A MATCHING ALGORITHM WITH
APPLICATION TO BUS OPERATIONS

M.A. ForBEgs, J.N. Hovt, P.J. KiLBY AND A.M. WATTS

Department of Mathematics, University of Queensland, Australia

ApsTRACT. The problem of constructing shifts of work for busdrivers from given
workblocks is shown to be a minimum cost matching problem. A branch and bound
algorithm for this problem is derived which, while not having the gnaranteed poly-
nomial time complexity of the well known efficient labelling methods , is shown in
extensive computational lesting lo be (1) extremely fast on the class of problem where
the costs do not satisfy the triangle inequality, and (2) very easy to implement.

Keywords: Matching, Branch and Bound, Bus driver scheduling

1. Constructing Busdriver Shifts. Large mass transit bus operations in met-
ropolitan areas involve many hundreds of bus driver shifts (or duties) daily. For
example, the Brisbane City Council operates approximately 220 shifts at each of
3 depots. The (inal stage in the construction of these shifts at the Brisbane City
Council currently involves combining two pieces of work or workblocks which are
designed in advance to {it either side of a mealbreak in accordance with the indus-
trial award under which drivers are employed. Associated with each workblock is a
starting and ending lime and a starting and ending location. The method . of con-
struction of the pieces of work is irrelevant to the present paper, but is an important

topic in its own right and is the subject of considerable current work.

Australasian Journal of Combinatorics 4(1991), pp 71-85

The objective facing the scheduler is to combine the workblocks in such a way as
to minimize the total cost. To this end, it is possible to compute the number of
“pay minutes” associated with all feasible pairings of workblocks. This computation

takes account of waiting time, meal breaks and total spread.

Because the workblocks overlap in time throughout the day, it is not possible simply
to divide them into two sets and assign a member of each set to a member of the
other. Inthe next section, we define the perfect matching problem and show how the
shift construction problem is an instance of it. In section 3 we review the existing
algorithms for this problem. Section 4 introduces the algorithm we have used to
solve the Brisbane City Council’s problem, and finally we give some computational

experience with the algorithm in section 5.

2. Formulation of the matching problem. A formal statement of the minimum
cost perfect matching problem (MF) is as follows. Civen an undirected graph
G = (V,E), where |V] is even, a perfect matching M is a subset of edges of G
such that every node 7 € V is incident to exactly one edge in M. If a cost ¢;j is
associated with each edge (i,7) € E, then MP is to find a perfect matching for

which the sum of the costs associated with the edges in M is minimized.

In the context of the busdriver shift construction problem, the set of nodes V is
the set of workblocks, and the edges E define the feasible connections between
workblocks which may be used to define a day’s work. Infeasible connections are
caused for example by insufficient time to fit a mealbreak, by the total duration
of the shift exceeding some maximum value or by the gap between the workblocks
exceeding some limit. In addition, there is overlap in time between many pairs of
workblocks, and for other pairs there is insufficient time to travel from the endpoint
of one block to the starting point of the other. The costs on the edges are the

number of pay minutes associated with the resulting shift.

72

We can formulate the problem as an integer programming problem in the following
way. Let V = {1,...,n} where nis even. For each (1,7)eE, define ¢j; = c;;. For all
(z,7) ¢ E, define cj; = ¢;; = co. This completes a symmetric cost matrix. Then we
have

n

MP minimize Z Cij T3 (1)

ij=1

subject to

Z(L‘ij:‘:l, i:l,,,..,n (2)
j=1

z;; = 0or 1, 1<1,7 <mn,) (3)

i = Tii, 11,5 <n (4)

This formulation is the same as that of the well-known assignment problem (AP),
except that the cost matrix is symmetric and the solution is required to be sym-
metric. Eqns (2) are the usual origin availability constraints, and substituling Eqns
(4) into them gives the destination requirements constraints of the AP. The differ-
ences {rom the AP are such that the convex sel of feasible solutions to the problem
obtained by relaxing Equs (3) to z;; > 0 does not in general have integer valued
extreme points, so that the simplex method cannot be used to solve MP. In [5], it
is shown how to introduce cut-inequalities to produce the desired properties il the

integrality is dropped.

