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Abstract

In 1994, Dinneen and Hafner (Networks 24 No. 7, 359–367) published a
table of largest orders of graphs of given degree up to 15 and diameter up
to 10, known to that date. The table also contained 48 new values found
by the authors with the help of computer searches over Cayley graphs of
semidirect products of (mostly) cyclic groups. Prior to our work, only
relatively few values in the table have been improved; updates have been
maintained on the web.

With the help of voltage graphs in combination with random computer
search we have substantially improved more than half of the values in (all
earlier updates of) the table.

1 Introduction

The problem of finding the largest order nd,k of an undirected graph of a given
maximum degree d and a given diameter k has been known for nearly five decades as
the degree-diameter problem. An obvious upper bound on nd,k is the Moore bound
nd,k ≤ 1 + d + d(d− 1) + · · · + d(d − 1)k−1. Non-trivial work is needed to show that
equality in this bound holds only if (a) k = 1 and d ≥ 1, or (b) k = 2 and d = 2,
3, 7 (and, possibly, 57), or (c) k ≥ 3 and d = 2. Apart from these and some other
small values of d and k, the orders of the current largest graphs of maximum degree
d and diameter k appear to be very far from the Moore bound.

The directed analogue of the problem, which is to find the largest order n′

d,k of
a digraph of maximum out-degree d and diameter k, has been studied as well; here
the directed Moore bound is n′

d,k ≤ 1 + d + d2 + · · · + dk. In sharp contrast to the
undirected case, digraphs of order asymptotically matching the order of the directed
Moore bound are known. For example, the Kautz digraphs (which are iterated line
digraphs of complete digraphs) are of order dk−1(d+1) [14]; other digraphs of similar
asymptotic order are also available [15]. The state of the knowledge, however, is
different with regard to vertex-transitive and Cayley digraphs, which arise naturally
in the context of the directed degree diameter problem and have applications in
the study of efficient interconnected networks design. Orders of the current largest
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vertex-transitive digraphs are very far from the directed Moore bound. For a detailed
survey of results concerning both better upper bounds as well as constructions of
current largest examples we refer to [11].

Besides explicit constructions that often give infinite classes of relatively large
graphs or digraphs of particular degree and diameter, a number of researchers focused
on random generation of such (di)graphs for computationally tractable values of d
and k. In a sense, this effort culminated in [3] with the publication of a table of
the then largest orders of graphs of given degree up to 15 and diameter up to 10.
Included in this table were also 48 new values found by the authors with the help
of computer search over Cayley graphs of semidirect products of (in most cases)
cyclic groups. In the next 12 years only relatively few values in the table have been
improved. Updates have been maintained on the web [19, 20]; chronology of the
updates and additional explanatory material about the graphs can be found on the
same web-sites.

Among the new construction methods surveyed in [11] an important role is played
by the regular covering construction. The essence of the construction is to “blow up”
relatively small quotient graphs, possibly with loops, semi edges and multiple edges,
into large graphs called lifts. The lifting is determined by associating a finite group
with the quotient graph in a particular way through a so-called voltage assignment,
forming a voltage graph from the quotient. Lifts turn out to preserve vertex degrees
and it is easy to control their diameter by the properties of the voltage graphs. A
short summary of details of this construction (for both graphs as well as digraphs)
will be given in Section 2.

Voltage graphs have been successfully used in the degree-diameter problem before;
see e.g. [10]. A justification of their good potential in a random generation of large
graphs of given degree and diameter was indicated in [1, 2]. The method of covering
spaces relates well with the Cayley graph generation of [3] since every Cayley graph
is a lift of a one-vertex voltage graph. These facts have pre-determined our choice
of using voltage graphs in our random generation. Moreover, guided by the success
of [3] with Cayley graphs of semidirect products of cyclic groups, we have used the
same groups for our voltage assignments. In Section 3 we will briefly outline our
random algorithm for generation of suitable voltage assignments on carefully chosen
quotients with accompanying explanations regarding notation and lists of voltages.
This way we have been able to improve more than half of the current largest orders
of graphs of given degree d ≤ 16 and diameter k ≤ 10. In Section 4 we present the
new graphs in a tabular form. We also present some new vertex-transitive digraphs,
improving and adding to the list of known digraphs contained in [8] [5]. Some issues
that have emerged from our search are discussed in the final section.

2 Voltage graphs and lifts

The theory of voltage graphs originated in the early seventies of the 20th century
in the context of re-visiting the proof of the Map Color Theorem. The development
of the theory, which can be regarded as a discrete version of the well known theory
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of covering spaces in algebraic topology, begun with the paper [6] and culminated
in the monograph [7] that laid foundations of modern topological graph theory. We
outline the essentials just for (undirected) graphs; digraphs will be mentioned in the
conclusion of this section.

