On the connectivity of extremal Ramsey graphs

Andrew Beveridge
Department of Mathematics and Computer Science Macalester College
Saint Paul, MN 55105
U.S.A.

Oleg Pikhurko*
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213
U.S.A.

Abstract

An (r, b)-graph is a graph that contains no clique of size r and no independent set of size b. The set of extremal Ramsey graphs $\operatorname{ERG}(r, b)$ consists of all (r, b)-graphs with $R(r, b)-1$ vertices, where $R(r, b)$ is the classical Ramsey number. We show that any $G \in E R G(r, b)$ is $r-1$ vertex connected and $2 r-4$ edge connected for $r, b \geq 3$.

1 Introduction

Let $R(r, b)$ be the classical Ramsey number. An (r, b)-graph is a graph that contains no clique of size r and no independent set of size b. Let $E R G(r, b)$ (to abbreviate extremal Ramsey graphs) consist of all (r, b)-graphs with $R(r, b)-1$ vertices. In this paper we identify $G \in E R G(r, b)$ with a red-blue coloring of the complete graph and we denote the graphs induced by the color classes as $G_{\text {red }}$ and $G_{\text {blue }}$.

In his talk at the 2005 British Combinatorial Conference, David Penman established various properties of extremal Ramsey graphs and conjectured that for $k \geq 3$ every graph $G \in E R G(k, k)$ is connected. Here we will observe that this conjecture is true. In fact, its validity follows fairly straightforwardly from a result of Xiaodong, Zheng, and Radziszowski [7] (see Section 2). For the sake of completeness we present a short self-contained proof, which follows by adopting the methods in [7]. (More

[^0]recently, Shane Malik and David Penman [4] reported to the authors that they had independently proved this conjecture.)

Theorem 1 Let $r \geq 3, b \geq 2$, and $G \in E R G(r, b)$. The red graph G_{red} is connected.
Proof. Assume that $b \geq 3$, for otherwise $G_{\text {red }}=K_{r-1}$ is clearly connected.
Suppose on the contrary that $V(G)=V_{1} \cup V_{2}$ is a proper partition of the vertices with only blue edges across. Pick $x_{i} \in V_{i}, i=1,2$. Create a new graph G^{\prime} by adding a new vertex x and coloring the incident edges as follows. Color $x x_{1}$ and $x x_{2}$ blue. Color $x y$ with $y \in V_{i}-x_{i}$ by the color of $x_{i} y$. Finally, recolor $x_{1} x_{2}$ red.

Since we have strictly increased the number of vertices, G^{\prime} must contain either a red K_{r} or a blue K_{b}. First suppose there is a red K_{r} on a set R. R must contain x. Indeed, the only difference between $G^{\prime}-x$ and G is the color of the edge $x_{1} x_{2}$ and this solitary red edge joining V_{1} and V_{2} cannot be in a red K_{r}. Since $x x_{1}$ and $x x_{2}$ are blue, $x_{1}, x_{2} \notin R$ and $R-x$ lies inside one part, say V_{1}. But then $R-x+x_{1}$ is a red K_{r} in G, a contradiction. Next suppose we have a blue K_{b} on a set B. We must have $x \in B$. At least one of x_{1}, x_{2} is not in B since $x_{1} x_{2}$ is red now. Next suppose $x_{1} \notin B$. But then $R-x+x_{1}$ is a blue K_{b} in G (because $x_{1} x_{2}$ is blue in the original graph G.) This contradiction proves the theorem.

In the remainder of the paper, we explore how connected the red graph of $G \in$ $E R G(r, b)$ must be. We show that for $r, b \geq 3$, the (vertex) connectivity $\kappa\left(G_{\text {red }}\right) \geq$ $r-1$ and the edge connectivity $\lambda\left(G_{\text {red }}\right) \geq 2 r-4$. There is no doubt that these bounds are very far from best possible, which may be even exponential in $\min (r, b)$. However, it is not clear how to get any essential improvement.