3. Review of Algorithms for matching problems. The non-bipartite min-
imum cost perfect matching problem is one of a number of combinatorial opti-
mization problems for which polynomial time algorithms are known. The idea of
blossoms, as developed first by Edmonds [5], was used by Lawler [8] to develop an
algorithm which can be implemented in computer time of order n?, where n is the
total number of objects Lo be matched. Derigs’ [2] shortest augmenting path method

is a further extension of these ideas leading to an algorithm which is also of order

73

n”. Derigs and Metz [3] have described how an optimal fractional matching can be
used to start the shortest augmenting path method for the matching problem and
thereby dramatically reduce the amount of computer time required. These meth-
ods are also referred to as efficient labelling methods. In addition, Grotschel and
Holland {7] introduced a cutting plane algorithm based on the simplex algorithm

which is competitive with the best of the eflicient labelling algorithms.

The implementation of the algorithms mentioned above is far from trivial. It is
worthwhile, in view of this, to investigate the practical performance of other algo-
rithms which may not have the theoretical computational bounds but which are
signilicantly easier to implement. In the next section, we present a Branch and
Bound method which is shown in extensive nuinerical tests to be highly effective
for the class of matching problem we are considering. It is not the first Branch and
Bound algorithm for this problem. Devine and Glover [4] presented a somewhat

differert branch and bound algorithin.

The method we propose is similar to that of [3] in that the relaxation step of
the Branch and Bound approach uses the related assignment problem to obtain a
partial matching and hence a lower bound on the solution of the current candidate
malching problem. The branching process removes the odd cycles which may occur

in the solution of the assignment problem.

While there are no performance guarantees [or this method, it is found in the
numerical experiments reported later that the matching problem can generally be
solved in a time only slightly greater than that needed for the assignment problem

resulling from the initial relaxation. Furthermore, the method is easy to implement.

4. The new branch and bound algorithm. The Branch and Bound approach

to be described uses an AP relaxation of M P. In order to describe the steps in this

7

approach, it is necessary first to review the main features of the algorithin we use
to solve the AP, which js the method of Engquist [6].

4.1 Assignment Algorithm.

As usual for the assignment problem, use is made of the reduced costs ct;. These
are obtained by row and column operations on the original matrix of costs ¢;;. That

is, for some set of values u;, v;, the reduced costs are given by

f
Cij = Cij — Ui — Uj.

It is. well known that an assigninent which is optimal with respect to the reduced
costs is also optunal with respect to the original costs. Hence, if the reduced costs
are non-negative and the assigninent has a zero value with respect to them, then it
is an optimal assignment for the original problem. The assignment problem is thus

solved if values ui,v;,¢;; can be found such that

The Engquist algorithun is an iterative one. Al the end of each iteration there is
a mapping ¢ +— A;, 1 < 1 < n osuch that if 7 = 4; then c;j = 0. In terms of the

reduced costs, the mapping has a zero cost.

The node j is said to be deficient if there'is no ¢ such that j = 4;. If there is more

than one such 4, then j is said to be abundant. During each iteration, the mapping

75

A; is changed using an associaled shortest path network as described by Engquist
so that the number of deficient nodes and the abundance of one of the abundant
nodes each decreases by one and the reduced costs are adjusted so that the new
mapping has zero cost. The solution of the assignment problem is complete when
there are no deficient nodes and is given by:

{1 iy = A
Ti; =

0 otherwise.

4.2. Branch and Bound. The iugredients of a general Branch and Bound method
for an integer programming problem are oullined by Parker and Rardin [9]. Balas
and Toth [1] present a compreliensive account of Branch and Bound for the Travel-
ling Salesman Problem, which also includes AP relaxations. The terminology used

here is standard for Branch and Bound.

Our algorithm for M P begins with M P itself on the candidate list. It is selected,
and the AP relaxation obtained by omilting Eqns (4) is then solved by the Engquist
algorithm. If the solution of this relaxed problem is symmetric, i.e. if the final
mapping satisfies the condition j = A4; == i = A; so that z;; = zj; for all 4 and j,

then the optimal solution to M P has been obtained.

In the case where the solution is not symmetric, there are cycles defined by the
mapping. Let 1721,m2,...,1,11 be a sequence such that n;y; = 4,, and n,q; = ny.
If p is even, this is an even cycle, and in that case the assignment solution is not

unique. For nodes in any such even cycle, the assignment can be replaced by
Ny = Anyi 4y Ngio1 = Angiy 1 <1< p/2,

with no change in the objective funchion, so that the assignments involving these

nodes are symmetric.

76

In the case where there js an odd cycle, i.e. where pis odd, it is necessary to break
the cycle and it is here that the branching process is used. For any odd cycle, it is
clear that a matching between any two adjacent nodes in the cycle either occurs or
does not occur in a feasible solution to M P. The branching step involves selecting
such a pair of nodes and generating two new candidate matching problems. In the
first of these the pair is matched, and in the second the pair is {orced not to be

matched. n; and n, are chosen from the shortest odd cycle.

