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Abstract

P. Wittmann showed that for the irregular coloring number c(G) of a
simple 2-regular graph of order n the inequality c(G) 6

√
2n + O(1)

holds. We determine the exact value of this number in the case when the
2-regular graph consists of cycles of even lengths. For this purpose we
consider decompositions of several classes of graphs.

1 Introduction

Consider a simple (without loops and multiple edges) nondirected graph G. Let C be
a color set, w : E(G) → C an edge coloring and let S(v) denote a multiset of colors
of all edges incident with a vertex v in G. A coloring w is said to be irregular if for any
two distinct vertices u, v the corresponding multisets satisfy S(u) 6= S(v). We ask
for the minimal number of necessary colors to obtain an irregular edge coloring and
we call it an irregular coloring number. Moreover, we denote by c(G) the irregular
coloring number of a given graph G.

Such a number also has another interesting interpretation, as a variant of irreg-
ular weighting of edges of a graph G with positive integers. Namely, c(G) can be
considered as the minimal cardinality of such a subset of N that allows us to distin-
guish all vertices of G by the sums of labels of edges adjacent to them; see [11] for
details.

The irregular coloring number is, for instance, determined to be equal to three
for graphs Kn and Kn,n. Other results for connected graphs, such as multipartite
graphs, are also known, see [11]. However, since we are interested in global distin-
guishing of vertices (not only neighboring ones), these results do not yield an instant
generalization for nonconnected graphs, even if these graphs are disjoint unions of
the connected graphs mentioned above. Already 2-regular graphs turned out to be

∗ Corresponding author. E-mail: przybylo@wms.mat.agh.edu.pl



42 SYLWIA CICHACZ, JAKUB PRZYBY lO AND MARIUSZ WOŹNIAK

problematic. A representative of such a family is a disjoint union of cycles and can
be denoted as G = Ca1

∪ · · · ∪ Cap
, where Ci is a cycle of length i. The following

upper bound was first established by M. Aigner et al.

Theorem 1 ([1]) Let G = Ca1
∪ · · · ∪ Cap

be a simple 2-regular graph of order
n =

∑p

i=1 ai. Then

c(G) 6
√

8n + O(1).

It was then improved by P. Wittmann.

Theorem 2 ([11]) Let G = Ca1
∪ · · · ∪ Cap

be a simple 2-regular graph of order
n =

∑p

i=1 ai. Then

c(G) 6
√

2n + O(1).

This result is best possible except for an additive constant term. In this paper,
which is a continuation of our reasonings from [7], we determine the exact value of
the irregular coloring number for 2-regular graphs consisting of cycles of even lengths.

2 Coloring and decomposition

Similarly to the authors mentioned above, we use the following correspondence be-
tween an irregular edge coloring w of a 2-regular graph G = Ca1

∪ · · · ∪ Cap
with

r colors and an (edge-disjoint) packing of (connected) Eulerian subgraphs into the
graph Mr, where Mr is a complete graph Kr with a loop at each vertex added.
(Although Mr contains loops, we shall call it a graph.)

First identify the vertices of Mr with the colors of w. Now choose an arbitrary
Cai

and for any two colors appearing in some S(u) of Cai
draw an edge or a loop

between the corresponding vertices of Mr. (Notice that each multiset S(u) consists
of just two colors and that we draw a loop in Mr only if these colors are the same.)
Since S(u) 6= S(v) for any two distinct vertices of Cai

, we never draw an edge of Mr

twice. Moreover, as in the following example (see Figure 1), traversing Cai
yields a

corresponding Eulerian subgraph Gai
of size ai in Mr. Since w is an irregular edge

Figure 1: C6 producing a closed trail G6 in M6.

coloring of the graph G = Ca1
∪· · ·∪Cap

, we obtain edge-disjoint Eulerian subgraphs
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of sizes a1, . . . , ap in Mr. Clearly, this procedure works the other way around as
well, hence we have reduced the problem of irregular edge coloring to the following
packing problem:

Let G = Ca1
, . . . , Cap

; then c(G) is the smallest number r such that we can
(edge-disjointly) pack Eulerian subgraphs of sizes a1, . . . , ap into Mr.

We shall call a (connected) Eulerian graph (or subgraph) of size n, a closed trail
of length n. Notice that such a closed trail can be identified with any sequence
(v1, v2, . . . , vn+1) of its, not necessarily distinct, vertices such that vivi+1 are its dis-
tinct edges for i = 1, . . . , n, and hence v1 = vn+1. Moreover, given two edge-disjoint
closed trails A1, A2 which are not disjoint on vertices, we shall write A1.A2 for their
union, which is a closed trail as well. Notice also that if A1, . . . , Ap are edge-disjoint
closed trails in Mn, their union forms an Eulerian subgraph (or a union of Eulerian
subgraphs) of Mn. Therefore, instead of the problem of packing, we consider a prob-
lem of decomposing into closed trails of even lengths of Ln, which is defined to be a
maximal, in terms of size, Eulerian subgraph of Mn with an even number of edges.

Therefore, we introduce the following definitions. A sequence τ = (a1, . . . , ap) of
integers is called admissible for G if its elements add up to ‖G‖, the size of the graph
G, and ai > 3 for i = 1, . . . , p. Moreover, if G can be (edge-disjointly) decomposed
into closed trails A1, A2, . . . , Ap of lengths a1, a2, . . . , ap, respectively, then τ is called
realizable in G and the sequence (A1, A2, . . . , Ap) is said to be a G-realization of τ or
a realization of τ in G. Since we are interested in unions of cycles of even lengths, we
exclusively investigate sequences consisting of numbers divisible by two and we call
them even sequences. Moreover, we say that a graph G is arbitrarily decomposable
into closed trails (of even lengths) if each (even) admissible for G sequence is also
realizable in this graph.