2 Vertex Connectivity

We will use the following result of Xiaodong, Zheng, and Radziszowski [7, Theorem 3] which builds upon the ideas from Burr, Erdős, Faudree, and Schelp [1].

Theorem 2 (Xiaodong et al. [7]) If $2 \leq p \leq q$ and $3 \leq r$, then

$$
R(r, p+q-1) \geq R(r, p)+R(r, q)+ \begin{cases}r-3, & \text { if } p=2 \\ r-2, & \text { if } p \geq 3\end{cases}
$$

In particular, the case $p=2$ and $q=b-1$ gives the original result of Burr et al. [1 , Theorem 1] (see also [7, Theorem 1] for a small correction, namely that (1) is not true for $b=2$): for any $r \geq 2$ and $b \geq 3$,

$$
\begin{equation*}
R(r, b) \geq R(r, b-1)+2 r-3 \tag{1}
\end{equation*}
$$

It follows that for any $G \in E R G(r, b)$, with $b \geq 3$, the minimum red degree

$$
\begin{equation*}
\delta\left(G_{\mathrm{red}}\right) \geq 2 r-4 \tag{2}
\end{equation*}
$$

Indeed, take any vertex x and let $d_{G_{\text {red }}}(x)$ denote its red degree. The blue neighborhood of x has $R(r, b)-2-d_{G_{\text {red }}}(x)$ vertices and induces an $(r, b-1)$-graph. Hence,

$$
R(r, b)-2-d_{G_{\mathrm{red}}}(x) \leq R(r, b-1)-1
$$

and $d_{G_{\text {red }}}(x) \geq 2 r-4$ by (1), as required.
Theorem 3 Let $r, b \geq 3$ and $G \in E R G(r, b)$. The (vertex) connectivity of the red graph $G_{\text {red }}$ satisfies $\kappa\left(G_{\text {red }}\right) \geq r-1$.

Proof. Suppose on the contrary that we can find a partition $V(G)=V_{1} \cup V_{2} \cup X$ such that all edges between V_{1} and V_{2} are blue and $0<|X| \leq r-2(X$ is nonempty by Theorem 1). Let $p-1$ and $q-1$ be the sizes of a maximum blue clique inside V_{1} and V_{2} respectively. Assume without loss of generality that $p \leq q$.

If $p=2$, then V_{1} spans a red clique, so $\left|V_{1}\right| \leq r-1$. The red degree of each vertex of V_{1} is at most $\left|V_{1}\right|-1+|X| \leq 2 r-4$. By (2), all these inequalities are equalities; in particular, $\left|V_{1}\right|=r-1,|X|=r-2$, and all edges between V_{1} and X are red. But then V_{1} plus any vertex from $X \neq \emptyset$ spans a red K_{r}, a contradiction.

So assume $p \geq 3$. We have $(p-1)+(q-1) \leq b-1$, and

$$
R(r, p)-1+R(r, q)-1 \geq\left|V_{1}\right|+\left|V_{2}\right|=|V(G)|-|X|=R(r, b)-1-|X|
$$

It follows from Theorem 2 that $|X| \geq r-1$, a contradiction.

Corollary 4 Let $r \geq b \geq 3$ and $G \in E R G(r, b)$. The red graph G_{red} is Hamiltonian.

Proof. The Chvátal-Erdős condition [2] states that a graph of order at least 3 has a Hamiltonian cycle if it is k-connected and does not contain a set of $k+1$ independent points. By Theorem 3, this condition is satisfied for $G_{\text {red }}$ when $r \geq b \geq 3$.

