Let G be a graph without 3-cycles. Then there is a 2-GMD graph containing G as an induced subgraph.

By Theorem 1 , in any k-GMD graph all cycle lengths $3,4, \ldots, k+1$ are forbidden. Thus a result of Alon et al. [1] can be applied to receive the following bound on the size.

Theorem 4 [14] For any k-GMD graph of order n and size m we have

$$
m \leq \frac{1}{2}\left(n^{1+1 /\left\lfloor\frac{k+1}{2}\right\rfloor}+n\right)
$$

In paper [14] another related bound was derived:
Theorem 5 [14] Let G be a k-GMD graph with $k \geq 3$, minimum degree δ and order n. Then for any vertex $u \in V(G)$ we have:
(a) If k is odd, then

$$
n \geq\left\{\begin{array}{lll}
\operatorname{deg}(u)(k+1) / 2+\max \{2 e c(u)-k-1,1\} & \text { if } & \delta=2 \\
\operatorname{deg}(u)\left[(\delta-1)^{(k+1) / 2}-1\right] /(\delta-2)+\max \{2 e c(u)-k-1,1\} & \text { if } & \delta>2
\end{array}\right.
$$

(b) If k is even, then

$$
n \geq\left\{\begin{array}{lll}
\operatorname{deg}(u)(k / 2+1)+2 e c(u)-k & \text { if } & \delta=2 \\
\operatorname{deg}(u)\left[(\delta-1)^{k / 2}-1\right] /(\delta-2)+2 e c(u)-k & \text { if } & \delta>2
\end{array}\right.
$$

Since $\frac{k+1}{2} \leq e c(u)$ and we can take for u a vertex of maximum degree, we get:
Corollary 1 [14] Let G be a k-GMD graph with $k \geq 3$, maximum degree Δ, minimum degree δ and order n. Then we have:
(a) If k is odd, then

$$
n \geq\left\{\begin{array}{lll}
\Delta(k+1) / 2+1 & \text { if } & \delta=2 \\
\Delta\left[(\delta-1)^{(k+1) / 2}-1\right] /(\delta-2)+1 & \text { if } & \delta>2
\end{array}\right.
$$

(b) If k is even, then

$$
n \geq\left\{\begin{array}{lll}
\Delta(k / 2+1)+2 & \text { if } & \delta=2 \\
\Delta\left[(\delta-1)^{k / 2}-1\right] /(\delta-2)+2 & \text { if } & \delta>2
\end{array}\right.
$$

This gives an upper bound for Δ immediately.
As to bounding the order from above, the well known Moore bound (see e.g. [8], p. 312) is applicable but a better one was derived:

Theorem 6 [14] Let G be a k-GMD graph with $k \geq 3$, maximum degree Δ, minimum degree δ and order n. Then we have:

$$
n \leq 1+\delta\left[\frac{(\Delta-1)^{k-1}-1}{\Delta-2}+\frac{(\Delta-1)^{k-2}(\Delta-2)}{2}\right]
$$

For example, if $k=3$ we get the following simple bounds.
Corollary 2 [14] Let G be a 3-GMD graph with maximum degree Δ and minimum degree δ. Then the order n of G fulfills the following inequalities

$$
1+\delta \Delta \leq n \leq 1+\delta\left[\Delta+\frac{(\Delta-1)(\Delta-2)}{2}\right]
$$

Kyš [21] presented two infinite classes of 4-GMD graphs. They are subdivisions of complete graphs and subdivisions of complete bipartite graphs without an edge, respectively. As to other diameters, he gave one example of a 3-GMD graph and one example of a 6-GMD graph. Moreover, he raised the conjecture that for every integer $k \geq 1$ there exists a k-GMD graph. This conjecture appeared rather difficult to prove. As reported in [14], a computer search gave about fifty examples of 3-GMD graphs (the maximum order was 38). To exclude isomorphic graphs the following approach was applied: For each generated graph a list of cardinalities of the distance decomposition for every vertex was produced and then lexicographically ordered lists were compared. (We admit that also some non-isomorphic graphs could be excluded.) It is the purpose of this paper to give further examples of k-GMD graphs. In Section 2 we cover a few odd diameters by presenting computer results for $k=3,5$ and 7 . In Section 3 we present a construction of 4-GMD graphs which includes both Kyš's constructions [21] as special cases and produces infinitely many new graphs. Another construction is presented in Section 4 that provides infinitely many 6-GMD graphs.