Our main aim will be to show that Ln (and Ln with a pair of loops removed) is
arbitrarily decomposable into closed trails of even lengths for (almost) every n. In
other words, we show that we can (edge-disjointly) pack as many closed trails of even
lengths into Mn as is possible, taking into account the necessary conditions, i.e. the
size of the graph and the fact that these closed trails are its Eulerian subgraphs; see
Theorem 14. Such an optimal solution of this problem results in determining c(G)
for 2−regular graphs consisting of cycles of even lengths; see Theorem 15.

It is also worth mentioning here that similar problems concerning decompositions,
but in the case of complete graphs, were investigated by P.N. Balister, whose best
known result is as follows.

Theorem 3 ([2]) Let the sum
∑p

i=1 ai, ai > 3, be equal
(

n

2

)
when n is odd and

(
n

2

)
− n

2
− 2 6

∑p

i=1 ai 6
(

n

2

)
− n

2
when n is even. Then we can decompose some

subgraph of Kn into closed trails of lengths a1, . . . , ap.

This theorem enabled the value of a variant of irregular coloring number for 2-regular
graphs to be established in the case when we assume this coloring to be proper. Also
directed graphs were discussed by the same author, see [3]. Other related problems
appear in [5] and [10]. In our proof, the most useful will be the following result of
M. Horňák and M. Woźniak.
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Theorem 4 ([10]) If a, b are positive even integers, then if
∑p

i=1 ai = a · b and
there is a closed trail of length ai in Ka,b (for all i ∈ {1, . . . , p}), then Ka,b can be
(edge-disjointly) decomposed into closed trails A1, A2, . . . , Ap of lengths a1, a2, . . . , ap,
respectively.

Let us observe that K2,b contains only closed trails of lengths 4i, where i = 1, 2, . . . , b
2
,

whereas Ka,b, for a, b > 4, contains closed trails of lengths 2j, where j = 2, 3, . . . , ab−4
2

,
ab
2

; see [10].

3 Decomposition of Lm

n

Notice first that Ln for even n is a complete graph Kn with a single loop at each
vertex added and minus a 1-factor. Let L′

n (n even) denote a graph Ln with two
loops at non-adjacent vertices removed. In [7] we proved the following theorem.

Theorem 5 Graphs Ln and L′

n with even n are arbitrarily decomposable into closed
trails of even lengths, unless n = 4 (and τ = (4, 4)).

Observe in turn, that if we take an odd n into account, then Ln is equal to Mn if
n ≡ 3(mod 4) and is equal to Mn with one loop removed otherwise. This time let L′

n

denote a graph Ln with an arbitrary pair of loops removed. For technical reasons, to
show that graphs Ln and L′

n (n odd) are arbitrarily decomposable into closed trails
of even lengths, we first have to show that such a statement remains true for another
family of graphs.

So for even integers m, n, with 0 6 m 6 n, let Lm
n stand for a family of all

graphs we may receive by adding single loops at m vertices of Kn minus a 1-factor.
Notice that Ln ∈ Ln

n and is actually (up to isomorphism) the only representative of
this family and as well Kn minus a 1-factor is a single representative of L0

n. This
is however not the case if 2 6 m 6 n − 2; therefore, from now on, by Lm

n we will
usually mean an arbitrary representative of the family Lm

n if nothing else is stated.
This section is dedicated to proving the following theorem.

Theorem 6 Let m, n be even numbers, where 0 6 m 6 n. A graph Lm
n ∈ Lm

n is
arbitrarily decomposable into closed trails of even lengths, unless n = 4 and m = 4.

Let x be a vertex of Lm
n . The only nonadjacent to x vertex of Lm

n we shall denote
by x′, hence (x′)′ = x. We say that x is of type one if neither x nor x′ has a loop,
whereas it is of type three if there is a loop at both of them. Analogously, x is
of type two or four if only x′ or only x, respectively, has a loop. We shall write
t(x) = i, where i = 1, 3, 2, 4, respectively, see Figure 2. Notice that the type of x′ is
the consequence of the type of x, since either t(x) = 1 = t(x′) or t(x) = 3 = t(x′) or
{t(x), t(x′)} = {2, 4}.

Observe that if m = 0, then Theorem 6 is true by Theorem 3, whereas for m = n
we are done by Theorem 5. Therefore, we can restrict our reasonings to the case
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Figure 2: Types of a vertex x.

2 6 m 6 n − 2. But then, a graph Lm
n contains an induced subgraph H1 or H2

from Figure 3. It is because then there exist vertices x, x′, y, y′ ∈ V (Lm
n ), such that

either t(x) = t(y) = 2 or t(x) = 1 and t(y) = 3. Notice that the graphs H1 and

Figure 3: H1 and H2.