The subproblems are bounded iminediately they are generated, using one iteration
of the Engquist algorithm as described below. This is a major advantage in using

the Engquist algorithin over other assignment methods.

To consider the matching problem in which n; and ny are not matched, the condition
Tryn, = Tnyn, = 0 is imposed, which is equivalent to setting ¢,,,,, = oco. Now
consider the optimal solution to the AP relaxation of the parent problem. This
gives a lower bound on the optimal solution for the subproblem, but this bound can
be tightened as follows. Let k be the node with the minimum reduced cost from
ny, ke, ¢, 4 = minj ¢, ;. Then set A, = k and increase Un, 50 that the reduced
cost ¢}, , is zero. The node ny is then deficient and k is abundant. One iteration of
Engquist is therefore needed to recompute the solution of the assignment relaxation
k

for this subproblem. The new lower bound is equal to that of the parent plus ¢

plus the increase in objective computed by Engquist.

For the matching problem in which ny and ny are matched, these two nodes are
removed from V. Counsidering again the optimal mapping for the parent’s AP but
with these nodes and their connections removed, node nsy then becomes deficient
since there is no longer any mapping to it, and the mapping from n,_; must be

diverted from ny to a suilable node k remaining in the set. k is chosen by the

77

condition

T

. I
Cpy_ k= Iin ¢

. npo1]
jEmng P

and the replacement mapping is given by
Ang_y =

Again, k is abundant and one iteration of the Engquist algorithm is required to
solve the relaxed subproblem. A new bound for the subproblem is obtained in a

sirmilar manner to that described above for the other subproblem.

Once the subproblems are bounded (or solved if their relaxation produces a feasible
malching), they can be fathomed in the usual manner by comparing their bounds
with the value of an incuinbent best known matching solution. If a problem has a
bound smaller than the incumbent, it is placed on the candidate list according to
its bound. If a solved candidate problem has a better solution than the incumbent
it becomes the incumbent. The candidate list can then be purged of problems with
bounds worse than the new incumbent. The selection from the candidate list is
carried out according to best bound. The solution is complete when the candidate

list is empty.

The process oullined develops a binary tree of candidate problems, each with certain

sets of matchings included and excluded.

5. Computational Results. The algorithm discussed in the previous section was
implemented in FORTRAN and tested on a PYRAMID 9810 computer. Test prob-
lems were generated with a view to investigating the computational performance of
the method as a function of three key problem characteristics. These are the size
of the matching problem, the density of feasible arcs and the range of costs on the

arcs.

78

Problems with the number of nodes (n) in the range 100 to 500 were considered. For
each choice of n, five approsimate arc densities were selected, rauging from 20% to
100%. Twenty random problems were generated for each pair of the two parameters,
and for each of the cost ranges 1 ~ 100, 1 ~ 1000 and 1 - 10000. The costs on the
arcs in each problem were selected randomly from a uniform distribution over the

appropriate range.

Tables 1 to b present the results of the tests. The numbers shown in the Tables are

the average over the 20 problems considered for each set of three parameters.

The first thing to notice about the results is that the cpu times required to solve
the problems are very small, making the method attractive even for large problems.
Furthermore, the times to complete the matching solutions (Table 5) are generally
small fractions of those needed to solve the initial AP relaxation (Table 3). There
are two exceptions to this in Table 5. In group (a) of that table, there are two average
times, 17.97 and 11.94 which are larger than the times for the initial relaxations.
Each of these was caused by a single cutlier problem which required a large aumber
of extra Engquisi iterations in the Branch and Bound (Table 2). For example, the
17.97 figure resulled because one of the problems required 662 iterations to move
the objective function value from 51 for the assignment to 52. This implies that
many alternative assignments existed with the same value of the objective function.
It is interesting to note that no such cases were encountered in group (b) or group
(c) of the resulls, where the spread of arc costs is greater. In any case, the compuler

times for these outlier problems are quite acceptable.

It is of interest to investigate the cpu time spent in branch and bound to complete
the matching as a fraction of the total cpu titue to solve the problems. A comparison
can be made here with the results reported by Derigs and Mets(3] who also perform

computational tests on randomly generated problems.