Table 1: A 4-regular 3-GMD graph of order 20

$1: 26717$	$2: 3820$	$3: 4916$	$4: 5610$	$5: 7811$
$6: 1219$	$7: 913$	$8: 1214$	$9: 1215$	$10: 131415$
$11: 151617$	$12: 18$	$13: 1618$	$14: 1719$	$15: 20$
$16: 19$	$17: 18$	$18: 20$	$19: 20$	

Figure 1: A 5-GMD graph of order 19

Finally Section 5 provides examples for other small even diameters: $k=8,10,12$ and 14.

Some graphs are presented by figures where we have drawn standard diagrams, but some others are given by tables. Every table describes a graph G of order n where $V(G)=\{1,2, \ldots, n\}$. Edges are defined by a list of vertex neighbors (a vertex followed by colon and adjacent vertices). However, each edge is given exactly once. Thus some vertices have reduced neighbor sets and those with empty neighbor sets are deleted. For example, a complete graph of order 4 (with vertices $1,2,3,4$) can be described as follows: 1: $234,2: 34,3: 4$.

2 Small odd diameters

In paper [14] we have reported about fifty 3-GMD graphs obtained by a computer search; we presented 12 of them. Among those only one was regular (it has 12 vertices and degree 3). Since that the collection has been extended by a few new graphs found by a computer. Now we know sixty 3-GMD graphs in total (their order ranges from $n=8$ to $n=38$ and there are gaps: for example, there is no 3-GMD graph of order 10 or 11) and between them there are five 4-regular: they have 19, 20, 21,22 , and 23 vertices. That of order 19 appeared to be known Robertson's graph [24] and that of order 20 is given in Table 1.

Our computer search gave also a collection of forty five 5-GMD graphs. Their orders fulfill the interval from 19 to 30 excepting number 29 . Two of them are in Figures 1 and 2. The collection contains only two 5-GMD graphs without vertices of degree two; they are 3-regular and have 26 and 28 vertices. That of order 28 is drawn in Figure 2.

Our computer search gave only four 7-GMD graphs; their orders are 35 (two graphs), 39 , and 43 ; all have also some vertices of degree 2 . One of them is in Table 2.

Figure 2: A 3-regular 5-GMD graph of order 28

Table 2: A 7-GMD graph of order 35

1: 2935	$2: 320$	$3: 4$	$4: 514$	$5: 629$
6: 7	$7: 823$	$8: 9$	$9: 10$	$10: 11$
11: 1231	$12: 13$	$13: 1425$	$14: 15$	$15: 16$
16: 1733	$17: 18$	$18: 1928$	19: 20	20: 21
21: 22	$22: 2332$	23: 24	24: 25	$25: 26$
26: 2735	$27: 28$	$28: 29$	$29: 30$	$30: 31$
31: 32	$32: 33$	$33: 34$	$34: 35$	

Remark. Very recently Gyürki [20] discovered a few regular 3-GMD graphs and one 5-GMD graph of larger orders.

3 Diameter 4

In this section we design an infinite family of 4-GMD graphs. Let us consider a complete graph K_{p} with $p \geq 4$ vertices. Let V and E denote its vertex set and edge

Figure 3: Constructing 4-GMD graphs from \hat{K}_{p}
set, respectively. Inserting into every edge $x y \in E$ one new vertex $s_{x y}$ we obtain a subdivision \hat{K}_{p} with vertex set $V \cup S$ of cardinality $|V|+|E|$ and edge set, say, T of
cardinality $2|E|$. The original vertices (belonging to V)) are called basic vertices and those belonging to S are called subdividing vertices of \hat{K}_{p}. Graph \hat{K}_{p} is a 4-GMD graph as observed by Kyš [21]. We are going to modify this graph further. Let $q \geq 0$ be an integer and sets $V_{1}, \ldots, V_{q} \subset V$ be such that:
(i) $\left|V_{i}\right| \geq 3$ for every $i=1, \ldots, q$.
(ii) $\left|V_{i} \cap V_{j}\right| \leq 1$ whenever $i \neq j$ for all $i, j=1, \ldots, q$.
(iii) There are 4 distinct basic vertices $b_{1}, b_{2}, b_{3}, b_{4}$ with the following property. Let $\tilde{V}\left(b_{1}, b_{2}\right)$ denote the set of basic vertices consisting of vertices b_{1}, b_{2} and all vertices of a set V_{i} containing b_{1} and b_{2} (if any). Let $\tilde{V}\left(b_{3}, b_{4}\right)$ be defined similarly. Then we ask that $\tilde{V}\left(b_{1}, b_{2}\right) \cap \tilde{V}\left(b_{3}, b_{4}\right)=\emptyset$.

