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ABSTRACT. The problem of const.ructing shifts of work for busdrivers from given 
workblocks is shown to be a minimum cost matching problem. A branch and bound 
algorithm for this problem is derived which, while not having the guaranteed poly
nomial time complexity of the well known efficient labelling methods, is shown in 
extensive compu lational testing to be (1) extremely fast OIl the class of problem where 
the costs do not satisfy the triangle inequality, and (2) very easy to implement. 

Keywords: Matching, Branch and Bound, Bus driver scheduling 

1. Constructing Dusdriver Shifts. Large mass transit bus operations in met-

ropolitan areas iIlvolve many hundreds of bus driver shifts (or duties) daily. Fur 

example, the Brisbane City Council operates approximately 220 shifts at each of 

3 depots. The final stage in the construction of these shifts at the Brisbane City 

Council currently involves combining two pieces of work or workblocks which are 

designed in advance to fit either sille of a mealbreak in accordance with the indus-

trial award under which drivers are employed. Associated with each workblock is a 

starting and ending time and a starting and eUlling location. The method of C011-

struction of the pieces of work is irrelevant tothe present paper 1 but is an important 

topic iu its own right and is the subject of considerable current work. 
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The objective facing the scheduler is to combine the workblocks in such a way as 

to minimize the total cost. To this end, it is possible to compute the number of 

«pay minutes" associated with all feasible pairings of workblocks. This computation 

takes account of waiting time, meal breaks and total spread. 

Because the work blocks overlap in time throughout the day, it is not possible simply 

to divide them into two sets and assign a member of each set to a member of the 

other. In the next section, we define the perfect matching problem and show how the 

shift construction problem is an instance of it. In section 3 we review the existing 

algorithms for this problem. Section 4 introduces the algorithm we have used to 

solve the Brisbane City Council's problem, and finally we give some computational 

experience with the algorithm in section 5. 

2. Formulation of the matching problem. A formal statement of the minimum 

cost perfect matching problem (AlP) is as follows. Given an undirected graph 

G (V, E), wbere I"; I is even, a perfect matching AI is a subset of edges of G 

such that every node i E V is incident to exactly one edge in ]vI. If a cost Cij is 

associated with each edge (i,.n E E, then AlP is to find a perfect matching for 

which the sum of the costs associated with the edges in lJl is minimized. 

In the context of the bus(lriver shift construction problem, the set of nodes V is 

the set of workblocks, and the edges E define the feasible connections between 

workblocks which may be used to define a day's work. Infeasible connections are 

caused for eXalnple by insufficient time to fit a rnea.lbreak, by the total duration 

uf the shift exceedil1g sume maxirnUHl value or by the gap between the workblocks 

exceeding some limit. In additiun, there is overlap ill time between many pairs of 

workblocks, and for other pairs there is insufficient time to travel from the endpoint 

of one block to the sta.rting point of the other. The costs on the edges are the 

number of pay rn.inutes associated with the resulting shift. 
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We can formulate the problem IH<:)I:!;JrarnnIlIII,l!; problem in the following 

way. Let V {l, ... ,11,} where 11, is 

(i, j) define Cji Cij 00. This ~V.LUI.H"""'-." 

have 

!vIP. nllIlllnlZe 

subject to 

Xij 1, 

-. 0 1, 

Xji, < 't, 

1, .. ,11, 

't, 11" 

rt. 

, define Cji 

cost matrix. 

For all 

we 

(1) 

(2) 

(:3) 

(it) 

This formulation is the same 

except that the cost matrix 

Umt the well-known a.i:>'C>ll".lLU.ILln n.rr .. hl"rY1 (Ap), 

I'Ivnl1rnf'·i:rl. and the solution to be SYU1-

metric. (2) are the usual origin 

(4) into them the destination 

constraints, and substituting Eqns 

'J'I'UI.,.~J'H .. J'1C'" constraints of the AI'. The differ-

ences from the AI-' are such that the convex set of feasible solutions to the problem 

obtained by 1"'pl"v1In .... Equs to Xij o does nnt. in have valued 

extrelne so that the simpJex method cannot be used to solve All'. In [5], it 

is shown how to introduce cut-inequalities to 

iutegrality is dropped. 

