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Abstract

The Fibonacci Hypercube is defined as the polytope determined by the
convex hull of the “Fibonacci” strings, i.e., binary strings of length n hav-
ing no consecutive ones. We obtain an efficient characterization of vertex
adjacency and use this to study the graph of the Fibonacci Hypercube.
In particular we discuss a decomposition of the graph into self-similar
subgraphs that are also graphs of Fibonacci hypercubes of lower dimen-
sion, we obtain vertex degrees, a recurrence formula for the number of
edges, show that the graph is Hamiltonian and study some additional
connectivity properties. We conclude with some related open problems.

1 Introduction

For each positive integer n, a Fibonacci string of order n is defined to be a binary
string of length n having no two consecutive ones, and Vn denotes the set of all
Fibonacci strings of order n. Constructing a graph with vertices Vn was introduced
by Hsu [2], who defined the Fibonacci Cube as the subgraph of the n-cube Qn with
vertices Vn, where two vertices are adjacent if and only if their Hamming distance
is 1. Hsu was motivated by the possibility of using the Fibonacci Cube as a inter-
connection topology for multicomputers. Here, we consider the Fibonacci strings as
n-dimensional {0, 1}-vectors in R

n, and define the n-dimensional Fibonacci Hyper-

cube as the convex hull of the elements in Vn. The graph of this polytope, denoted
by FQn, consists of the vertices Vn together with edges of the Fibonacci Hyper-
cube. Illustrations of FQ3 and FQ4 are given in Figure 1. Observe that a Fibonacci
Hypercube consists of a Fibonacci Cube with some additional edges. Moreover, the
Fibonacci Hypercube is a special case of the Fibonacci Polytopes investigated by
Rispoli [5].
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Figure 1: The graphs FQ3 and FQ4

The main result of this paper is a vertex adjacency citerion for FQn of two Fi-
bonacci strings in terms of their bits. It tells us that two vertices x = {x1, x2, ..., xn}
and y = {y1, y2, ..., yn} are adjacent if and only if all the coordinates {i : xi 6= yi}
make a subsequence, consisting of consecutive elements of the sequence {1, 2, ..., n}.
The characterization is used to obtain a decomposition of FQn into a subgraph iso-
morphic to FQn−1, a subgraph isomorphic to FQn−2, plus some additional edges.
This leads to a recurrence relation that can be used to compute the number of edges
in FQn. In [2], the Fibonacci Cube was shown to preserve some (but not all) of
the favorable connectivity qualities of the n-cube with respect to a communications
network. For example, the Fibonacci Cube is neither Hamiltonian nor n-connected.
This is because its edges represent only a subset of the edges that are in the convex
hull of Vn. The graph FQn on the other hand, describes the entire Fibonacci Hyper-
cube which is an n-dimensional polytope, so it boasts n-connectedness as one of its
qualities. Furthermore, we constructively show that FQn is Hamiltonian.

The remainder of the paper is organized as follows. First we characterize vertex
adjacency for FQn and obtain a formula for the degree of each vertex in the graph.
Next we derive a recurrence relation for the number of edges in FQn, obtain the
diameter of FQn, show that it is n-connected and contains a Hamilton circuit for all
n ≥ 2. We conclude this paper with a brief discussion of the edge expansion rate of
FQn and identify some open problems related to FQn.

2 The vertices and edges of FQn

The Fibonacci numbers, denoted by Fn, are defined by F0 = 0, F1 = 1 and Fn =
Fn−1 + Fn−2. It is well known that |Vn| = Fn+2. Let [n] = {1, 2, . . . , n}. Given a
pair of vertices x, y ∈ Vn, let D(x, y) = {i ∈ [n] : xi 6= yi}. We define a maximal
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run to be a subset of D(x, y) whose elements consist of consecutive integers and
is inclusion-wise maximal (i.e., it is not contained in any larger set of consecutive
integers.) For example, suppose that x = 01010101 and y = 00100001. Then
D(x, y) = {2, 3, 4, 6}, and D(x, y) is the union of the two maximal runs {2, 3, 4} and
{6}. We point out that a maximal run corresponds to a substring of alternating 0
and 1 bits within both x and y. Furthermore, a valid Fibonacci string can always be
obtained by interchanging the 0s and 1s in either x or y along the full extent of any
maximal run.