Let Γ be a finite, undirected graph, possibly with loops and multiple edges. We
also allow semiedges, that is, edges with just one end-vertex and with the other end
dangling. To facilitate the description of voltages, we will think of the (undirected)
edges of Γ that are not semiedges as pairs of oppositely directed edges, called darts.
A semiedge admits, by definition, just one direction (into the unique incident vertex).
The number of elements in the set D of all darts of Γ is therefore twice the number
of all edges of Γ minus the number of semiedges. If e is a dart, then e−1 will denote
the dart reverse to e; in the case of a semi-edge we set e−1 = e by definition.

Let G be a finite group. A mapping α : D → G will be called a voltage assignment

if α(e−1) = (α(e))−1, for any dart e ∈ D. Thus, a voltage assignment sends a pair of
mutually reverse darts onto a pair of mutually inverse elements of the group. Note
that if e is a semiedge, then the voltage condition means that α(e) has order at most
two in G. The pair (Γ, α) is the voltage graph, which determines the lift Γα of Γ as
follows. Let V be the vertex set of Γ. The vertex set and the dart set of the lift are
V α = V × G and Dα = D × G. In the lift, (e, g) is a dart from the vertex (u, g)
to the vertex (v, h) if and only if e is a dart from u to v in Γ and h = gα(e). The
lift itself is considered to be undirected, since (e, g) and (e−1, gα(e)) form a pair of
mutually reverse darts and therefore give rise to an undirected edge of Γα.

The projection π : Γα → Γ given by π(e, g) = e and π(v, g) = v is, topologically,
a regular covering of Γ by Γα. This is the reason why Γ is often called a (regular)
quotient. For any vertex v and any dart e of the quotient, the sets π−1(v) and π−1(e)
are called fibres above v and e. If e is a semi-edge then (in order not to have semi-
edges in the lift) one usually assumes that α(e) has order two in G, in which case
π−1(e) is a perfect matching on the vertices in π−1(v). For any fixed h ∈ G the
mapping (e, g) 7→ (e, hg) determines an automorphism of the lift Γα. This way the
voltage group G acts regularly (that is, transitively and freely) on each fibre as a
group of automorphisms of the lift. In particular, if the quotient has just one vertex,
then G acts regularly on the vertex set of the lift; moreover, if connected, the lift
is in such a case a Cayley graph for the group G and the generating set consisting
of the voltages assigned to loops and semiedges attached to the single vertex of the
quotient. Conversely, all Cayley graphs are lifts of single-vertex graphs.

An example of three coverings and lifts is given in Fig. 1, where the composition
of the coverings induced by the voltage assignments on the dumbbell graph in the
group Z5 and on the Petersen graph in Z2 gives the same lift (the graph of the
dodecahedron) as a voltage assignment on the dumbbell graph in the group Z10. We
note that a composition of two regular coverings rarely results in a regular covering
as in Fig. 1. Necessary and sufficient conditions for this to happen can be found in
[12] and for a sufficient condition related to the degree-diameter problem we refer
to [1].

It is clear that the degree of a vertex v of the quotient is inherited by all vertices
in the fibre above v in the lift. This gives a trivial way to control vertex degrees in
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Figure 1: Three examples of lifting, with voltages in cyclic groups.

the lifts. As regards determining the diameter of the lift, by the observation about
the regular action of the voltage group on fibres it is sufficient to choose one vertex
from each fibre and check all distances in the lift from the chosen vertices.

We also mention the important and well-known fact that for every voltage assign-
ment α on a connected quotient Γ and for any choice of a spanning tree T of Γ there
is a voltage assignment β on Γ in the same group with β(e) equal to the identity for
any dart e in T and such that the lifts Γα and Γβ are isomorphic.

The outlined theory can easily be adapted to digraphs. Indeed, the discussion
about turning undirected edges into pairs of oppositely directed darts is vacuous
for digraphs. A voltage assignment is simply any mapping from directed edges to
elements of a group. Concepts such as lift, covering, fibre, and so on are introduced
completely analogously to the undirected case and we leave the details to the reader.

3 Generating large graphs

In this section we concentrate on (undirected) graphs. Motivated by the success of
the groups used in [3, 8] and by the analysis in [1] we have concentrated on exclusively
using semidirect products of cyclic groups as voltage groups in this paper. Recall
that if Zm and Zn are cyclic groups of orders m and n and if r is an integer such
that 1 ≤ r ≤ n − 1 and rn ≡ 1 (mod m), the elements of the semidirect product
Zm ⋊r Zn of the two groups relative to r are ordered pairs (a, b) where a ∈ Zm and
b ∈ Zn, with multiplication given by (a, b)(c, d) = (a + rbc, b + d).

We now outline our procedure for generating large graphs of given degree and
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diameter. Given a target degree and diameter, we begin with selecting appropriate
candidates for the quotient Γ (of degree equal to the target degree) and the voltage
group G. This is followed by running a random process of selecting elements from
the group as voltages on edges, loops and semiedges of the quotient, preassigning the
identity element to all edges of a fixed spanning tree of the quotient. In the process
of selection, (partial) assignments giving multiple adjacencies or loops in the lift are
immediately rejected.