3 Edge Connectivity

Theorem 5 Let $r, b \geq 3$ and $G \in E R G(r, b)$. The edge connectivity of the red graph $G_{\text {red }}$ satisfies

$$
\begin{equation*}
\lambda\left(G_{\text {red }}\right) \geq \min \left\{\delta\left(G_{\text {red }}\right), \kappa\left(G_{\text {red }}\right)+r-3\right\} \tag{3}
\end{equation*}
$$

Note that we have the trivial upper bound $\lambda\left(G_{\text {red }}\right) \leq \delta\left(G_{\text {red }}\right)$. Our lower bounds for $\delta\left(G_{\text {red }}\right)$ and $\kappa\left(G_{\text {red }}\right)$ imply $\lambda\left(G_{\text {red }}\right) \geq 2 r-4$.
Proof. For $r=3$, the statement $\lambda\left(G_{\text {red }}\right) \geq \min \left\{\delta\left(G_{\text {red }}\right), \kappa\left(G_{\text {red }}\right)\right\}=\kappa\left(G_{\text {red }}\right)$ is simply the trivial lower bound.

Consider $r \geq 4$. Suppose that the claim is not true, that is, we can find a proper partition $V(G)=V_{1} \cup V_{2}$ such that we have at most $k=\min \left\{\delta\left(G_{\text {red }}\right)-\right.$ $\left.1, \kappa\left(G_{\mathrm{red}}\right)+r-4\right\}$ red edges across. Call these red edges F. Let $v_{i}=\left|V_{i}\right|$. We claim
$v_{i} \geq \delta\left(G_{\mathrm{red}}\right)+1, i=1,2$. Indeed, there is a vertex in V_{i} whose F-degree is at most $\left\lfloor\frac{k}{v_{i}}\right\rfloor \leq\left\lfloor\frac{\delta\left(G_{\text {red }}\right)-1}{v_{i}}\right\rfloor$. We have $v_{i}-1+\left\lfloor\frac{\delta\left(G_{\text {red }}\right)-1}{v_{i}}\right\rfloor \geq \delta\left(G_{\text {red }}\right)$, which routinely implies that $v_{i} \geq \delta\left(G_{\text {red }}\right)+1$. Take $x_{i} \in V_{i}$ not incident to any edge of F, which is possible since $v_{i} \geq \delta\left(G_{\text {red }}\right)+1>|F|$.

Let X be a minimal set of vertices that cover the edge set F. Clearly X is a cutset of vertices for $G_{\text {red }}\left(x_{i} \notin X\right.$ so $V_{i}-X \neq \emptyset$ for $\left.i=1,2\right)$ and therefore $|X| \geq \kappa\left(G_{\text {red }}\right)$. By Kőnig's theorem for bipartite graphs, there is a matching $M \subset F$ of size $|X|$. Hence $|F|-|M| \leq k-\kappa\left(G_{\text {red }}\right) \leq r-4$. As F consists of a matching along with no more than $r-4$ additional edges, there is no red K_{r-1} that intersects both V_{1} and V_{2}.

Construct G^{\prime} from G as in the proof of Theorem 1. Namely, add a new vertex x. Color $x x_{1}$ and $x x_{2}$ blue. For any vertex $y \in V_{i} \backslash\left\{x_{i}\right\}$, color $x y$ with the color of $x_{i} y, i=1,2$. Finally, recolor $x_{1} x_{2}$ red. We have strictly increased the number of vertices and $G \in E R G(r, b)$ so we must have a large monochromatic clique in G^{\prime}. First, suppose we have a red K_{r} in G^{\prime}, say on a set R. This set R must contain x because the only red edge added to G, namely $x_{1} x_{2}$, cannot appear in a red K_{r}. But then $x_{1}, x_{2} \notin R$. Moreover, $R-x$ lies entirely inside either V_{1} or V_{2}. Suppose that $R-x \subset V_{1}$. But then $R-x+x_{1}$ is a red r-clique in G, a contradiction.

Next suppose that we have a blue $K_{b} \subset G^{\prime}$, on a set B. We have $x \in B$ and at least one of x_{1}, x_{2} does not belong to B. Suppose $x_{1} \notin B$. But then $B-x+x_{1}$ spans a blue K_{b} in G (note that all edges between x_{1} and V_{2} are blue in G by the definition of x_{1}), a contradiction.