Given any convex polytope P , two vertices x and y of P are adjacent if and only
if for every 0 < λ < 1, the point λx + (1 − λ)y cannot be expressed as a convex
combination of any other points in P . For a reference on convex polytopes, see [1]
or [7].

Proposition 1 Two vertices x and y are adjacent in the Fibonacci Hypercube if

and only if D(x, y) consists of a single maximal run.

Proof. Let x 6= y be two Fibonacci strings and suppose that D(x, y) consists
of two or more maximal runs. Let R1 and R2 be any two of these runs. Construct
the Fibonacci string u from x by interchanging the bits along R1, and similarly,
construct v from y by interchanging bits along R2. Now, observe that 1

2
x + 1

2
y =

1
2
u + 1

2
v, and hence, x and y are not adjacent.

Now, suppose that D(x, y) consists of exactly one maximal run, say D(x, y) =
{p, p + 1, p + 2, ..., p + q} where p ∈ [n] and q ≥ 0. If q = 0, then the Hamming
distance between x and y is 1, which implies that x and y must be adjacent in the
Fibonacci Hypercube. So assume that q ≥ 1. Suppose also that there exists some

subset of Fibonacci strings z1, ..., zm, positive reals α1, ..., αm satisfying
m∑

j=1

αj = 1,

and some λ such that 0 < λ < 1 and
m∑

j=1

αjzj = λx + (1 − λ)y. Notice that αj > 0,

for every j = 1, 2, ..., m, implies that if xi = yi = 0, for some i ∈ [n], then z
j
i = 0,

for every j. In addition,
m∑

j=1

αj = 1 implies that if xi = yi = 1, for some i ∈ [n],

then z
j
i = 1, for every j. Consequently, for all i < p and all i > p + q, we have that

xi = yi = z1
i = z2

i = ... = zm
i . Since D(x, y) = {p, p + 1, p + 2, ..., p + q}, without

loss of generality, we may assume that xp = 1, yp = 0, and that both x and y have
alternating 0’s and 1’s over the indices in D(x, y). Therefore, λxp + (1 − λ)yp = λ

and λxp+1 + (1 − λ)yp+1 = (1 − λ).

For convenience, we relabel the zj such that z1 , z2, ..., zv have a one in the pth

coordinate and zv+1, ..., zm have a zero in the pth coordinate. Now, λ =
v∑

j=1

αjz
j

p =

v∑
j=1

αj. Since the zj do not have consecutive ones, for j = 1, 2, ...v, we must have that

z
j
p+1 = 0. Hence, (1 − λ) =

m∑
j=1

αjz
j

p+1 =
m∑

j=v+1

αjz
j

p+1. Since
m∑

j=1

αj = 1 and
v∑

j=1

αj =
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Figure 2: The Fibonacci Hypercube graph FQ5. Thick edges illustrate the compo-
sition from FQ3 and FQ4.

λ, we know that
m∑

j=v+1

αj = 1 − λ. Therefore, z
j
p+1 = 1, for j = v + 1, ..., m.

If q ≥ 2, we may repeat the above argument observing the following: λxp+2 +
(1 − λ)yp+2 = λ, λxp+3 + (1 − λ)yp+3 = (1 − λ), z

j
p+2 = 1, for j = 1, 2, ...v, and

z
j
p+2 = 0, for j = v + 1, .., m. This implies that z1 = z2 = ... = zv = x and

zv+1 = zv+2 = ... = zm = y, and consequently x and y are adjacent. �

Figure 2 provides an illustration of FQ5 and also indicates a decomposition. In
particular, we can partition the vertices of FQ5 into a subset of Fibonacci strings
of the form (0,*) (i.e., strings that begin with 0) that induce a subgraph isomorphic
to FQ4, plus another subgraph with vertices with form (1,0,*) isomorphic to FQ3.
For suppose that x and y are Fibonacci strings in V4 and (0, x) and (0, y) are the
Fibonacci strings in V5 starting with 0 followed by the bits in x and y respectively.
Then D(x, y) = D( (0, x), (0, y) ). Similarly, if x and y are Fibonacci strings in V3

and (1, 0, x) and (1, 0, y) are the Fibonacci strings in V5 starting with 10 followed by
the bits in x and y respectively. Then D(x, y) = D( (1, 0, x), (1, 0, y) ). Hence, the
adjacency structure within the subgraph in FQ5 induced by strings starting with 0
will be isomorphic to FQ4, and the subgraph induced by strings starting with 10 in
FQ5 will be isomorphic to FQ3.