After a selection has been completed, we determine the diameter of the lift in
order to check if the voltage assignment was successful. Computing the diameter
requires O(|Γ|2|G|) steps where |Γ| is the number of vertices of the quotient and |G|
is the order of the group. Obviously, smaller quotients enable faster computations.
If, within a predetermined number of attempts, all the generated voltage assignments
give lifts of diameter larger than the target diameter, a new group is selected. If,
on the other hand, a successful assignment is found, the result is recorded and the
procedure stops.

The results of our computations are given in a tabular form in the next section.
Our experiments have shown that it was not feasible to run computations on quo-
tients of order 5 or more. All the quotients we have considered have therefore at most
4 vertices. In the tables of results we have used the following notation to describe
the quotients:

B(s, l): Bouquet (a single-vertex graph) with s semi edges and l loops.

D(l, e): Dipole (a two-vertex graph) with l loops at each vertex and e edges.

T (l, e): K3 with l loops at each vertex and e edges joining any two vertices.

X(l, e): K4 with l loops at each vertex and e edges between any two vertices.

Semiedges have been used only with bouquet quotients and no such quotient will
have more than one semiedge, that is, s = 0 or 1.

In order to specify the voltage assignments that determine the corresponding
large graphs of given degree and diameter we have arranged the voltages in the form
of a list of pairs (ai, bi) ∈ Zm ⋊r Zn arranged in blocks enclosed in square brackets.
The following is the explanation of the “grammar” we have used in the lists as given
in the tables. With each type of quotients used we give the general structure of the
corresponding list of voltages.

Bouquets B(s, l): The list of voltages for a bouquet with one semiedge (s = 1) and
l loops will have the form [(a0, b0)|(a1, b1) . . . (al, bl)], where (a0, b0) is the voltage on
the semiedge. In the case of a bouquet with just l loops (s = 0) the list will be
simply [(a1, b1)(a2, b2) . . . (al, bl)].

Dipoles D(l, e): Assuming the vertices of the dipole are denoted 1 and 2, the list
will have the form [V1][D12][V2] where the blocks Vi contain the l voltages on the
loops on the vertex i ∈ {1, 2} and the block D12 lists the e voltages on the darts
from 1 to 2.

The graphs T (l, e) and X(l, e): The corresponding lists of voltages are formed by
way of generalisation of the arrangement used for dipoles. That is, we assume that for
t = 3, 4 the vertex set of Kt is {1, 2, . . . , t}. The list of voltages for T (l, e) will have the
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form [V1][D12D13][V2][D23][V3] where Vi is the list of the l voltages on loops attached
to the vertex i and Dij are the e voltages on the darts from i to j. Finally, the list of
voltages for X(l, e) will have the form [V1][D12D13D14][V2][D23D24][V3][D34][V4] with
the meaning of the symbols similar to the above.

An illustration of two quotients and the corresponding lists is in Figs. 2 and 3,
for the table entries regarding degree 7 and diameter 6, and degree 4 and diameter
9, respectively.

(195,34)

(61,14)

(108,18)

(14,23)

[(108,18)|(61,14)(195,34)(14,23)]

Figure 2: The quotient and the list of voltages for degree 7 and diameter 6.

(71,2)

(100, 24)

(0,0)(0,0)

(48,9)

(31,21)

[(100,24)][(0,0)(0,0)][(31,21)][(48,9)][(71,2)]

Figure 3: The quotient and the list of voltages for degree 4 and diameter 9.

4 Tables and results

The tables are divided into seven parts. The first two tables are a summary of the
orders of all the undirected and directed graphs we found. The third table displays
data on the generated graphs of order less than 20,000; their adjacency lists can
be downloaded from [17] and [18]. The fourth table describes all the larger graphs
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we found; the column labeled %M-B in the third and fourth tables represents the
percentage of the Moore bound reached with the order of the corresponding graphs.

The fifth table displays data on the Cayley digraphs that we found. Finally, the
sixth and seventh tables list the complete sets of all non isomorphic Cayley digraphs
for some small values of d and k, including many graphs that were not available
before. Adjacency lists to these digraphs are linked from [17] and [18]. Tables 6 and
7 were constructed using exhaustive search on all possible groups.

Table 1: Summary of the new largest orders of the undirected graphs presented
in Tables 3 and 4.

d\k 4 5 6 7 8 9 10

4 1,320 3,243 7,575 17,703

5 624 5,516 17,030 57,840 187,056

6 390 1,404 19,383 76,461 307,845 1,253,615

7 11,988 52,768 249,660 1,223,050 6,007,230

8 1,100 5,060 131,137 734,820 4,243,100 24,897,161

9 1,550 8,200 279,616 1,686,600 12,123,288 65,866,350

10 2,286 13,140 583,083 4,293,452 27,997,191 201,038,922

11 19,500 1,001,268 7,442,328 72,933,102 600,380,000

12 29,470 1,999,500 15,924,326 158,158,875 1,506,252,500

13 40,260 3,322,080 29,927,790 249,155,760 3,077,200,700

14 57,837 55,913,932 600,123,780 7,041,746,081

15 76,518 8,599,986 90,001,236 1,171,998,164 10,012,349,898

16 140,559,416 2,025,125,476 12,951,451,931

Table 2: Summary of the new largest orders of the Cayley digraphs presented
in Table 5 (italic) and the Cayley digraphs presented in Tables 6 and 7.

d \ k 3 4 5 6 7 8 9 10

2 20 27 171
3 27 60 165 2,041 5,115 11,568

4 465 1,378 42,309 137,370

5 3,775 1,010,658

6 9,020
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Table 3: The smaller graphs (of order less than 20,000).