3. Review of Algoritlnns for matching 

imnm cost perfect problelTl one of 

the desired properties if the 

The non-bipartite mm

number of combinatoria.l opti

mization problems for which polynomial time al~;\!1,"11HJ'" are known. The idea of 

used by Lawler [8J to develop an blossoms, as developed first by Edmonds [5], 

algorithm which ca.n be implemented in computer time of order n 3 , where n is the 

tot.al number of to he matched. Derigs' [2] shortest augmenting pa.th method 

IS a further extension of these ideas leading to an algorithm which is also of order 
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n:1. and Metz [3J have described how an optimal fradional matching can be 

used to start the shortest augmenting path method for the matching problem and 

thereby dramatically reduce the amount of computer time required. These meth

ods are also referred to as efficient labelling methods. In addition, Grotschel and 

Holland [7J introduced a cutting plane algorithm based on the simplex algorithm 

which is competitive with the best of the eHicient labelling algorithms. 

The implementation of the algorithms mentioned above is far from trivial. It is 

worthwhile, in view of this, to investigate the practical performance of other algo

rithms which may not have the theoretical computational bounds but which are 

signiIlcantly easier to implement. III the IH~xt section, we present a Branch and 

Bound method which is shown ill extensive numerical tests to be highly effective 

for the class of matching problem we are considering. It is not the first Branch and 

Bound algorithm for this problem. Devine and Glover [4J presented a somewhat 

differed branch and bound algorithm. 

The method we propose is similar to that of [3J in that the relaxation step of 

the Branch and Bound approach uses the related assignment problem to obtain a 

partial matching and hence a lower bound 011 the solution of the current candidate 

matching problem. The branching process removes the odd cycles which may occur 

ill tbe solution of the assignment problem. 

While there are no performance guarantees for this method, it is found in the 

numerical experiments reported later that the matching problem can generally be 

solved in a time only slightly greater than that needed for the assignment problem 

resulting from the initial relaxation. Furthermore, the method is easy to implement. 

4. The new bra.Heh and bounu algorithm. The Branch and Bound approach 

be described uses an AP relaxation of AIP. In order to describe the steps in this 
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it is uece:~::;c.ry first to review the main features of the algorithm we use 

to the AP, which is the method of LJU.j;'lilUi,," [6J. 

4.1 AS;Slll1;n!rnl('~Ht Algorithm. 

As usual for the assignment proulem, use is made of the reduced costs C~j' These 

are outained by row ami column nn.pr"I.""·",, on the U."","UHA.'. matrix of costs Cij. Thai 

is, for sume set of values Ui, 'Uj, the reduced costs are given 

It is well known that an assignment which is optimal with respect to the reduced 

costs is also optimal with respect to the original costs. if the reduced costs 

are nO'Il-nel!a,tnre and the assignment has a zero value with respect t.o them, then it 

is an optimal aSi31~nn1ellt for the problem. The assignment problem is thus 

solved if values lJ.i, Vj, can be fuund such that 

0, 

Xij 0 or 1, 

Xij 1, 
j=l 

Xij 1, 
i=l 

i,j::::.l 

The Engquist algorithm is an iterative one, At the end of each iteration there is 

i ~ n such that if ,j Ai then C~j = O. In terms of the 

reduced costs, the mapping has a zero cost. 

The node j is said to be deficient if there is no i such that J Ai, If there is more 

than one such i, then j is said to be abundant. During each iteration, the mapping 
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Ai is changed using an associated shortest path network as described by Engquist 

so that the number of deficient nodes and the abundance of one of the abundant 

nodes each decreases by one and the reduced costs are adjusted so that the new 

mapping has zero cost. The solution of the '.'hHn"U'-'--'-,"" problem is complete when 

there are no deficient nodes and is given by: 

if j Ai 

otherwise. 