H2 are actually the only nonisomorphic representatives of the family L2
4. Therefore,

there exist L2
4 ∈ L2

4 and Lm−2
n−4 ∈ Lm−2

n−4 such that Lm
n = (L2

4.K4,n−4).L
m−2
n−4 . Let us

then denote by Rn a family of graphs of the form L4
2.K4,n−4, where a vertex set of

L2
4 ∈ L2

4 coincide with a partition set of size 4 of K4,n−4. An arbitrary representative
of this family we shall denote by Rn, see Figure 4. The basic idea of our proof is to

Figure 4: Lm
n as Rn.L

m−2
n−4 .

consider a graph G = Lm
n as a union G′.G′′ of the two graphs and given an admissible

for G sequence τ = (a1, . . . , ap), divide it into two sequences τ ′ = (a1, . . . , ai), τ ′′ =
(ai+1, . . . , ap) admissible for G′, G′′, respectively, and decompose these two graphs
separately. Therefore, if 2 6 m 6 n − 2, we can take G′ = Rn and G′′ = Lm−2

n−4 . If
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additionally m > 4, then we can assume G′ = Rn.L2 and G′′ = Lm−4
n−4 , where by Rn.L2

we mean one of the members of the family Rn with two loops at two vertices from
the partition set of size n− 4 of K4,n−4 added. Then we decompose G′′ by induction
and G′ by one of the two lemmas below. It is however obvious, we can not always
simply divide τ into τ ′ and τ ′′ as described above. Therefore, we split ai = a′

i +a′′

i at
times and search for realizations of τ ′

1 = (a1, . . . , ai−1, a
′

i) and τ ′′

1 = (a′′

i , ai+1, . . . , ap)
in G′ and G′′, respectively, and finally glue together closed trails of lengths a′

i and
a′′

i to form the one of length ai. This is, in turn, possible only if the closed trail of
length a′

i meets at least one vertex from the partition set of size n− 4 of K4,n−4, see
Figure 4.

From now on, we shall write ar1

1 · ar2

2 · · · · · ars
s instead of the sequence (a1, . . . , a1

︸ ︷︷ ︸

r1

,

a2, . . . , a2
︸ ︷︷ ︸

r2

, . . . , as, . . . , as
︸ ︷︷ ︸

rs

) for short. Moreover, if ri = 1 for some i, we shall omit

writing ri in this shortened notation.

Lemma 7 A graph Rn ∈ Rn, with n > 8, is arbitrarily decomposable into closed
trails of even lengths.

Proof. Let τ = (a1, . . . , ap) be an even admissible sequence for Rn. Since ‖Rn‖ ≡
2 (mod 4), we may assume a1 ≡ 2 (mod 4) and find a realization of τ1 = (a1 −
6, a2, . . . , ap) in K4,n−4 by Theorem 4 (in particular we may receive a1−6 = 0). Then,
by gluing together a closed trail of length a1 − 6 with L2

4, we receive a realization of
τ in G.

Notice that if we want to be certain we can choose this realization of τ in such
a way, that a closed trail of a given length, say a1, is a subset of K4,n−4, it is
enough to assume either aj /∈ {4, 8} or aj1 , aj2 = 8 for some j, j1, j2 > 1. It is
obvious by the proof above when aj = 6 or aj > 10. It is enough to exchange
a1 with aj. In the second case, if for instance a2 = a3 = 8, we find a realization
of τ2 = (a1, a2 − 2, a3 − 4, a4, . . . , ap) in K4,n−4 and glue together (possibly after a
permutation of vertices of K4,n−4) a closed trail of length a2 − 2 with the two loops
from L2

4 and the one of length a3 − 4 with the rest of L2
4.

It is also obvious that in these two cases a closed trail of length a1 has at least
one vertex in the partition set of size n− 4 of K4,n−4. However, since ‖L2

4‖ = 6, it is
also the case if a1 > 8.

Lemma 8 If τ = (a1, . . . , ap) is an even admissible sequence for G = Rn.L2, where
Rn ∈ Rn and n > 8, then it is also G-realizable, unless τ = 4r for some r.

Proof. If one of the elements of τ , say a1, is not smaller than 12, then we find a
realization of τ1 = (a1−8, a2, . . . , ap) in K4,n−4 by Theorem 4 and then glue together
a closed trail of length a1 − 8 with L2

4 and L2. Analogously, if there are at least
two elements of τ , say a1, a2, not divisible by four, then we find a realization of
τ2 = (a1 − 6, a2 − 2, a3, . . . , ap) in K4,n−4 and glue together a closed trail of length
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a1 − 2 with the two loops L2 and a closed trail of length a2 − 6 with L2
4. In both

cases some permutations of vertices of K4,n−4 may be necessary. O Therefore, since

‖G‖ ≡ 0 (mod 4), we can assume aj ∈ {4, 8} for all j and a1 = 8 (because τ 6= 4r).
Then we find a realization of τ3 = (a1 − 4, a2 − 4, a3, . . . , ap) in K4,n−4 by Theorem
4 (in particular we may receive a2 − 4 = 0) and we glue together a closed trail of
length a1 − 4 with L2 and the two loops from L2

4, and the one of length a2 − 4 with
the rest of L2

4. Again, some permutations of vertices of K4,n−4 may be necessary.

In addition to the lemmas above, we also make use of the following result by Chou,
Fu and Huang to prove Theorem 6.

Theorem 9 ([9]) Let Ka,b be the complete bipartite graph and Cn be an elementary
cycle of length n. Graph G can be decomposed into p copies of C4, q copies of C6 and r
copies of C8 for each triple p, q, r of nonnegative integers such that 4p+6q+8r = ‖G‖
in the following two cases:

1. G = Ka,b, if a > 4, b > 6 and a, b are even.

2. G = Ka,a minus 1-factor if a is odd.

Proof of Theorem 6. The cases for n 6 10 have been analyzed by a computer
programme we created. Assume then n > 12 and let us argue by induction on n.