79

The fully dense problems considered by Derigs and Metz cover the same cost dis-
tributions and numbers of nodes as in Tables 1 to 5. Their average [raction of cpu
time Lo complete the matching to total cpu time including assignment startup is
0.376 using their best startup procedure ASSIGN-2, with a minimum of 0.071 and
a maximum of 0.846. The corresponding average {raction for the present method is
0.162 with a munimuin of 0.08 and a maximum of 0.233 from the data in Tables 3
aund 5 for the 100% dense case. 1t should be noted however, that neither of the two
outliers mentioned earlier occur in this case. Tor the 80% dense case, which does
include an outlier; the figures are :- average 0.212, minimum 0.094 and moaximum
0.781. It is clear that, on this sample, the present method is performing better with
respect to the ratio measure on the dense problems.

When considering sparse problems, Derigs and Metz observed a reduction in the
[raction, using ASSIGN-1 startup. For example, for 200 node problems with 25% arc
density, they observed an average of 0.055, taken over the three cost distributions.
The average fraction for the present work, for 20% arc density and 200 nodes, is
0.17. In general , a reduction in the fraction with increased problem size or reduced
arc density is not observed for the present method. It remains approximately the

saie over all the problems considered.

Table 1 shows the interesting result thal for large, dense problems, the number of
Engquist iterations for the initial AP relaxation decreases significantly as the cost
range is increased. This implies that there is less degeneracy as the spread of costs
increases. On the other hand, the average number of matchings obtained from the

initial relaxation (Table 4), is not dependeunt on density or on cost range.

The ratio of the number of extra iterations to the number of initial iterations from
Tables 2 and 1 respectively is less than the ratio of cpu times from Tables 5 and

3 respectively. This is because the exira Engquist iterations in the Branch and

80

Bound are all hard. By this, we mean that there is only one abundant and one
deficient hode, and so long paths through the shortest path network will possibly
be required. In the initial stage, there are in general several abundant nodes , some

of which will have short paths to the deficient node.

It should be noted that the problems considered here are not Euclidian. The algo-
rithm presented would not be expected to perform as well on problems for which
the arc costs satisfied the triangle inequality. The same comments apply to the
blossom algorithms. The numerical testing of earlier codes is based on randomly
generated problems as described here. There appears to be no comparison between

performance on the two types of problem, and this could be an area for future work.

6. Practical application. The algorithm as presented here has been used success-
fully in the practical application involving matching blocks of work for bus drivers
for the Brisbane City Council 'i‘r(anspurt Department. It is only applied when doing
major reschedules which necessitale a new roster. Minor changes occur over the
duration of the roster. Trips are added or deleted in response to new peak pas-
senger demand, new routes are implemented, old routes rationalized or titmetables
changed. Over the life of the roster, the effective savings due to the system therefore
decline.

With three bus depots, each with around 220 shifts, the use of the program
has produced savings estimated by Council officers to be in the order of $250,000
annually over the last four years. This figure has been calculated using the average
saving as half the initial saving for the reasons stated above.

In the actual implementation the oplimization code has been combined with
code developed by the Council to compute the cost matrix taking into account the
pay rates, industrial award constraints etc., and to output the optimal matching to

other software systeins.

81

Table 1: The average number of Engqust iterations to solve the initial AP relax-
ations. Costs uniformly distributed in the ranges (a) 1 - 100; (b) 1 - 1000; (¢) 1 -
10000

Arc Density
n 20% 40% 60% 80% 100%
100 37.40 37.80 37.50 3740 4150
200 71.35 76.35 77.80 79.00 105.50
(a) 300 11270 117.35 123.656 132,50 183.35
400 147.40 162,05 17645 19125 267.45
500 190.30 210.10 236.10 263.05 356.65

100 37.30 36.75 35.50 36.50 36.05
200 74.70 72.85 74.65 72.65 74.05
(b)y 300 11025 111.25 11205 10975 112.35
400 146.10 15045 14630 147.45 148.25
500 183.10 183.60 18440 186.85 189.55

100 36.25 36.45 35.10 36.50 36.10
200 72.85 73.85 7410 74.45 75.10
(c) 300 10985 11035 11045 11130 110.65
400 14405 14790 149.85 148.10 148.25
500 180.15 184.85 18275 183.U5 183.80

Table 2. The average number of extra Bngqnist iterations needed in the Branch

and Bound . (a) 1 = 100, (b) L - 1000; (c) 1 ~ 10000.