Note that (iii) is fulfilled e.g. if there is no set V_{i} containing b_{1}, b_{2} and no set V_{j} containing b_{3}, b_{4} or if $q \geq 2$ and the sets V_{1}, \ldots, V_{q} are pairwise disjoint.

Following Figure 3, we take \hat{K}_{p} and for every $i=1, \ldots, q$ do:
(1) Delete all vertices $s_{x y}$ with $x, y \in V_{i}$.
(2) Add a new vertex w_{i} and join it to every vertex $x \in V_{i}$ by a new edge.

The resulting graph is denoted by $H\left(p, V_{1}, \ldots, V_{q}\right)$. Clearly, if $q=0$ then we have \hat{K}_{p}, which is the first class of 4-GMD graphs constructed by Kyš in [21]. If $q=1$ and $\left|V_{1}\right|=p-2$ we get a part of his second class of 4-GMD graphs. If $q=2$ and $V_{1} \cap V_{2}=\emptyset$ then we get the remaining graphs of his second class of 4-GMD graphs. In general, we have:

Theorem 7 Any graph $H\left(p, V_{1}, \ldots, V_{q}\right)$ is a $4-G M D$ graph.

Proof: Let $H=H\left(p, V_{1}, \ldots, V_{q}\right)$. Put $p_{i}=\left|V_{i}\right|$ for all i. Our construction can be realized as follows. For every $i=1, \ldots, q$ we merge all $p_{i}\left(p_{i}-1\right) / 2$ midvertices of the 2-paths connecting vertices of V_{i} into one group vertex w_{i} and thus all the edges of these 2-paths incident to the same basic vertex are merged into one group edge. According to the assumptions (i) and (ii) these group elements are determined uniquely. For a midvertex x symbol \bar{x} denotes its group vertex if x was merged, else we put $\bar{x}=x$. Therefore for distances we have $d_{H}(\bar{x}, \bar{y}) \leq d_{\hat{K}_{p}}(x, y)$ and consequently, $\operatorname{diam}(H) \leq \operatorname{diam}\left(\hat{K}_{p}\right)=4$. Further, we see that each edge of H lies in a 6 -cycle and lies in no shorter cycle. Thus for any two vertices u, v of H and any edge e of H we have $d_{H-e}(u, v)=5$ when $e=(u, v)$ and $d_{H-e}(u, v) \leq 4$ when $e \neq(u, v)$. To prove that H is of diameter 4 it suffices to find two vertices with distance 4 . But this is ensured by the assumption (iii). More precisely, the subdividing vertex $s_{b_{1}, b_{2}}$ or its group vertex and the subdividing vertex $s_{b_{3}, b_{4}}$ or its group vertex have their distance equal to 4 .

All the received 4-GMD graphs are of minimum degree 2. But other 4-GMD are possible. For example in Fig. 4 we have a 4-GMD graph of minimum degree 3. (This 3 -regular vertex symmetric graph of order 16 is known as the Möbius-Kantor graph or generalized Petersen graph $P_{8,3}$ [27].)

Figure 4: A 4-GMD graph with minimum degree 3

4 Diameter 6

Here we present an infinite class of 6-GMD graphs. Our construction depends on two parameters $p, q \geq 2$. In Figure 5 we have depicted such a 6-GMD graph with

Figure 5: Illustrating the construction of 6-GMD graphs for $p=4$ and $q=3$
$p=4$ and $q=3$. In general, we take p copies of a complete bipartite graph $K_{q, q}$. Further we take two copies of a star $K_{1, q}$; let u and v be their central vertices. Then for each copy of $K_{q, q}$ we join by q edges the q vertices of one partite set to the q vertices of $N(u)$ (one-to-one) and symmetrically, the q vertices of the other partite set are joined to the q vertices of $N(v)$ by further q edges. Finally, in each copy of $K_{q, q}$ every edge is subdivided by inserting one new vertex. The reader can easily verify that the resulting graph is a 6-GMD graph of order $n=p q^{2}+2 p q+2 q+2$
and size $m=2 p q^{2}+2 p q+2 q$. Moreover, if we add a further vertex w and two edges $u w$ and $v w$, we get a 6-GMD graph too.