4 Some Small Extremal Ramsey Graphs

In conclusion, we compare our lower bounds on connectivity with the actual connectivities for some small extremal Ramsey graphs.

(r, b)	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$	$(3,7)$	$(4,4)$
$R(r, b)$	6	9	14	18	23	18
$\|E R G(r, b)\|$	1	3	1	7	191	1
$\kappa\left(G_{\text {red }}\right)$ lower bound	2	2	2	2	2	3
$\kappa\left(G_{\text {red }}\right)$ actual	2	2	4	4	$4,5,6$	8
$\lambda\left(G_{\text {red }}\right)$ lower bound	2	2	2	2	2	4
$\lambda\left(G_{\text {red }}\right)$ actual	2	2	4	4	$4,5,6$	8
$\kappa\left(G_{\text {blue }}\right)$ lower bound	2	3	4	5	6	3
$\kappa\left(G_{\text {blue }}\right)$ actual	2	4	8	11	15	8
$\lambda\left(G_{\text {bue }}\right)$ lower bound	2	4	6	8	10	4
$\lambda\left(G_{\text {blue }}\right)$ actual	2	4	8	11	15	8

Table 1: Lower bounds for connectivity from Theorems 3 and 5 and the actual connectivity for small extremal Ramsey graphs

Let us explain how this table is constructed. Currently, there are 6 pairs (r, b)
with $3 \leq r \leq b$ such that the graphs in $E R G(r, b)$ have been completely enumerated; see Brendan McKay's combinatorial data website [3]. Specifically, the extremal Ramsey graph catalog for $r=3$ and $4 \leq b \leq 7$ and $r=b=4$ (in addition to the pair $(r, b)=(3,3))$ was obtained from [3]. This data (in the graph6 format) was processed by McKay's showg executable and subsequently checked and analyzed by the Combinatorica package for Mathematica.

For every such pair we checked all extremal (r, b)-graphs and wrote down the observed edge and vertex connectivities into the table rows marked 'actual.' As it turns out, the pair $(r, b)=(3,7)$ is the only pair from our list where different extremal (r, b)-graphs may have different connectivities. Of the 191 graphs in $E R G(3,7), 3$ are red 4-connected, 178 are red 5 -connected and 10 are red 6 -connected (while the edge connectivity happens to coincide with the vertex connectivity).

For the ease of reference, we have also included our lower bounds, $\kappa\left(G_{\text {red }}\right) \geq r-1$ and $\lambda\left(G_{\text {red }}\right) \geq 2 r-4$ of Theorem 3 and the comment immediately after Theorem 5 , respectively. As expected, there is certainly room for improvement in the lower bounds for connectivity, even for these small graphs.

Acknowledgments

We thank Tom Bohman and Alan Frieze for helpful discussions. We thank David Penman for useful comments.

References

[1] S. A. Burr, P. Erdős, R. J. Faudree and R. H. Schelp, On the difference between consecutive Ramsey numbers, Utilitas Math. 35 (1989), 115-118.
[2] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972), 111-113.
[3] B. McKay, Combinatorial Data (website),
http://cs.anu.edu.au/people/bdm/data/.
[4] D. B. Penman, personal communication.
[5] S. P. Radziszowski, Small Ramsey numbers, Elec. J. Combin. Dynamic Survey 1, revision \#11 August 2006, http://www.combinatorics.org.
[6] S. P. Radziszowski and D. L. Kreher, On $R(3, k)$ Ramsey Graphs; Theoretical and Computational Results, J. Combin. Math. Combin. Comput. 4 (1988), 37-52.
[7] X. Xiaodong, X. Zheng and S. P. Radziszowski, A constructive approach for the lower bounds on the Ramsey numbers $R(s, t)$, J. Graph Theory 47 (2004), 231-239.

[^0]: * Web: http://www.math.cmu.edu/~pikhurko. Partially supported by the National Science Foundation, Grant DMS-0457512.