4.2. Branch amI Bounu. The ingredients of a general Branch and Bound method 

for an integer programming problclYl are outlined by Parker and Rardin [9J. Balas 

and Toth [1 J present a comprehensive account of Branch and Bound for the Travel

ling Salesman Problem, which also includes AP relaxations. The terminology used 

here is standard for Branch and Bound. 

Our algorithm for AlP begins with 111 P itself on the candidate list. It is selected, 

and the AP relaxation obtained by omitting Eqns (4) is then solved by the Engquist 

algorithm. If the solution of this relaxed problem is symmetric, i.e. if Lhe final 

mapping satisfies the condition j Ai ==? i Aj so that Xij = x ji for all i and j, 

then the optimal solution to 11,[ P has heen obtained. 

III the case where the solution is not symmetric, there are cycles defined by the 

mapping. Let nl, n2, ... ,np-I-l be a sequence such that ni+ 1 = Ani and np+ 1 = n1. 

If p is even, this is an even cycle, and ill that case the assignment solution is not 

unique. For nodes in any such even cycle, the assignment can be repla.ced by 

1 :::; i :::; p/2, 

with 110 change ill tbe ohjective [undioll, so tha.1, the assignments involving these 

nodes a.re 
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In the where there is an odd where p it break 

the and it here that the Dnuu:llll1ll: process is used. For any odd it is 

clear that a ml'ttc:tl1ng between any two ~".~, .. ~ .. ~ nodes in the either occurs or 

does not occur in a feasible solution to AI P. The branching step involves selecting 

such a pair of nodes and two new candidate matching In the 

first of these the 1S and in the second the is forced noL to be 

matched. n1 and n2 chosen from the shortest odd 

The subproblems are bounded immediately they are one iteration 

of the algorithm as described helow. This a inajor advantage in using 

the ,',"""'11'''' algorithm over other (.L'hHhUH~'-~LC methods. 

To consider the matching problem in which 11.,1 and 11.,2 are not matched, the condition 

X nl1t2 x n1n1 0 is imposed, which is equivalent to Now 

consider the optimal solution to the AP relaxation of the parent problem. This 

gives a lower bound on the optimal solution for the subproblem, but this bound can 

be Ug;hten.ed as follows. Let k be the Hade with the minimum reduced cost from 

11,1, i.e. k and increase 1Lnl that the reduced 

cost C~Llk is zero. The node 11,2 is then deficient and k is abundant. One iteration of 

Engquist is therefore needed to recompute the solution of the a.ssignment rela.xation 

for this subproblem. The new lower bound is equal to that of the parent plus c~'Jk 

plus the increase ill objective computed by ......,"'J",.I'''<.JU 

For the problem in which n1 allcin2 are matched, these two nodes are 

removed from F Considering again the optimal mapping for the parent's AP ,bui 

with these nodes and their connections TP1'nr""",rI node 11.3 then becomes deficient 

since there is no longer a.ny mappin.g to it, and the mapping from 11.p --l must be 

diverted from 11.1 to a suitable node k rema.iuing in the set. k is chosen by the 
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condition 

nun 
j#n[,n2 

and the replacement mapping is given by 

Again, k is abundant and one iteration of the Engquist algorithm is required to 

solve the relaxed subproblem. A new bound for the subproblem is obtained in a 

similar manner to that described above for the other subproblel1l. 

Once the subproblcHls are bounded (clr solved if their relaxation produces a feasible 

matching), they can be fathomed ill the usual manner by comparing their bounds 

with the value of an incumbent best known matching solution. If a problem has a 

bound smaller than the incmubellt, it is placed on the candidate list according to 

its bound. If a solved candidate problem has a better solution than the incumbent 

it becomes the incumbent. The candidate list can then be purged of problems with 

bounds worse than the new incumbent. The selection from the candidate list is 

carried out according to best bound. The solution is complete when the candidate 

list is empty. 