In general, let H0 and H1 be the subgraphs of FQn induced by vertices starting
with 0 and 10 respectively. Then we have the following isomorphisms: H0 ≃ FQn−1
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and H1 ≃ FQn−2. Thus the total number of edges in FQn include the edges from
these two graphs, plus edges existing between the two subgraphs, i.e., those con-
necting a vertex of the form (1,0,*) to a vertex of the form (0,*). This can be
characterized by the following Proposition.

Proposition 2. (a) For n ≥ 3, the number of edges in FQn satisfies the non-

homogeneous recurrence relation En = En−1 + En−2 + Fn+2 − 1, where E1 = 1,
E2 = 3.

(b) For n ≥ 6, the number of edges in FQn satisfies En > Fn+4.

Proof. If there exists an edge between vertices, x ∈ H0 and y ∈ H1, which differ
in the first bit, then {1} must be a subset of the single maximal run in D(x, y). Thus,
if this run is {1, 2, ...k}, for some k ≥ 1, x takes the form (0101.., s) and y takes
the form (1010..., s), or vice versa, where s is a Fibonacci substring that starts with
a 0, or it is the empty string if k = n. When k = n, the number of such adjacent
vertex pairs is 1 = F1. When k = n − 1, s = (0) and the number of associated
adjacent vertex pairs is again 1 = F2. As k decreases, the number of valid s follows
the Fibonacci sequence. Finally, for k = 1, the number of valid substrings s is equal
to the number of Fibonacci strings of length n− 2, which is Fn. So the total number

of edges between H0 and H1 is given by
n∑

j=1

Fj, which, by a well known identity, is

equal to Fn+2 − 1.
(b) The proof is by induction. For n = 6 we have that E6 = 76 and F10 = 55. By

part (a), En+1 = En + En−1 + Fn+3 − 1. By the induction assumption, En > Fn+4

and En−1 > Fn+3. Hence, En+1 > Fn+4 + Fn+3 + Fn+3 − 1 > Fn+5. �

It should be pointed out that since |Vn| = Fn+2 an alternative recurrence rela-
tion for the number of edges in FQn is given by En = En−1 + En−2 + |Vn| − 1.
Proposition 2 allows us to compare the difference in the number of edges in the
Fibonacci Hypercube over the Fibonacci Cube. If we let Ên denote the number
of edges in the Fibonacci Cube, then a recurrence relation for Ên, given in [2], is

Ên = Ên−1 + Ên−2 + Fn, where Ê1 = 1, Ê2 = 2.

It is obvious from Figures 1 and 2, that FQn is not a regular graph. For a given
vertex x, the degree may be as small as n, but could be much larger if there are
vertices y for which D(x, y) contains a single maximal run. We note from our earlier
observations, that x and y are adjacent if their binary strings match everywhere
except where x contains an alternating substring, e.g., (0101...) and y contains the
complement substring (1010...). Thus the number of potential neighbors of x is
maximal when all of its bits alternate. Otherwise, its degree is limited by the number
of breaks in its alternating pattern, i.e., where a consecutive pair of bits have the same
value (0). We define the segments of x to be the maximal sequences of alternating
bits between these breaks. For example, x = 100101000101 contains the segments
10, 01010, 0, and 0101.

Proposition 3 (a) Let x be a Fibonacci string that contains p ≥ 2 segments. Let
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ki be the number of occurrences of the substring 010 in the i th segment. Then the

degree of vertex x in FQn is n +
p∑

i=1

(
ki + 1

2

)
.

(b) For every vertex x ∈ Vn the degree of x satisfies n ≤ deg(x) ≤ n+

( ⌈
n
2

⌉

2

)
.

Proof. (a) Let S represent some segment within the string for vertex x. Let S

represent the alternating sequence of complement bits. One could obtain a vertex
that is adjacent to x if S were replaced by S. Suppose S were partitioned into a pair
of non-empty substrings such that S = S1S2. If |S| = m, then there are m − 1 such
partitions. For each, another adjacent vertex is obtained by replacing S with exactly
one of S1S2 or S1S2. Thus every segment of length m contributes m to the degree of
x, for a subtotal of n.