5 Further small even diameters

While our k-GMD graphs for odd k have been found by a computer, those with even diameters are handmade. We tried to generalize our construction of 6-GMD graphs.

Figure 6: The first 8-GMD graph of order 46

Figure 7: The second 8-GMD graph of order 46
Although no general construction has been found at least some isolated examples were produced. The idea was to connect the leaves of two binary trees of height $k / 2-1$ by a 2-regular bipartite graph B, where one partite set is formed by the leaves of the first tree and the other partite set by the leaves of the second tree and finally to subdivide each edge of B. This yielded three 8-GMD graphs of order 46 . They are in Figures 6, 7, and in Table 3.

Analogous considerations led to three 10-GMD graphs of order 94. Here we present just one of them in Table 4.

Also three 12-GMD graphs of order 190 were found; one of them is given in Table 5. Finally two 14-GMD graphs of order 382 were produced and Table 6 shows one of

Table 3: The third 8-GMD graph of order 46

$1: 23$	$2: 45$	$3: 67$	$4: 89$	$5: 1011$
$6: 1213$	$7: 1415$	$8: 3132$	$9: 3334$	$10: 3536$
$11: 3738$	$12: 3943$	$13: 4144$	$14: 4045$	$15: 4246$
16: 17 18	17: 1920	18: 21 22	19: 23 24	$20: 2526$
21: 27 28	22: 29 30	23: 31 39	24: 35 40	$25: 3341$
26: 3742	$27: 3245$	$28: 3643$	$29: 3446$	$30: 3844$

Table 4: A 10-GMD graph of order 94

1: 23	2: 45	3: 67	4: 89	5: 1011
6: 1213	7: 1415	8: 1617	9:1819	10: 2021
11: 2223	12: 2425	13: 2627	14: 2829	15: 3031
16: 6364	17: 6566	18: 6768	19: 6970	20: 7172
21: 7374	22: 7576	23: 7778	24: 7980	25: 8182
26: 8384	27: 8586	28: 8788	29: 8990	30: 9192
31: 9394	32: 3334	33: 3536	34: 3738	35: 3940
36: 4142	37: 4344	38: 4546	39: 4748	40: 4950
41: 5152	42: 5354	43: 5556	44: 5758	45: 5960
46: 6162	47: 6379	48: 7187	49: 6783	50: 7591
51: 6581	52: 7389	53: 6985	54: 7793	55: 6484
56: 7292	57: 6880	58: 7688	59: 6686	60: 7494
61: 7082	62: 7890			

them. Unfortunately, we did not succeed in continuation of this sequence and thus 14 is the maximum diameter of a k-GMD graph we have found so far.

Table 5: A 12-GMD graph of order 190

1: 2	2: 45	3:67	4: 89	5: 1011
6: 1213	7: 1415	8: 1617	9: 1819	10: 2021
11: 2223	12: 2425	13: 2627	14: 2829	15: 3031
16: 3233	17: 3435	18: 3637	19: 3839	20: 4041
21: 4243	22: 4445	23: 4647	24: 4849	25: 5051
26: 5253	27: 5455	28: 5657	29: 5859	30: 6061
31: 6263	32: 127128	33: 129130	34: 131132	35: 133134
36: 135136	37: 137138	38: 139140	39: 141142	40: 143144
41: 145146	42: 147148	43: 149150	44: 151152	45: 153154
46: 155156	47: 157158	48: 159160	49: 161162	50: 163164
51: 165166	52: 167168	53: 169170	54: 171172	55: 173174
56: 175176	57: 177178	58: 179180	59: 181182	60: 183184
61: 185186	62: 187188	63: 189190	64: 6566	65: 6768
66: 6970	67: 7172	68: 7374	69: 7576	70: 7778
71: 7980	72: 8182	73: 8384	74: 8586	75: 8788
76: 8990	77: 9192	78: 9394	79: 9596	80: 9798
81: 99100	82: 101102	83: 103104	84: 105106	85: 107108
86: 109110	87: 111112	88: 113114	89: 115116	90: 117118
91: 119120	92: 121122	93: 123124	94: 125126	95: 127159
96: 143175	97: 135167	98: 151183	99: 131163	100:147 179
101: 139171	102: 155187	103: 129177	104: 145161	105: 137185
106: 153169	107: 133181	108: 149165	109: 141189	110: 157173
111: 128188	112: 152164	113: 136180	114: 144172	115: 132184
116: 156160	117: 140176	118: 148168	119: 130166	120: 154190
121: 138174	122: 146182	123: 134162	124: 158186	125: 142170
126: 150178				