The process outlined develups a binary tree of candidate problems, each with certain 

sets of matchings included and excluded. 

5. Computational Results. The aJguritlun discussed in the previous section was 

implemented in FORTRAN and tested on a PYRAMID 9810 computer. Test prob-

lems were generateu with a. view to investigating the computational performance of 

the methou as a function of three key problem characteristics. These a.re the size 

of the ma.tching problem, the density of feasible arcs anu the range of costs on the 

arcs. 
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the ,n""r.,"",, 

eX(=e~)H(JI1~ to this in Table 

Each 

of 111 the IJranch 

17.97 
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IHany 

It is 

(c) the 
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can with the results 
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The 

tributions 

time to 

the 

total cpu time lwcrululng aSislgnnleIlt 

O.37() their best startup with a minimum of 0.071 

a. maximum The corn:SIJ'Onl(Un~ "",~'r",<1"p fraction for the present method 

0.162 with minimum of 0,08 and a maximum of 0.2:33 from the data in Tables 3 

and for the 100% dense It should he noted that neither of the two 

outliers mentioned earlier occur in this case. For the 80% dense which does 

include an outlier, the figures are average 0.212, minimum 0.094 and maximurll 

0.781. It is dear that, on this the present method is performing better with 

respect to the ratio mea.sure 011 the dense problems. 

When considering sparse problems, and Metz observed a reduction in the 

fraction, using ASSIGN-l startup. For example, for 200 node problems with 25% arc 

densit.y, they observed an average of 0.055, taken over the three cost distributions. 

The average fraction for the present work, for 20% arc density and 200 nodes, is 

0.17. In general, a reduction ill the fraction with increased problem size or reduced 

arc density is nut observed for the present method. It. remains approximately the 

same over all the problems considered. 

Table 1 shows the interesting result that for large, dense problems, the number of 

Engquist iterations for the initial ill' relaxation decreases significantly as the cost 

range is increased. This implies that there is less degeneracy as the spread of costs 

increases. On the other hand, the average number of matchings obta.ined from the 

initia.l relaxation (Table 4), is not dependent on density or on cost range. 

The ratio of t.he nUlllber of extra iterations to the number of initial itera.tions from 

Tables 2 and 1 respectively is less than the ra.tio of cpu times from Tables 5 and 

3 respectively. This is because the extra Engquist iterations in the Branch and 
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Bound are all hard. By this, we mean that there is only one abundant and one 

deficient node, and so long paths through the shortest path network will possibly 

be required. In the initial stage, there are in general several abundant nodes, some 

of which will have short paths to the deficient node. 

It should be noted t.hat the problems considered here are not Euclidian. The a.lgo

rithm presented would not be expected to perform as well on problems for which 

the arc costs satisfied the triangle inequality. The same comments apply to the 

blossom algorithms. The numerical testing of earlier codes is based on randomly 

generated problems as described here. There appears to be no comparison between 

performance on the two types of problem, and this could be an area. for future work. 

6. Practical application. The algorithm as presented here has been used success

fully in the practical applicatiun invulving IHatching blocks of work for bus drivers 

fur Hle Brisba.ne City Council Department. It is only applied when doing 

major reschedules which necessitate a new roster. Minor changes occur over the 

duration of the roster. Trips are added or deleted in response to new peak pas

senger demand, new routes a.re impleJnellted, old routes rationa.lized or titmdables 

cha.nged. Over the life of the roster, the effective savings due to the system therefore 

decline. 

With three bus depots, ea.ch with around 220 shifts, the use of the program 

has produced savings estima.ted by Council ofncers to be in the order of $250,000 

annually over the last four years. Thjs figure has been calculated using the average 

saving as half the initial for the reasons stated above. 