Group
Order Degree Diameter

m n r
%M-B Quotient

1,320 4 7 33 20 2 30.18 D(1, 2)

Voltages [(21,19)][(0,0)(30,7)][(26,2)]

3,243 4 8 47 23 2 24.71 T (1, 1)

Voltages [(8,14)][(0,0)(0,0)][(20,10)][(45,11)][(18,18)]

7,575 4 9 101 25 5 19.24 T (1, 1)

Voltages [(100,24)][(0,0)(0,0)][(31,21)][(48,9)][(71,2)]

17,703 4 10 281 21 59 14.99 T (1, 1)

Voltages [(160,4)][(0,0)(0,0)][(119,1)][(179,10)][(67,13)]

624 5 5 13 24 2 36.57 D(1, 3)

Voltages [(12,1)][(0,0)(9,1)(2,13)][(5,20)]

5,516 5 7 394 7 191 20.20 D(1, 3)

Voltages [(376,6)][(0,0)(146,6)(221,2)][(326,2)]

17,030 5 8 131 65 3 15.59 D(1, 3)

Voltages [(58,45)][(0,0)(52,1)(105,44)][(31,16)]

390 6 4 13 15 3 41.62 D(2, 2)

Voltages [(8,2)(4,14)][(0,0)(6,13)][(4,9)(7,7)]

1,404 6 5 117 6 16 29.95 D(1, 4)

Voltages [(4,2)][(0,0)(71,2)(34,3)(100,1)][(52,1)]

19,383 6 7 923 21 48 16.54 B(0, 3)

Voltages [(865,19)(330,7)(97,11)]

11,988 7 6 333 36 2 18.35 B(1, 3)

Voltages [(108,18)|(61,14)(195,34)(14,23)]

1,100 8 4 55 20 2 34.36 B(0, 4)

Voltages [(27,4)(11,12)(9,9)(11,19)]

5,060 8 5 115 44 2 22.58 B(0, 4)

Voltages [(14,25)(21,2)(25,7)(29,32)]

1,550 9 4 155 10 4 29.43 B(1, 4)

Voltages [(0,5)|(1,7)(52,4)(136,6)(72,1)]

8,200 9 5 205 40 7 19.46 B(1, 4)

Voltages [(130,20)|(155,38)(203,14)(87,18)(0,1)]

2,286 10 4 254 9 37 27.87 B(0, 5)

Voltages [(253,2)(210,8)(38,5)(111,8)(37,4)]

13,140 10 5 365 36 18 17.80 B(0, 5)

Voltages [(263,6)(2,5)(201,20)(325,29)(169,14)]

19,500 11 5 325 60 17 15.95 B(1, 5)

Voltages [(234,30)|(179,5)(178,38)(283,1)(285,10)(306,46)]
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Table 4: The larger graphs (of order exceeding 20,000).

Group
Order Degree Diameter

m n r
%M-B Quotient

57,840 5 9 1205 48 22 13.23 B(1, 2)

Voltages [(1165,24)|(491,41)(849,15)]

187,056 5 10 3897 48 506 10.70 B(1, 2)

Voltages [(765,24)|(3312,37)(1861,44)]

76,461 6 8 2317 33 79 13.04 B(0, 3)

Voltages [(1871,31)(1722,26)(1817,23)]

307,845 6 9 6841 45 122 10.50 B(0, 3)

Voltages [(5722,40)(5970,12)(3528,44)]

1,253,615 6 10 22793 55 72 8.55 B(0, 3)

Voltages [(21654,34)(11504,49)(22520,44)]

52,768 7 7 1649 32 19 13.46 B(1, 3)

Voltages [(1088,16)|(96,31)(586,24)(1521,21)]

249,660 7 8 6935 36 23 10.61 B(1, 3)

Voltages [(1197,18)|(3556,7)(6634,3)(4597,19)]

1,223,050 7 9 24461 50 4828 8.66 B(1, 3)

Voltages [(11895,25)|(7818,43)(15052,37)(7103,48)]

6,007,230 7 10 66747 90 233 7.09 B(1, 3)

Voltages [(6422,45)|(51477,13)(22951,35)(38463,52)]

131,137 8 7 1847 71 11 11.94 B(0, 4)

Voltages [(816,49)(1527,32)(601,19)(358,70)]

734,820 8 8 12247 60 658 9.56 B(0, 4)