Table 6: A 14-GMD graph of order 382

1: 23	2: 45	3: 67	4: 89	5: 1011
6: 1213	7: 1415	8: 1617	9: 1819	10: 2021
11: 2223	12: 2425	13: 2627	14: 2829	15: 3031
16: 3233	17: 3435	18: 3637	19: 3839	20: 4041
21: 4243	22: 4445	23: 4647	24: 4849	25: 5051
26: 5253	27: 5455	28: 5657	29: 5859	30: 6061
31: 6263	32: 6465	33: 6667	34: 6869	35: 7071
36: 7273	37: 7475	38: 7677	39: 7879	40: 8081
41: 8283	42: 8485	43: 8687	44: 8889	45: 9091
46: 9293	47: 9495	48: 9697	49: 9899	50: 100101
51: 102103	52: 104105	53: 106107	54: 108109	55: 110111
56: 112113	57: 114115	58: 116117	59: 118119	60: 120121
61: 122123	62: 124125	63: 126127	64: 255256	65: 257258
66: 259260	67: 261262	68: 263264	69: 265266	70: 267268
71: 269270	72: 271272	73: 273274	74: 275276	75: 277278
76: 279280	77: 281282	78: 283284	79: 285286	80: 287288
81: 289290	82: 291292	83: 293294	84: 295296	85: 297298
86: 299300	87: 301302	88: 303304	89:305 306	90: 307308
91: 309310	92: 311312	93: 313314	94: 315316	95: 317318
96: 319351	97: 339352	98: 327353	99: 347354	100: 323355
101: 335356	102: 331357	103: 343358	104: 321359	105: 341360
106: 329361	107: 349362	108: 325363	109: 337364	110: 333365
111: 345366	112: 320367	113: 340368	114: 328369	115: 348370
116: 324371	117: 336372	118: 332373	119: 344374	120: 322375
121: 342376	122: 330377	123: 350378	124: 326379	125: 338380
126: 334381	127: 346382	128: 129130	129: 131132	130: 133134
131: 135136	132: 137138	133: 139140	134: 141142	135: 143144
136: 145146	137: 147148	138: 149150	139: 151152	140: 153154
141: 155156	142: 157158	143: 159160	144: 161162	145: 163164
146: 165166	147: 167168	148: 169170	149: 171172	150: 173174
151: 175176	152: 177178	153: 179180	154: 181182	155: 183184
156: 185186	157: 187188	158: 189190	159: 191192	160: 193194
161: 195196	162: 197198	163: 199200	164: 201202	165: 203204
166: 205206	167: 207208	168: 209210	169: 211212	170: 213214
171: 215216	172: 217218	173: 219220	174: 221222	175: 223224
176: 225226	177: 227228	178: 229230	179: 231232	180: 233234
181: 235236	182: 237238	183: 239240	184: 241242	185: 243244
186: 245246	187: 247248	188: 249250	189: 251252	190: 253254
191: 255319	192: 287320	193: 271321	194: 303322	195: 263323
196: 295324	197: 279325	198: 311326	199: 259327	200: 291328
201: 275329	202: 307330	203: 267331	204: 299332	205: 283333
206: 315334	207: 257335	208: 289336	209: 273337	210: 305338
211: 265339	212: 297340	213: 281341	214: 313342	215: 261343
216: 293344	217: 277345	218: 309346	219: 269347	220: 301348
221: 285349	222: 317350	223: 256361	224: 296381	225: 272353
226: 312373	227: 264365	228: 288377	229: 280357	230: 304369
231: 260359	232: 300379	233: 276351	234: 316371	235: 268363
236: 292375	237: 284355	238: 308367	239: 258366	240: 298378
241: 274358	242: 314370	243: 266362	244: 290382	245: 282354
246: 306374	247: 262364	248: 302376	249: 278356	250: 318368
251: 270360	252: 294380	253: 286352	254: 310372	