Let G = Lm
n be an arbitrary representative of a family Lm

n and let τ = (a1, . . . , ap)
be an even admissible sequence for G. Since the cases m = 0 and m = n are the
consequence of Theorems 3 and 5, we may assume 2 6 m 6 n − 2. Let si =
a1 + a2 + · · · + ai for each i.

Let first τ = 4p. If there exists a vertex x ∈ V (G) such that t(x) = 1, then
G = K2,n−2.L

m
n−2 for some Lm

n−2 ∈ Lm
n−2, where one of the partition sets of K2,n−2

equals {x, x′}. Hence, we can separately decompose K2,n−2 and Lm
n−2 into closed

trails of length four by Theorem 4 and induction, respectively. Assume therefore
that there does not exist a vertex of type one in G, hence m >

n
2
. Then, since m

is an even number not greater than n − 2, either there exist x, y, z ∈ V (G) such
that t(x) = 3 and t(y) = 2 = t(z) or t(u) ∈ {2, 4} for each u ∈ V (G). In the first
case, we have G = (L4

6.K6,n−6).L
m−4
n−6 , where V (L4

6) = {x, x′, y, y′, z, z′}. Then we can
decompose K6,n−6 into closed trails of length four by Theorem 4 and the remaining
two graphs by induction. In the last case, when t(u) ∈ {2, 4} for each u ∈ V (G),

we have m = n
2

and ‖G‖ = n(n−1)
2

. On the other hand, since τ = 4p is admissible
for G, ‖G‖ ≡ 0 (mod 4). Therefore n ≡ 0 (mod 8) and G = (L4

8.K8,n−8).L
m−4
n−8 ,

hence we can, as above, decompose these three graphs into closed trails of length
four separately.

We assume from now on, that the sequence τ is nonincreasing, i.e. a1 > a2 >

· · · > ap, and is not of the form 4p. Let also G = Rn.L
m−2
n−4 , where Rn ∈ Rn,

Lm−2
n−4 ∈ Lm−2

n−4 and s = ‖Rn‖.
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Case 1: For some i, si = s. Then we can find a realization of τ1 = (a1, . . . , ai) in Rn

by Lemma 7 and then decompose Lm−2
n−4 into closed trails of lengths ai+1, . . . , ap by

induction.

Case 2: For some i, si−1 6 s − 4 and si > s + 4. Let τ2 = (a1, . . . , ai−1, a
′

i) and
τ3 = (a′′

i , ai+1, . . . , ap), where a′

i = s − si−1 > 4 and a′′

i = ai − a′

i > 4. Since ai > 8
and τ is nonincreasing, then aj > 8 for all j < i, hence we can find its realization
in Rn = L2

4.K4,n−4 by Lemma 7. Moreover, by the comment below the proof of this
lemma, we can find this realization in such a way that a closed trail of length a′

i

contains at least one vertex from the partition set of size n − 4 of K4,n−4. Then, by
induction, we find a realization of τ3 in Lm−2

n−4 and permute its vertices in such a way
that the trails of lengths a′

i and a′′

i meet at some vertex forming a trail of length ai.

Case 3: For some i, si = s + 2. If m > 4, we have G = G1.L
m−4
n−4 , where G1 = Rn.L2.

Then ‖G1‖ = s + 2 and the sequence τ1 = (a1, . . . , ai) is not of the form 4r (because
nonincreasing τ is not). Hence we can find a realization of τ1 in G1 by Lemma 8 and
a realization of the remaining elements of τ in Lm−4

n−4 by induction. Assume therefore
m = 2. Then G = G2.L

2
n−4, where G2 = L0

4.K4,n−4 and ‖G2‖ = si − 4. If a1 > 12,
then we find realizations of sequences τ2 = (a1−8, a2, . . . , ai) and τ3 = (4, ai+1, . . . , ap)
in K4,n−4 and L2

n−4 by Theorem 4 and induction, respectively. Then it is enough to
glue together the closed trail of length a1 − 8 with L0

4 and a closed trail of length
four from L2

n−4 to form the one of length a1. Analogously, if there exist i1, i2 6 i
such that ai1 , ai2 6= 6, then we find a K4,n−4-realization of τ1 with elements a1, a2

exchanged (or removed) by ai1 − 4, ai2 − 4 and an L2
n−4-realization of τ3. Now it is

enough to glue together the closed trails of length ai1 −4, ai2 −4 with L0
4 and a closed

trail of length four from L2
n−4, respectively. Consequently, we may assume τ1 = 6i or

τ1 = 8 · 6i−1 or τ1 = 10 · 6i−1 or τ1 = 6i−1 · 4, hence a2 = a3 = 6. If tp = 4, then we
find a realization of τ4 = (a1, ap, a4, . . . , ai) in K4,n−4 by Theorem 4 and we are done,
since G = (L2

4.K4,n−4).L
0
n, where L2

4 is a closed trail of length a3 and we can find a
realization of the remaining elements of τ in L0

n by induction. Therefore, since τ is
nonincreasing, we may assume that almost all of its elements (except possibly one)
are equal to six. In such a case we have G = (L0

6.K6,n−6).L
2
n−6, where L6, K6,n−6 are

decomposable into closed trails of length six and we can find an L2
n−6-realization of

the remaining elements of τ by induction.

Case 4: For some i, si = s− 2. In such a situation, if ap = 4, we have si + ap = s + 2
and we continue the proof the same way as in case 3. Therefore, we may assume
aj > 6 for each j and si+ap > s+4. If additionally a1 > ap, we have si−a1+ap 6 s−4
and we proceed the same way as in case 2. Hence, we are left with the case τ = tr

with t > 6.