Voltages [(6983,39)(7376,26)(410,27)(2413,16)]

4,243,100 8 9 42431 100 274 7.88 B(0, 4)

Voltages [(24880,85)(444,18)(36184,37)(32820,65)]

24,897,161 8 10 341057 73 2103 6.61 B(0, 4)

Voltages [(310448,53)(177761,43)(68031,31)(35532,28)]

279,616 9 7 4369 64 22 10.37 B(1, 4)

Voltages [(3553,32)|(3696,46)(1800,41)(3639,11)(724,38)]

1,686,600 9 8 23425 72 182 7.81 B(1, 4)

Voltages [(21675,36)|(12166,13)(15523,61)(20107,57)(13014,23)]

12,123,288 9 9 168379 72 2242 7.02 B(1, 4)

Voltages [(70579,36)|(133512,24)(107217,34)(59314,52)(66721,49)]

65,866,350 9 10 346665 190 239 4.77 B(1, 4)

Voltages [(246390,95)|(152624,64)(161470,78)(295436,184)(158475,173)]
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Group
Order Degree Diameter

m n r
%M-B Quotient

583,083 10 7 3811 153 7 9.75 B(0, 5)

Voltages [(978,115)(2539,74)(2553,53)(1953,41)(1425,113)]

4,293,452 10 8 63139 68 1378 7.97 B(0, 5)

Voltages [(7668,40)(16311,5)(15555,20)(7399,52)(22796,21)]

27,997,191 10 9 1036933 27 3979 5.78 B(0, 5)

Voltages [(930549,20)(912214,23)(656652,6)(849847,11)(527163,8)]

201,038,922 10 10 531849 378 3620 4.61 B(0, 5)

Voltages [(45789,159)(82505,117)(47344,316)(287530,344)(443446,190)]

1,001,268 11 7 27813 36 149 8.19 B(1, 5)

Voltages [(14097,18)|(16956,20)(26380,7)(10013,21)(24861,34)(5702,4)]

7,442,328 11 8 310097 24 26987 6.08 B(1, 5)

Voltages [(304732,12)|(224872,15)(62519,10)(223381,8)(93496,13)

(183245,19)]

72,933,102 11 9 368349 198 113 5.96 B(1, 5)

Voltages [(28382,99)|(27703,196)(62272,94)(308948,123)(32154,32)
(62308,149)]

600,380,000 11 10 341125 440 157 4.91 X(1, 3)

Voltages [(31691,411)][(0,0)(99550,185)(60165,251)(0,0)(231334,349)
(313099,87)(0,0)(112517,278)(160342,268)][(157467,433)]

[(323365,254)(16622,346)(326002,374)(269993,262)(83914,219)

(25515,415)][(36341,105)][(131753,366)(210675,185)
(324856,343)][(93609,232)]

29,470 12 5 421 70 27 15.24 B(0, 6)

Voltages [(207,57)(411,49)(245,61)(280,18)(87,38)(238,36)]

1,999,500 12 7 33325 60 122 8.55 B(0, 6)

Voltages [(21898,16)(22824,31)(13770,38)(29676,55)(2489,28)(13071,29)]

15,924,326 12 8 723833 22 1330 6.19 B(0, 6)

Voltages [(551696,18)(429671,12)(471582,13)(663978,15)
(286237,7)(420363,16)]

158,158,875 12 9 421757 375 1472 5.58 B(0, 6)

Voltages [(97451,218)(406305,64)(63300,170)(156195,321)

(294559,78)(106616,372)]

1,506,252,500 12 10 602501 625 793 4.83 X(3, 2)

Voltages [(195900,98)(405903,173)(375979,531)][(0,0)(62501,596)(0,0)
(532725,416)(0,0)(416901,163)][(262471,430)(248176,337)

(422271,491)][(199371,123)(476984,595)(274309,120)

(298662,494)][(218686,143)(486428,13)(333671,123)]
[(74314,569)(372842,389)][(207063,226)(426030,541)(120275,280)]
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Group
Order Degree Diameter

m n r
%M-B Quotient

40,260 13 5 671 60 82 13.69 B(1, 6)

Voltages [(0,30)|(205,45)(482,50)(160,7)(585,17)(405,39)(419,39)]

3,322,080 13 7 34605 96 143 7.84 B(1, 6)

Voltages [(33120,48)|(2596,10)(19715,71)(5625,85)(22987,23)

(27099,63)(7180,6)]

29,927,790 13 8 997593 30 31979 5.88 B(1, 6)

Voltages [(729479,15)|(828328,20)(265150,6)(309408,3)
(726797,15)(905640,2)(945332,17)]

249,155,760 13 9 741535 84 2327 4.08 X(2, 3)

Voltages [(506416,62)(303593,61)][(0,0)(537895,21)(122479,55)(0,0)
(243024,65)(689455,67)(0,0)(686359,39)(556972,42)][(606797,2)

(444577,46)][(199750,0)(344951,64)(22322,57)