Suppose S has k occurrences of the substring 010. Additional vertices adjacent
to x can be obtained by replacing one such instance of 010 in S with 000. This
gives k additional neighbors. Next we can take an occurrence of two consecutive 010
substrings, which has the form 01010, and replace it with 00100. This gives k − 1
additional neighbors of x. We may continue to group the 010 substrings, three at at
time, then four at a time, and so on. Hence each segment contributes an additional

k + (k − 1) + (k − 2) + ... + 1 =

(
k + 1

2

)
to the degree of x.

(b) The lower bound on the degree of x is obvious. The upper bound follows

from the fact that
p∑

i=1

(
ki + 1

2

)
is maximum when p = 1 and k1 =

⌈
n
2

⌉
− 1. �

3 Connectivity Properties

Given a graph G the distance between any pair of vertices is the number of edges
in a shortest path joining the vertices. The diameter of G is the maximum distance
among all pairs of vertices. A Hamilton circuit is a circuit that visits every vertex in
G exactly once, and a Hamilton path is a path in G that visits every vertex exactly
once. The edge connectivity λ(G)of a connected graph G is the smallest number
of edges whose removal disconnects G. When λ(G) ≥ k, the graph G is called k-

connected. For example we can see from Figure 1 that FQ4 is 4-connected. For more
details on basic graph terminology, see [6].

Proposition 4 (a) The distance between a pair of vertices x and y in FQn, is

equal to the number of maximal runs in D(x, y).
(b) The diameter of FQn is

⌈
n
2

⌉
.

(c) For every n ≥ 2, FQn is n-connected .

Proof. (a) Suppose that there are p ≥ 2 maximal runs in D(x, y) and denote
these by R1, R2, ..., Rp. Recall from our previous discussion that a vertex x1, adjacent
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to x, can be obtained by interchanging the 0 and 1 bits along the full extent of any
maximal run, e.g., R1. Hence, we can construct a path in FQn, from x to x1 to x2

to ... to xp−1 to xp = y, where xj is the vertex associated with exchanging the bits
from xj−1 along run Rj. Thus the distance from x to y is p.

(b) Observe that the number of maximal runs in D(x, y) is at most
⌈

n
2

⌉
, which

occurs when D(x, y) consists of every other integer, {1,3,5,...}, i.e., when x = 0000 . . .

and y = 10101 . . . In this case, the distance is
⌈

n
2

⌉
.

(c) The result follows from Balinski’s Theorem (see [7]), which states that the
graph of any n-dimensional polyhedron is n-connected. �

Next we show that for every n ≥ 2, FQn contains a Hamilton path joining
the vertices 00...0 to 10...0. Since these vertices are adjacent, this fact implies the
existence of a Hamilton circuit in FQn. The proof uses the following two base cases
to anchor the induction. For n = 2 and n = 3 we have the Hamilton paths:

00 → 01 → 10 and 000 → 001 → 010 → 101 → 100

Suppose that FQ2, FQ3, ..., FQn all contain Hamilton paths from 00...0 to 10...0,
for some n ≥ 3. Consider FQn+1. By the inductive hypothesis, there exist Hamilton
paths P1 in FQn and P2 in FQn−1 with both paths joining 0...0 to 10...0. Let P1

be the path in FQn+1 obtained from P1 by concatenating a 0 on the left of all bit
strings in Vn. Then P1 joins 00...0 to 010...0. Let P2 be the path in FQn+1 obtained
from P2 by concatenating 10 on the left of all bit strings in Vn−1. Then P2 joins
10...0 to 1010...0. Since 010...0 is adjacent to 1010...0 in FQn+1, the path obtained
by following P1 from 00...0 to 010...0 and then P2 in reverse from 1010...0 to 10...0
is the desired Hamilton path in FQn+1. We have proved the following.

Proposition 5 For every n ≥ 2, FQn contains a Hamilton circuit.

The following Hamilton circuit for FQ4 illustrates the method of proof.

0000 → 0001 → 0010 → 0101 → 0100 → 1010 → 1001 → 1000 → 0000

Next we consider the edge to vertex ratio rate of growth. By Proposition 2(a)
and (b), for n ≥ 6,

En

Vn

=
En−1 + En−2 + Fn+2 − 1

Fn+2

>
Fn+3 + 2Fn+2 − 1

Fn+2

> 3.