Case 4.1: τ = 6p. Then we first find by induction a realization of the sequences
6p1 · 4 in Lm−2

n−4 , where a closed trail of length four we denote as A1 = (v1, . . . , v4, v1).
Then we find a realization of the sequence 8 · 6p2 in Rn = L2

4.K4,n−4 by taking L2
4

as one closed trail of length 6 and then decomposing K4,n−4 into p2 − 1 copies of C6

and one C8 by Theorem 9. We may assume C8 = (w1, . . . , w8, w1), where w1 = v1
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and w5 = v3 (it is enough to permute the vertices of K4,n−4). Then the union of
such A1 and C8 can be easily decomposed into two cycles of length 6, namely of the
form (w1, w2, w3, w4, w5, v4, w1) and (w1, v2, w5, w6, w7, w8, w1), see Figure 5. Since

Figure 5: Intersecting closed trails.

obviously p = p1 + p2 + 2, we receive a realization of 6p in G.

Case 4.2: τ = tp and t > 8. As above, we first find a realization of the sequence
tp1 · (t − 2) in Lm−2

n−4 , with A1 = (v1, . . . , vt−2, v1) being a closed trail of length t − 2.
Then, by Lemma 7, we find a realization of the sequence (t+2)·tp2 in Rn = L2

4.K4,n−4

in such a way that a closed trail A2 = (w1, . . . , wt+2, w1) of length t + 2 is a subset
of K4,n−4 (or is equal to the entire Rn). It is possible by the comment below the
proof of that lemma. Therefore, since t + 2 > 10, A2 contains at least three vertices
from the partition set of size n− 4 of K4,n−4, and we may assume w1, w5 are distinct
such vertices. Moreover, since we can permute the vertices of Lm−2

n−4 , we may assume
v1 = w1 and v3 = w5. Then the union of such A1 and A2 can be, analogously as in
the previous subcase, decomposed into two closed trails of length t, see Figure 5.

4 Decomposition of Ln with odd n

We can now prove a theorem which, together with Theorem 5, closes the subject of
packing closed trails of even lengths into Mn for an arbitrary n, see Theorem 14.

Theorem 10 Graphs Ln and L′

n with odd n are arbitrarily decomposable into closed
trails of even lengths.

Let n be an odd number and G = Ln or G = L′

n. Let us fix a loopless vertex of G in
the case n ≡ 1(mod 4) or any vertex with a loop otherwise and label it as x. Then
take a subgraph of G of the form Lm

n−1 ∈ Lm
n−1, m even, containing all the vertices

of G except x. Then G = Lm
n−1.Gx, where Gx has even size and is one of the forms

presented below, see Figure 6. Observe that x is the only vertex that joins subsequent
cells of the graph Gx, where by cells we mean triangles with possible loops at their
bottom (as in Figure 6) and sometimes upper vertices. Since we expect to find a
decomposition of Gx into closed trails, we are particularly interested in subgraphs of
Gx consisting of sets of these cells glued at x. We introduce the following notion. Let
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Figure 6: A graph Gx.

T0 stand for a loopless triangle, T1 for a triangle with one loop at a bottom vertex (no
matter which one), T2 for a triangle with two loops at the bottom vertices and Ti+3,
where i ∈ {0, 1, 2}, for one of the above Ti’s with a loop at its upper vertex added
(e.g. T4 will stand for a triangle with one loop at a bottom vertex and one at x), see
Figure 7. Note that, by the choice of x, such a cell (T3, T4 or T5) can only appear if

Figure 7: Cells appearing in Gx.

n ≡ 3(mod 4). Furthermore, we denote a subgraph of Gx formed by subsequent cells
Ti1 , Ti2 , . . . , Tij glued at x by Ti1Ti2 . . . Tij . Such a subgraph is obviously a closed
trail. We will also write T r

i for short instead of Ti . . . Ti
︸ ︷︷ ︸

r

. For example, first five cells

in Figure 6 (a) with a loop at x added to the second cell, form a closed trail T1T5T
2
0 T1

of length 20. For simplicity, we take the order of the cells into account and usually
decompose Gx by cutting it into subsequent groups of cells.

We may however do everything the other way around and in our proof, we actually
start by creating Gx by gluing together closed trails of the described form (and of
proper lengths) and this way receive Lm

n−1 by deleting all the edges of Gx (together
with the vertex x) from G. Clearly, we have G = Lm

n−1.Gx and we call such a graph
Lm

n−1 a completion of Gx in G. Analogously, we call Gx a completion of Lm
n−1 in G.

Notice that we have to be careful while creating Gx, since m has to be even if we
want to use Theorem 6 in our proof. Moreover, we cannot use too many loops to
construct Gx if G = L′

n.

To simplify the notation of the main proof, we formulate three simple observa-
tions. Let G = Ln or G = L′

n with odd n > 7 and let τ = (a1, . . . , ap) be an even
admissible sequence for G. Assume G = Lm

n−1.Gx, where Lm
n−1 ∈ Lm

n−1, with even
m < n (m < n− 2 if G = L′

n), and Gx are some subgraphs of G created as described
above. Then the following statements hold true.
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Observation 11 If there exists a permutation τ1 = (b1, . . . , bj, . . . , bp) of τ such that
the sequence τ ′

1 = (b1, . . . , bj) is realizable in Gx, then τ is realizable in G.

Proof. It is true by Theorem 6, since we can find a realization of the remaining
elements of τ in Lm

n−1.