(307674,23)(462208,78)(377024,53)][(620250,81)(562449,56)]
[(370941,0)(22279,57)(126774,23)]

[(285562,0)(708329,37)]

3,077,200,700 13 10 4396001 175 2471 4.20 X(2, 3)

Voltages [(1050834,82)(4051224,95)][(0,0)(2718431,162)(778139,79)(0,0)

(1215107,1)(1384247,148)(0,0)(220738,35)(4207404,106)]
[(3515510,153)(3216151,30)][(2974242,84)(1761761,37)

(301884,43)(3187698,59)(1881495,51)(370287,8)][(3893317,102)

(1456322,122)][(3048922,15)(2001427,86)(841304,131)]
[(3285076,63)(2714782,44)]

57,837 14 5 1483 39 28 13.35 B(0, 7)

Voltages [(339,1)(997,37)(867,32)(214,6)(581,32)(316,21)(606,31)]

55,913,932 14 8 325081 43 6588 5.87 X(4, 2)

Voltages [(106430,7)(313773,8)(223714,20)(189186,12)][(0,0)(192573,37)
(0,0)(296775,29)(0,0)(300803,40)][(309059,5)(47776,24)
(136369,9)(320594,6)][(81013,21)(210541,18)(22155,21)

(323259,14)][(98259,35)(265132,29)(311819,11)(157171,18)]
[(19417,28)(46745,22)][(36149,1)(125761,8)

(25326,32)(42761,24)]

600,123,780 14 9 3334021 45 1614 4.85 X(4, 2)

Voltages [(1246729,33)(2245306,35)(2370184,38)(3311623,8)]

[(0,0)(903039,39)(0,0)(1147042,24)(0,0)(2458550,34)]
[(1751124,29)(582205,37)(2885098,28)(2542248,0)]
[(930208,5)(1991355,16)(863201,19)(904646,33)]

[(79860,21)(2911987,23)(3289358,24)(468687,1)]
[(1418592,13)(617741,44)][(1081896,41)(2509432,32)

(1949080,26)(1516089,35)]

7,041,746,081 14 10 62316337 113 8864 4.37 B(0, 7)

Voltages [(4821549,46)(58679374,110)(29318275,6)(25838660,1)
(41798940,9)(25321982,81)

(47965471,21)]
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Group
Order Degree Diameter

m n r
%M-B Quotient

76,518 15 5 1417 54 29 12.33 B(1, 7)

Voltages [(650,27)|(218,45)(933,4)(325,32)(168,12)(963,53)(219,16)
(32,28)]

8,599,986 15 7 159259 54 1712 7.07 B(1, 7)

Voltages [(6700,27)|(126036,47)(57600,4)(150432,19)(51748,40)
(152314,41)(81233,21)(140934,30)]

90,001,236 15 8 13417 3354 9 5.28 D(3, 9)

Voltages [(2398,154)(5487,3145)(5419,960)][(0,0)(7869,2606)

(1953,383)(7457,926)(1106,2402)(11049,1954)(9262,168)
(7197,2331)(5331,1826)][(6101,2859)(478,2166)(5944,920)]

1,171,998,164 15 9 2307083 127 30803 4.91 X(3, 3)

Voltages [(361079,95)(326285,29)(2120223,7)][(0,0)(468726,21)

(1045888,35)(0,0)(426615,10)(2079467,109)(0,0)(557531,26)
(1369074,81)][(486204,24)(2072011,82)(901322,37)]

[(60626,45)(55799,4)(2237110,71)(1416832,68)
(1258150,92)(1362776,53)][(1964780,58)(2083678,77)

(1955847,30)][(816675,105)(518794,94)(1707609,54)]
[(1775741,123)(1476939,106)(503929,37)]

10,012,349,898 15 10 6867181 1458 23984 2.99 B(1, 7)

Voltages [(4196252,729)|(1048331,565)(1612817,455)(2771588,1147)

(4683982,596)(1023932,784)(4859964,844)(1292623,1291)]

140,559,416 16 8 924733 38 66209 4.79 X(2, 4)

Voltages [(490996,32)(585355,20)][(0,0)(135355,34)(250349,33)
(536336,5)(0,0)(678535,20)(314276,18)(904791,36)

(0,0)(703279,1)(425301,25)(457434,4)][(849796,37)
(643215,25)][(4852,14)(702331,36)(282942,0)(198986,34)

(374258,9)(563413,14)(34875,35)(864260,22)]

[(206530,4)(649398,17)][(647783,14)(175996,35)(315460,21)
(627328,20)][(815187,30)(754790,0)]

2,025,125,476 16 9 2707387 187 3310 4.60 X(2, 4)

Voltages [(1294721,172)(2383050,55)][(0,0)(1365324,92)(2484671,138)

(1215141,123)(0,0)(1389967,165)(1354321,127)(1346953,57)
(0,0)(1916639,7)(2538792,10)(2070390,179)][(405480,172)
(418292,174)][(2645580,125)(1546086,141)(2124669,86)

(682388,157)(2443933,69)(1998539,172)(155882,13)
(1310956,161)][(494047,41)(1354355,39)][(1745234,24)

(1086274,36)(573209,135)(437724,124)]
[(1479853,33)(321564,6)]

12,951,451,931 16 10 12138193 1067 8428 1.96 B(0, 8)

Voltages [(3123830,833)(563013,411)(7468050,376)(5156666,345)
(7771080,199)(6588767,930)(8316960,59)(2549080,1041)]
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Table 5: Cayley digraphs.