References

[1] N. Alon, S. Hoory and N. Linial, The Moore bound for irregular graphs, Graphs Combin. 18 (2002), 53-57.
[2] R.P. Anstee and L. Caccetta, Recognizing diameter critical graphs, In: Combinatorics, complexity, and logic (Eds. D.S. Bridges et al.) Proc. 1st Internat. Conf. Discrete Math. Theor. Computer Sci., (DMTCS '96, Auckland, New Zealand, 1996). Berlin, Springer, 1997, 105-112.
[3] N. Anunchen and L. Caccetta, On strongly edge-critical graphs of given diameter, Australas. J. Combin. 8 (1993), 99-122.
[4] L. Caccetta, On graphs that are critical with respect to the parameters: diameter, connectivity and edge-connectivity, Le Mathematiche 47 (1992), 213-229.
[5] L. Caccetta and S. El-Batanouny, On the existence of vertex critical regular graphs of given diameter, Australas. J. Combin. 20 (1999), 145-161.
[6] L. Caccetta, S. El-Batanouny and J. Huang, On vertex critical graphs with prescribed diameter, J. Graph Theory 43 (2003), 117-131.
[7] L. Caccetta and R. Häggvist, On diameter critical graphs, Discrete Math. 28 (1979), 223-229.
[8] G. Chartrand and L. Lesniak, Graphs and digraphs (4th ed.), Boca Raton, Chapman and Hall/CRC, 2005.
[9] Y.-C. Chen and Z. Füredi, Minimum vertex-diameter-2-critical graphs, J. Graph Theory 50 (2005), 293-315.
[10] G. Fan, On diameter 2-critical graphs, Discrete Math. 67 (1987), 235-240.
[11] Z. Füredi, The maximum number of edges in a minimal graph of diameter 2, J. Graph Theory 16 (1992), 81-98.
[12] F. Gliviak, On certain edge critical graphs of a given diameter, Mat. Časopis Sloven. Akad. Vied 25 (1975), 249-263.
[13] F. Gliviak, Vertex-critical graphs of given diameter, Acta Math. Acad. Sci. Hung. 27 (1976), 255-262.
[14] F. Gliviak and J. Plesník, Some examples of goal-minimally 3-diametric graphs, J. Appl. Math. Stat. Inform. (JAMSI) 1 no. 2 (2005), 87-94.
[15] F. Glivjak, On certain classes of graphs of diameter two without superfluous edges, Acta Fac. R. N. Univ. Comen. Math. 21 (1968), 39-48.
[16] F. Glivjak, P. Kyš and J. Plesník, On the extension of graphs with a given diameter without superfluous edges, Mat. Časopis Sloven. Akad. Vied 19 (1969), 92-101.
[17] F. Glivjak, P. Kyš and J.Plesník, On irreducible graphs of diameter two without triangles, Mat. Casopis Sloven. Akad. Vied 19 (1969), 149-157.
[18] F. Glivjak and J. Plesník, On the existence of certain graphs with diameter two, Mat. Casopis Sloven. Akad. Vied 19 (1969), 276-282.
[19] F. Glivjak and J. Plesník, On the impossibility to construct certain classes of graphs by extensions, Acta Math. Acad. Sci. Hungar. 22 (1971), 5-10.
[20] S. Gyürki, Goal-minimally k-elongated graphs (manuscript; October, 2006).
[21] P. Kyš, Diameter strongly critical graphs, Acta Math. Univ. Comen. 37 (1980), 71-83.
[22] P. Kyš, Diameter k-critical graphs, Acta Math. Univ. Comen. 38 (1981), 63-85.
[23] J. Plesník, Critical graphs of given diameter, Acta Fac. R. N. Univ. Comen. Math. 30 (1975), 71-93.
[24] N. Robertson, The smallest graph of girth 5 and valency 4, Bull. Amer. Math. Soc. 70 (1964), 824-825.
[25] G.F. Royle, Regular vertex diameter critical graphs, Australas. J. Combin. 26 (2002), 209-217.
[26] L. Stacho, On minimal outerplanar graphs of given diameter, Australas. J. Combin. 12 (1995), 67-76.
[27] E.W. Weisstein, Möbius-Kantor graph, From MathWorld-A Wolfram Web Resource (October, 2006), http://mathworld.wolfram.com/Moebius-KantorGraph.html.

[^0]: * This research was supported by the Slovak Scientific Grant Agency VEGA