Observation 12 If there exists a permutation τ1 = (b1, . . . , bj, . . . , bp) of τ such that
a sequence τ ′

1 = (b1, . . . , bj−1, b
′

j), where b′′j = bj − b′j > 4, is admissible and realizable
in Gx in such a way that B′

j (the respective realization of b′j) contains T2T1T0 or
T5T1T0 as an induced subgraph, then τ is G-realizable.

Proof. By Theorem 6, we find a realization of τ ′′

1 = (b′′j , bj+1, . . . , bp) in Lm
n−1 with B′′

j

being the respective realization of b′′j . Since B′

j contains all possible kinds of cells of
Gx (not taking a possible loop at x into account), i.e. T0, T1 and T2, then we can
easily permute n − 1 vertices of Gx (all except x) in such a way that B′

j meets at
least one vertex of B′′

j . Then Bj = B′

j.B
′′

j is a closed trail of length bj and we receive
a realization of τ in G.

Observation 13 If ap > 3
2
n − 5

2
, then τ is realizable in G.

Proof. We have ap > 3n−1
2

. Assume first n ≡ 1(mod 4). Then if ap = 3n−1
2

, we
take such a subgraph Lm

n−1 ∈ Lm
n−1 of G, that Gx being its completion in G is of

the form T r
0 . Then ||Gx|| = ap and we are done by Observation 11. Analogously, if

ap = 3n−1
2

+ 2, it is enough if Gx = T2T
r
0 . If finally ap = a′

p + a′′

p, where a′

p = 3n−1
2

and a′′

p > 4, we again take Gx = T r
0 as a realization of (a′

p). Then by Theorem 6
we find a realization of the remaining elements of τ (and a′′

p) in Lm
n−1 and since Gx

contains all the vertices of G, we easily glue together the closed trails of lengths a′

p

and a′′

p.

If now n ≡ 3(mod 4), then ap > 3n−1
2

+ 1, since ap is an even number. Notice
that if we take such a subgraph Lm

n−1 ∈ Lm
n−1 of G, that Gx being its completion in

G is of the form T3T
s
0 , then ||Gx|| = 3n−1

2
+ 1 and we prove that τ is G-realizable

the same way as in the previous paragraph.

Proof of Theorem 10. We verified the cases for n 6 11 using a computer program
we created, hence we assume n > 13 is an odd number. Let G = Ln or G = L′

n

and let τ = (a1, . . . , ap) be a nondecreasing even admissible sequence for G, hence
a1 6 a2 6 · · · 6 ap. In the first part of the proof we show that if τ consists
of sufficiently many small numbers, it is easy to construct a proper Gx by gluing
together short closed trails and then use Observation 11 to finish the proof (notice
that in all the subsequent cases, whenever G = L′

n, we use at most n − 3 loops, not
taking the possible one at vertex x into account, to create Gx). In the second part
we deal with the case when there exists a sufficiently big element in τ . Note first
that for G = Lm

n−1.Gx, a graph Gx consists of odd number of cells Ti (i ∈ {0, . . . , 5})
if n ≡ 3(mod 4) or of even number of Ti’s if n ≡ 1(mod 4).
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Case 1: ai1 , . . . , ail = 6 and 6l > 3
2
n − 9

2
. Then we take such a subgraph

Lm
n−1 ∈ Lm

n−1 of G, that its completion Gx in G is of the form T5T
r
0 if n ≡ 3(mod 4)

or T s
0 otherwise. Notice that r and s are even numbers. Therefore, we can easily

decompose Gx into closed trails of length 6, namely of the form T 2
0 (or T5) and since

||Gx|| 6 3 · n−1
2

+ 3 = 3
2
n + 3

2
, then there is enough aij ’s of length six to sum up to

the size of Gx, hence we are done by Observation 11.

Case 2: ai1 , . . . , ail = 10 and 10l > 5
2
n − 35

2
. Then we take Gx = T3T

2
0 T r

2 if
n ≡ 3(mod 4) or Gx = T1T

2
0 T1T

2
0 T s

2 otherwise, where Gx is a graph of order n.
Again r and s are even and we can easily decompose Gx into closed trails of length
10, namely of the form T 2

2 , T3T
2
0 or T1T

2
0 . Since ||Gx|| 6

5
2
n− 15

2
, we are, analogously

as above, done by Observation 11.

Case 3: ai1 , . . . , ail = 14 and 14l > 7
4
n − 21

4
. We conduct the same reasoning as

in the two above cases to find Gx of order n being easily decomposable into closed
trails of length 14. Since we need to use exactly n−1

2
Ti’s to construct Gx, therefore,

if n−1
2

≡ 0(mod 4) (hence n ≡ 1(mod 4)), then we construct Gx by gluing together
trails T2T

3
0 . If n−1

2
≡ 1(mod 4) (hence n ≡ 3(mod 4)), we take one trail T3T

2
2 , two

trails T 2
2 T1 and trails T2T

3
0 . If n−1

2
≡ 2(mod 4) (hence n ≡ 1(mod 4)), we take two

trails T 2
2 T1 and trails T2T

3
0 . Finally, if n−1

2
≡ 3(mod 4) (hence n ≡ 3(mod 4)), we

construct Gx from one trail T3T
2
2 and trails T2T

3
0 . It is easy to check that in all the

cases the completion of Gx in G is of the form Lm
n−1 ∈ Lm

n−1 for some even m and
by our construction ||Gx|| 6

7
4
n + 35

4
, hence the assumption made in this case is

sufficient to guarantee existing enough number of 14’s in τ to add up to the size of
Gx. Therefore we are done by Observation 11.