Group
Order Degree Diameter

m n r

2,041 3 8 157 13 14
Voltages [(98,7)(39,3)(100,4)]

5,115 3 9 341 15 69
Voltages [(31,12)(317,5)(251,14)]

11,568 3 10 723 16 44
Voltages [(714,1)(650,12)(25,13)]

465 4 5 31 15 28
Voltages [(12,13)(14,8)(12,11)(29,7)]

1,378 4 6 53 26 10
Voltages [(12,4)(8,15)(11,23)(9,25)]

42,309 4 9 1567 27 193
Voltages [(73,10)(502,25)(1237,20)(177,6)]

137,370 4 10 4579 30 160
Voltages [(1164,21)(3604,25)(4090,24)(1597,4)]

3,775 5 6 151 25 9
Voltages [(57,19)(141,20)(81,10)(66,16)(135,8)]

1,010,658 5 10 15313 66 46
Voltages [(11099,39)(295,5)(7518,63)(8292,16)(6136,57)]

9,020 6 6 451 20 84
Voltages [(52,8)(122,10)(228,6)(36,13)(161,16)(359,15)]

Table 6: The sizes of the complete sets of all non-isomorphic Cayley digraphs for
some small values of d and k found with an exhaustive search. Voltages to all the
digraphs that can be constructed with semidirect products are in Table 7 (adjacency
lists to these digraphs are linked from [17] and [18]).

Degree Diameter Order Is Arc-Transitive ♯ Distinct Cayley Digraphs
2 4 20 No 3
2 5 27 Yes 2
2 8 171 No 1
3 3 27 No 3
3 4 60 No 18
3 5 165 No 2
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Table 7: List of all non-isomorphic Cayley digraphs presented in Table 6 for
semidirect products. The additional ten graphs for degree 3 and diameter 4 are
not constructed with semidirect products and their adjacency lists are linked from
[17] and [18]).

Group
Order Degree Diameter

m n r

20 2 4 5 4 2
Voltages α1: [(0,1)(1,0)]

α2: [(0,1)(1,3)]
α3: [(0,3)(1,0)]

27 2 5 9 3 4
Voltages α1: [(1,0)(2,1)]

α2: [(1,0)(2,2)]

171 2 8 19 9 4
Voltages α: [(0,4)(1,5)]

27 3 3 9 3 4
Voltages α1: [(0,1)(1,0)(2,1)]

α2: [(0,2)(1,0)(5,2)]
α3: [(1,0)(1,1)(8,1)]

60 3 4 5 12 2
Voltages α1: [(0,1)(1,4)(1,9)]

α2: [(0,1)(1,4)(4,5)]
α3: [(0,1)(1,8)(4,9)]
α4: [(0,2)(1,3)(3,10)]
α5: [(0,2)(1,9)(1,10)]
α6: [(0,3)(1,4)(2,7)]
α7: [(0,3)(1,4)(3,11)]
α8: [(0,7)(1,4)(2,11)]

165 3 5 11 15 3
Voltages α1: [(0,1)(1,3)(1,11)]

α2: [(0,4)(1,12)(9,14)]

5 Remarks

Graphs and digraphs presented in this paper are a notable improvement of the state
of knowledge in the degree-diameter problem.

In the case of graphs, more than half of the values were improved (in fact, 65 out
of the 120 values from [19, 20]), in some cases by more than a factor of 3. However,
with the smaller graphs the improvements are more modest and vary in size. We will
return to commenting on the extent of our improvements at the end of this section,
preceded by a discussion on theoretical issues that emerged from our computations.
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Most of the graphs listed in our tables are actually Cayley graphs (i.e., regular lifts
of bouquets) of semidirect products of cyclic groups. In the literature there appears
to be no general lower bound on the order of largest Cayley graphs of degree d and
diameter k. However, it follows from [4] that for d > k there are vertex-transitive
graphs of degree d, diameter k, and order asymptotically as large as (d/2)k. The
fact that most of the graphs of [4] are non-Cayley was proved in [13]. The results for
Cayley graphs in our tables suggest that the same lower bound should be provable
for Cayley graphs and not just for vertex-transitive graphs. On the other hand, the
order of the graphs we have found appears to drift away from the Moore bound
relatively quickly.