A related growth parameter that has been investigasted recently is the edge expansion

of G = (V, E), denoted χ(G), and defined as

χ(G) = min

{
|δ(U)|

|U |
: U ⊂ V, U 6= ∅, |U | ≤

|V |

2

}
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where δ(U) is the set of all edges with one end node in U and the other one in
V − U . The edge expansion rate for graphs of polytopes with 0-1 coordinates has
been recently studied and is an important parameter for a variety of reasons ([4]).
It is known that the hypercube, Qn has edge expansion 1 [3]. It is easy to see that
FQ2, which is simply a triangle, has χ(FQ2) = 2, and from Figure 1, χ(FQ3) = 2.

Now consider FQ4 which has 4 degree 4 nodes, and 4 degree 5 nodes. Since every
vertex has degree at least 4, every pair of vertices U has |δ(U)| ≥ 7. Hence |δ(U)|

|U | ≥ 7
2

for every subset with |U | = 2. If |U | = 3, then the sum of the degrees of vertices in
U is at least 12. Furthermore, the subgraph induced by U can have at most 3 edges,
implying that |δ(U)| ≥ 12 − (3)(2) = 6. Thus for any subset with |U | = 3, we have
|δ(U)|
|U | ≤ 6

3
= 2. If |U | = 4, there is only one possible subset with 4 nodes of degree

4 which is U = {1001, 1000, 0001, 0000}. In this case we have |δ(U)|
|U | = 8

4
= 2. Any

other subset with 4 nodes must have at least 2 nodes of degree 5, so a sum of degrees
of at least 18. In addition, any subgraph induced by a subset of 4 nodes other than
{1001, 1000, 0001, 0000} contains at most 5 edges. Therefore |δ(U)| ≥ 18−(5)(2) = 8

and |δ(U)|
|U | ≥ 8

4
= 2, for every subset with |U | = 4. This shows that χ(FQ4) = 2.

Proposition 6 (a) For n ≥ 6, the edge to vertex ratio satisfies En

Vn
> 3.

(b) For every n ≥ 5, the edge expansion of FQn satisfies χ(FQn) < 1+φ, where

φ = 1+
√

5
2

≈ 1.62.

Proof The proof of (a) is given above. For (b) consider FQn and the cut created
from the decomposition FQn = FQn−1 ∪ FQn−2 ∪ U where U is the set of Fn+2 − 1
edges described in the proof of Proposition 2(a). Since FQn−2 has Fn vertices and
FQn−1 has Fn+1 vertices, we have

χ(FQn) ≤
Fn+2 − 1

Fn

=
Fn+1 + Fn − 1

Fn

= 1 +
Fn+1 − 1

Fn

< 1 +
Fn+1

Fn

< 1 + φ.

4 Conclusions

In this paper we have introduced a new graph called the Fibonacci Hypercube. The
graph is easy to describe and arises naturally in a geometric context. Figures 1 and
2 illustrate the graphs for dimensions 3, 4 and 5 and show that these graphs may be
drawn in a symmetric manner. The graph also exhibits many important connectivity
properties which may make it useful as a communications network in the same sense
as the Fibonacci Cube [2]. In the previous section we showed that the expansion
rate is bounded above by 1 + φ. As for lower bounds for χ(FQn), we know that
χ(FQn) = 2, for n = 2, 3 and 4. By using the decomposition of FQ5 described
earlier, one can obtain an enumerative proof showing that χ(FQ5) = 13

6
. The key

step is when considering subsets with 6 nodes, examine the cases with k nodes in
H0 and 6 − k nodes in H1, where k = 0, 1, 2, 3, 4, 5. The authors conjecture that for
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Figure 3: The Fibonacci 3-polytope of order 3.

every n ≥ 2, FQn satisfies χ(FQn) ≥ 2. Moreover, as n approaches infinity, χ(FQn)
approaches 1 + φ from below.

In [5] the Fibonacci d-polytope of order k, denoted by FPd(k), is defined as the
convex hull of the set of {0, 1}-vectors having d entries and no consecutive k ones.
For example, the Fibonacci 3-polytope of order 3 is given in Figure 3. The Fibonacci
Hypercube is the special case where k = 2. We may observe that from Figure 3 the
adjacency criterion given in Proposition 1 fails for k = 3. In particular the vertices
corresponding to x = 110 and y = 011 are adjacent, but D(x, y) = {1, 3}. In this
situation adjacency must be checked using the definition of adjacency on a polytope
given above. This leads to the following question.

Open Problem Find an efficient vertex adjacency criterion for FPd(k), when
k = 3, and in general for all k ≥ 3.
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