Arc Deunsity
n 20% 407% 60% 80% 100%
100 1.10 1.30 2.10 110 2.10
200 0.90 1.60 3.90 2.70 3.70
(a) 300 1.60 240 4.80 38.20 4.20
400 3.70 4.50 540 3.70 4.00
500 5.10 17.30 4.80 5.60 4.00

100 070 240 150 110 150
200 220 130 180 180 . 0.80
(b) 300 160 120 140 190 2.50
400 170 290 190 140 130
500 140 230 250 230 2.40

100 1.00 1.60 1.60 1.80 0.90
200 1.70 2,00 0.70 L.20 1.80
(¢) 300 10 250 220 280 230
400 1.50 240 320 330 1.80
500 2.70 210 3.20 2.20 2.00

- 82

Table 3: The average number of cpu seconds to solve the initial AP relaxatious.
Costs uniformly distributed in the ranges (a) 1 — 100; (b) 1 - 1000; (c¢) 1 - 10000.

Arc Density
n 20% 40% 60% 80% 100%
100 0.17 0.26 0.38 0.40 0.49
200 0.73 1.13 1.50 2.06 2.44
(a) 300 181 278 362 504 650
400 3.26 5.21 7.32 9.92 1237
500 4.87 8.73 1265 1575 21.87

100 0.17 0.25 0.38 0.45 0.52
200 0.80 1.24 1.74 2.02 2.40
(b) 300 1.93 3.1l 4.25 4.93 5.68
400 3.74 6.05 7.64 1027 10.32
500 6.08 1035 13.09 1472 1751

100 0.6 026 036 047 055
2000 077 130 165 219 270
(c) 300 202 325 448 599 657
400 352 697 863 1035 1243
500 6.22 10.08 14.44 17.77 2118

Table 4: The average number of matchings in the solutions of the initial AP
relaxations. Costs uniformly distributed in the ranges (a) 1 - 100; (b) 1 — 1000; (<)
1 - 10000

Arc Density
n 20% 40% 60% 80% 100%
100 49.5 495 494 49.6 49.5
200 99.6 99.6 99.4 99.3 99.1
(a) 300 1495 1493 1494 148.9 148.9
400 199.1 199.2 199.3 199.0 199.2
500 249.3 2493 2489 248.9 249.0

100 497 495 495 495 495
200 993 997 995 995 99.7
(b) 300 1495 1495 1495 1495 1493
400 1995 1994 1995 1996 199.6
500 249.6 2493 2495 2493 2493

100 49.6 49.5 49.5 49.5 49.6
200 99.3 99.4 v9.7 99.5 99.4
(c) 300 1493 1493 1494 1493 1494
400 199.6 1994 199.3 199.3 199.5
500 2493 2494 2490 249.3 249.3

83

(b)

20%
0.03
010
.32
1.29
2.25

0.63
0.23
0.32
0.5¢
0.74

0.03
0.16
0.35
.51
1.34

40%
0.05
0.23
0.71
1.89
11.94

.10
0.18
.36
149
1 .86

0.07
0.29
0.72
1.26
1.66

60%
.12
0.65
1.62
2.85
3.48

.09
.34
0.53
1.27
2.68

0.09
0.14
0.88
2.01
3.41

Arc Density

20%
.08
(.59
17.97
2.33

4.54

.07
.38
0.82
1.20
2.19

0.11
0.27
1.38
2.81
2.76

34

100%
U.14
0.74
1.84
2.61
4.25

012
U.21
L4t
1.40
3.26

0.07
0.47
1.27
1.80
3.06

The authors would like to thank the Transport Department of The Brisbane City
Council for their support in bringing this work to fruition. :

References

[l] E. Balas and P. Toth, Branch and bound methods in The traveling sales-
man problem, A guided tour of combinatorial optimization, Eds E.L. Lawler, J.K.
Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, John Wiley & Sons, (1985) 361~
401.

[2] U. Derigs, A shortest path method for solving minimal perfect matching prob-
lems, Networks, 11, {(1981) 379-390.

[3] U. Derigs and A. Metz, On the use of optimal fractional matchings for solving
the (integer) matching problem, Compuling, 36, (1986) 263-270.

[4] M. D. Devine and . Glover, Computational study of the synimetric assigniuent
problem, presented at the 41st National ORSA Meeting, New Orleans, 1972.

[5] J. Edmonds, Maximum matching and a polyhedron with 0.1 vertices, J. Res.
Natl. Bur. Stand., 69B, (1965) 125-130.

[6] M. Engquist, A successive shortest path algorithin for the assignment problem,

INFOR, 20, (1982) 370-384.

(7] M. Grétchel and O. Holland, Solving matching problems with Linear program-
wing , Mathemalical Programming, 33, (1985) 243-259.

{8] E. L. Lawler, Combinatorial Optimnization: Networks and Matroids, Holt, Rine-
hart and Winstou, New York, (1976).

[9] R. G. Parker and R. L. Rardin, Discrete Optimization, Academic Press, San
Diego, (1988).

85