A very distinct behaviour was noted when considering all the searches done on
bouquet quotients (producing Cayley graphs), as some triples of parameters m, n, r
for our voltage groups Zm⋊r Zn seem to have performed much more successfully than
other triples. For example, choosing m and n such that the congruence rn ≡ 1 (mod
m) has a large number of solutions (that is, “rich in the r-values”) was in general a
much more successful strategy compared with the values of m and n that were “poor
in the r-values”. A perhaps less surprising outcome was that groups Zm ⋊r Zn with a
relatively big centre did very poorly. Thus, most of the groups we have used have a
trivial centre, up to a few exceptions with a very small non-trivial centre. A similar
but not so distinct behaviour carried through to the groups found for the quotients
of order 2, 3 and 4.

In addition, we have noted that certain choices of triples m, n, r have led to “good
groups” that seem to work “very quickly” in the sense that results have usually
arisen well within the predetermined number of attempts. In contrast, “bad groups”
even when showing good prospects during diameter testing (e.g., having the vast
majority of vertices within the target diameter distance from each other in a large
number of voltage selections) have failed an exhaustive search of all possible voltage
assignments. We believe that an explanation of such a behaviour is a challenging
problem of independent interest.

A possible line of reasoning to explain certain aspects of the behaviour described
above is based on a probabilistic argument which we now outline. For a group G let
Aut(G) be its automorphism group and let I(G) be the set of all involutions of G.

Lemma 1 Let s ∈ {0, 1} and l ≥ 2. Assume that there exists a voltage assignment

α in a group G on the bouquet B(s, l) with non-involutory elements assigned to the

loops, such that the lift has diameter k. Further, let the set of voltages in α be

preserved by b automorphisms of G. Then, the probability that a randomly chosen

voltage assignment on B(s, l) yields a lift of diameter k is at least

|Aut(G)|

b|I(G)|s

(

|G| − |I(G)| − 1

l

)

−1

Proof. Since we assume existence of at least one voltage assignment α as above,
the reciprocal of the product of the binomial coefficient with |I(G)|s represents the
probability that exactly the voltage assignment α has been selected at random. The
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action of Aut(G) on α gives, by our assumption, further |Aut(G)|/b voltage assign-
ments giving a lift with the same parameters. 2

This simple observation suggests that a group with a large automorphism group
will have a higher value of the probability estimate given in Lemma 1 and thus will
be a favourable candidate for random search. Moreover, this appears to apply to all
quotients we have considered.

Specifically, semidirect products of cyclic groups do have relatively large auto-
morphism groups. Indeed, by a result of [16], if the group G = Zm ⋊r Zn has a trivial
centre, then |Aut(G)| = mφ(m) where φ(m) is the Euler totient function. Lemma 1
now has the following consequence.

Lemma 2 Let s ∈ {0, 1} and l ≥ 2. Let G = Zm ⋊r Zn have a trivial centre.

Suppose that there exists a voltage assignment α in a group G on the bouquet B(s, l)
with non-involutory elements assigned to the loops, such that the lift has diameter

k. Further, assume that only the trivial automorphism of G setwise preserves the

voltages in α. Then, the probability that a randomly chosen voltage assignment on

B(s, l) yields a lift of diameter k is at least

mφ(m)

|I(G)|s

(

|G| − |I(G)| − 1

l

)

−1

A thorough look at the tables shown in Section 4 and also in [5], [3] and [8] sug-
gests that most successful semidirect products have a large value of m in comparison
to n, and a trivial centre, with m having a large value of φ(m); in addition, it turns
out that the voltage assignments therein are indeed setwise preserved by the trivial
automorphism only. In many cases, mostly for graphs with small degree, Lemma
2 then gives a relatively large value of the probability estimate. Therefore, a quick
random computation will indicate with sufficiently high probability if a suitable set
of voltages exists. This suggests a possible explanation to the observation made in
[8] and also in our own computations that record graphs are found either quickly, or
not at all.

Since the family of semidirect products is relatively rich, Lemma 2 appears to be
a useful tool in eliminating groups that will have very small chance to be successful
in practice.

We conclude with returning to observations on the size of our improvements. We
believe that further small improvements using the voltage constructions method are
possible, in particular for graphs of big orders. However, additional improvements
by, say, a factor of at least two, seem less likely now by our methods, as orders of most
of our bigger graphs are already about 5% of the corresponding Moore bound. When
one considers the Lemmas 1 and 2 it is clear that in order for a successful voltage
set to be found randomly (assuming at least one such set exists), many random sets
must be checked, and with increase in the size of the graphs and groups this will
involve computational times that are impractical by today’s standards.
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Moreover, when considering computational evidence, it appears that with groups
of bigger size, less distinct voltage sets exist (here we mean sets that are not mapped
to each other by group automorphisms). Thus, it appears likely that for the graphs
of orders only about 5% of the Moore bound, the groups are in the range where many
such sets are available for us to find. Improvements by a factor of at least two will
probably also mean that the number of such distinct sets in the groups will decrease
by some factor and the likelihood of finding any such sets will decrease even further.
For example, when considering Lemma 2, it is easy to see why even if there was a
group of order 40% of the Moore bound for degree 16 and diameter 10 with exactly
one successful distinct voltage set, finding it randomly seems unlikely.
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