Case 4: aij ≡ 0(mod 4) for i = 1, . . . , l and ai1 + · · · + ail > 2n − 6 . Then
it is enough to take Gx = T3T

r
1 if n ≡ 3(mod 4) or Gx = T s

1 otherwise. Since Gx

consists of cells of size 4, we can easily cut it into closed trails of lengths divisible
by 4 and by our assumption there is enough aij ≡ 0(mod 4) to cover Gx. Therefore,
if there exists k 6 l such that ai1 + · · · + aik = 2n − 2 (= ||Gx||), then we are
done by Observation 11. If not, then there exists k < l and c, d > 0 such that
aik+1

= 4c+ 4d and ai1 + · · ·+aik + 4c = 2n−2 . In this case, we find a realization of
τ ′

1 = (ai1 , . . . , aik , 4c) in Gx. Moreover, similarly as in Observation 12, we can choose
this realization in such a way that a closed trail of length 4c contains any of the cells
of Gx, i.e. either T1 or T3. In other words, this closed trail may contain any of the
vertices of G. Therefore, if using Theorem 6 we find a realization of the remaining
elements of τ (and 4d) in Lm

n−1 being a completion of Gx in G, then we can glue
together the proper closed trails of lengths 4c and 4d forming a one of length aik+1

.
This way we receive a realization of τ in G.

Case 5: None of the above occurs. Let τ ′ = (b1, . . . , bq) be a nondecreasing
subsequence of τ consisting of all its elements bj such that bj ≡ 2(mod 4) and
bj > 10. Since the inequality

n(n + 1)

2
− 3 > (2n − 6) + (

3

2
n − 9

2
) + (

5

2
n − 35

2
) + (

7

4
n − 21

4
),
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where ||G|| >
n(n+1)

2
− 3, holds for each n, then, in view of the previous cases, at

least one of the elements of the nondecreasing sequence τ ′ is not smaller than 18,
hence bq > 18. Moreover, since the inequality

n(n + 1)

2
− 3 > (2n − 6) + (

3

2
n − 9

2
) +

5(n − 1)

2

holds for n > 9, then b1 + · · · + bq > 5(n−1)
2

.

Notice that since bq > 18, then τ is G-realizable by Observation 13 if n = 13.
Therefore, we assume from now on, that n > 15 and bq 6

3
2
n − 5

2
.

Now, we will again construct a proper subgraph Gx of G whose completion in
G will be of the form Lm

n−1 ∈ Lm
n−1 for some even m and use Observation 11 or 12

to finish the proof. Let for each j < q, l(j) denote the greatest number of cells Ti

(i = 0, 1, 2) which we have to use to construct a closed trail of length bj, but under
the condition that this trail consists of at least one loop. For instance, if bj = 10,
then we can construct a closed trail of this length in two ways, as T 2

2 and T1T
2
0 , hence

l(j) = 3, but we remember that there is also a closed trail of length 10 using one
less triangle, namely l(j) − 1 = 2 triangles. Analogously, T 2

2 T1 and T 2
1 T 2

0 are both
of length 14, but l(j) = 4 for bj = 14. For bj = 18 we have three representations
T 3

2 T0, T2T1T
3
0 , T 6

0 on different number of triangles, but only two first of them consist
of at least one loop, hence l(j) = 5 in this case. However, whenever bj > 22, we have
at least three representations consisting of at least one loop, in particular on l(j),
l(j) − 1 and l(j) − 2 triangles. For example l(j) = 7 for bj = 22, because T1T

6
0 is of

length 22, but T 2
2 T 4

0 and T 3
2 T1T0 are also closed trails of length 22. We will use ”the

widest” (consisting of maximal number of cells) of such closed trails to construct Gx

so as to be able, in a way, squeeze them later if necessary. The requirement of one
loop appearing in these closed trails is important in the case n ≡ 3(mod 4), when
there has to be a loop at vertex x in Gx. Moreover, we define l(q) to be the number
of Ti’s in a closed trail of length bq of the form T2T1T0Ti1T

r1

0 , where i1 ≡ bq(mod 3),
i1 ∈ {0, 1, 2} and r1 > 1, hence l(q) = r1 + 4. We use this representation because
it is the widest one containing T2T1T0 as an induced subgraph, see Observation 12.
Note also that l(q) > 5 and, since bq > bj for all j < q, then l(q) > l(j)− 1 for j < q.
Let now k < q be the smallest number for which

k∑

j=1

l(j) + l(q) >
n − 1

2
,

where n−1
2

is the number of triangles that we have to use to construct Gx (there

exists such k, since b1 + · · · + bq > 5(n−1)
2

).

Case 5.1: l(1)+· · ·+l(k) = n−1
2

(it is possible, since l(q) may be equal to l(k)−1).
Then we construct Gx by joining together closed trails of lengths bj, j = 1, . . . , k,
on l(j) triangles described above (in the case when n ≡ 3(mod 4), we use a slightly
different closed trail of length b1, namely we exchange either one T1 to T3 or one T2

to T4 in the described above representation). Since all bj are even, it is also obvious
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that the completion of Gx in G will have an even number of loops, hence we are done
by Observation 11.

Case 5.2: l(1) + · · · + l(k) + l(q) = n−1
2

. Then we are analogously done by
Observation 11.

Case 5.3 l(1) + · · · + l(k) + l(q) = n−1
2

+ 1. Then to construct Gx we may use

instead of the closed trail T2T1T0Ti1T
r1

0 of length bq, another one, namely T 3
2 Ti1T

r1−1
0 ,

also of length bq, but consisting of one less triangle. Hence, we are again done by
Observation 11.

Case 5.4: l(1) + · · · + l(k) + l(q) >
n−1

2
+ 2 and l(1) + · · · + l(k) 6

n−1
2

− 3.
Let R be such a number that l(1) + · · · + l(k) + R = n−1

2
, R > 3. If R = 3, then

we take b′q = 12, b′′q = bq − b′q > 6 and we construct Gx by joining described closed
trails of lengths bj, j = 1, . . . , k, on l(j) triangles and a closed trail T2T1T0 of length
12. This way a sequence τ ′′ = (b1, . . . , bk, b

′

q) is realizable in Gx and we are done by
Observation 12. If now R = 4 + r2 for some r2 > 0, then to construct Gx we take
the proper closed trails of lengths bj, j = 1, . . . , k, and a closed trail T2T1T0Ti2T

r2

0 ,
where i2 = i1 if r1 − r2 is an even number or i2 ∈ {0, 1} and |i2 − i1| = 1 otherwise.
Observe that since l(1) + · · ·+ l(k) + l(q) >

n−1
2

+ 2, we have r1 − r2 > 2. Therefore,
if we take b′q = ||T2T1T0Ti2T

r2

0 || and b′′q = bq − b′q, then b′′q is an even number greater
than four and a sequence τ ′′ = (b1, . . . , bk, b

′

q) is realizable in Gx, hence we are again
done by Observation 12.

Case 5.5: l(1) + · · · + l(k) + l(q) >
n−1

2
+ 2 and l(1) + · · · + l(k) = n−1

2
− 2.

Then instead of using a closed trail of length b1 on l(1) triangles to construct Gx,
we use another one, on l(1) − 1 triangles, also described above. This way we have
(l(1) − 1) + l(2) + · · · + l(k) = n−1

2
− 3 and (since l(q) > 5) (l(1) − 1) + l(2) + · · · +

l(k) + l(q) >
n−1

2
+ 2, hence we get back to the case 5.4.

Case 5.6: l(1) + · · · + l(k) + l(q) >
n−1

2
+ 2 and l(1) + · · · + l(k) = n−1

2
− 1. If

k > 2, then to construct Gx we can use instead of closed trails of lengths b1, b2 on
l(1), l(2) triangles, another ones, on l(1) − 1 and l(2) − 1 triangles. This way we
have (l(1) − 1) + (l(2) − 1) + l(3) + · · · + l(k) = n−1

2
− 3 and (l(1) − 1) + (l(2) −

1) + l(3) + · · · + l(k) + l(q) >
n−1

2
+ 2, hence we get back to the case 5.4. If on the

other hand k = 1 and b1 > 22, we can use instead of a closed trail of length b1 on
l(1) triangles, another one, on l(1) − 2 triangles to construct Gx. This way we have
(l(1) − 2) = n−1

2
− 3 and (l(1) − 2) + l(q) >

n−1
2

+ 2, hence we again get back to the
case 5.4. To finish the proof, notice that it is not possible that k = 1 and b1 6 18,
because then we would have l(1) 6 5 and consequently n 6 13.

5 Final results and remarks

Here we sum up our results in two theorems second of which is a direct consequence
of the first one.
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Theorem 14 Let τ = (a1, . . . , ap) be a sequence of positive even integers greater
than two. Then we can edge-disjointly pack closed trails of lengths a1, . . . , ap into
Mr, whenever

∑p

i=1 ai 6 ||Lr||, except for the case τ = (4, 4) and r = 4.

Proof. Let n =
∑p

i=1 ai. Since n 6 ||Lr||, then by Theorem 5 or 10 we may
find a realization of τ in Lr or L′

r if n ∈ {||L′

r||, ||Lr||} or a realization of τ ′ =
(a1, . . . , ap, ||Lr|| − n) in Lr otherwise. This way, since Lr and L′

r are subgraphs of
Mr, we receive the desired packing.

Theorem 15 Let G = Ca1
∪ · · · ∪ Cap

be a simple 2-regular graph of order n =
∑p

i=1 ai, where a1, ..., ap are even numbers. Then c(G) = ⌈
√

2n⌉−1 if r2

2
< n 6

(
r+1
2

)

for some odd r and c(G) = ⌈
√

2n⌉ in all other cases with one exception c(C4∪C4) = 5.

Proof. Since Lr is a maximal, in terms of size, Eulerian subgraph of Mr with even
number of edges, it is obvious, we cannot pack closed trails of lengths a1, . . . , ap in
Mr if n > ||Lr||. Therefore, by Theorem 14, we have c(G) = r (c(C4 ∪ C4) = 5),
where r is the smallest number such that n 6 ||Lr||. The solution of this problem
yields the described result.

The problem remains still open if we admit odd cycles as components of 2-regular
graphs. The main obstacle here is the fact that closed trails of length three cannot
contain loops. On the other hand, we may assume, while looking for a realization of
some τ in Ln, that in τ there is enough ai’s of proper lengths to cover all the loops
of Ln. Observe however, that even though the sequence τ = (3, 3, 6, 6) comply with
this condition for L6 (each closed trail of length 6 may contain 3 loops), there exists
no L6-realization of τ .

Another problem is the technique of decomposing graphs we used, basing on The-
orem 4 for bipartite graphs, in which only closed trails of even lengths exist. However,
using a slightly different approach to the subject of packing, together with some ad-
ditional condition for closed trails of length three, should result in determining the
irregular coloring number for all 2-regular graphs, but it is still to come.
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