In the actual implementation the optiluization code has been combined with 

code developed by the Council to compute the cost matrix: ta.king into acconnt the 

pay rates, industrial award constraints etc., and to output the optimal matching to 

other software systems. 
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Table l' The average Humber of Engquist; iterations to solve the initial AP relax-
ations. Costs uniformly distdbuted in the (a) 1 -·100; (b) 1 1000; (c) 1 
lOilillL ---.~---~--------------.----

Arc Dellsity 

n 20% 4()~~) GO~~ 80% 100% 
100 37AO :37.80 37.50 37.110 41.50 
200 7 t.3f5 76.35 77.80 79.00 ]05.50 

(a) 112.70 117.35 l2~L65 1.32.50 183.35 
400 147.40 IG2.0S 176.45 UH 267.45 
500 190.30 210.10 2:36.10 263.05 356.65 

00 .30 3G.75 :l5.50 36.50 36.0.1 
:WO 7470 72.85 14.05 72.n5 74.05 

(b) 300 111.25 11.1.25 112.11) 109.75 112.35 
400 14(;.10 150.45 H6.~H) 1/17 [/18.25 

5UO 18:3.10 183.60 184.4U 186.85 189.55 

100 3025 ~WA5 10 36.50 36.10 
200 72.85 73.85 10 74.45 75.10 

(c) 300 109.85 11135 10.45 111.30 UO.65 
4UO 144J)5 J 117.90 149.85 148.10 148.25 
500 180. t5 184.85 182.75 183.U5 183.80 

Tahle The (l.VerHge !lumber of extra gngqui"t iterations needed in the Branch 
and Bound. 

Arc Density 
n 20% IJ()!T~ 60% 80% 100% 

100 1.10 1.:W 2.10 1. to 2.10 
200 0.90 1 .. (iO 3.90 2.70 :3.70 

(a) 300 1.60 2. to {l.SO 38.20 4.20 
400 ~{.70 4.GO 5.40 3.7U 4.00 
L,)OO 5.10 17.:30 4.80 5.60 4.00 

100 70 2010 1.50 I. 10 1.50 
200 2.2U 1.:30 1.80 180 (J.SO 

(1) ) 300 1.60 t.20 JAO IDO 2.50 
400 7U 2.UO l.~)O tAU t.~HJ 

500 1.4U :2.:30 2.f)O 2:30 2.40 

100 .00 1.60 1.60 1..80 O.HO 
200 L70 2()O O.'iO t.20 1.80 

(c) 300 1.!JO 2.GU 2.2U 2.80 2.:30 
400 1.50 2.40 3.20 :LW 1.80 
500 2.70 2.10 3.20 2.20 2.00 
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Table 3: The average numher of cpn secouds to solve the initial AP relaxations. 
1 -

Arc Density 
n 20% 40% 60% 80% 100% 

100 0.17 0.26 0.38 0.'10 O.4g 
200 o.n 113 1.50 2.06 2.4'1 

(a) 300 1.81 2.78 3.62 5.04 6.50 
400 3.:W 5.21 7.:~2 g.g2 12.~37 

500 4.87 8.73 12.G5 15.75 21.87 

100 0.17 0.25 0.:~8 0.'15 0.52 
200 0.80 1.24 1.74 2.02 2.40 

(b) 300 1.9:~ 3.11 4.25 ,1.!:J3 ,5.68 
400 3.74 G.05 7.G4 1(J.27 10.32 
500 6.08 10.35 13.09 1 L1. 72 17.51 

100 0.16 O.2G 0.:36 0.47 0.55 
200 0.77 1.30 1.G5 2.19 2.70 

(c) 300 2.02 3.2!J 4.118 5.99 657 
400 3.52 (Un 8.63 10.35 12.43 
500 6.22 10.08 14.44 17.77 21.18 

Table 4: The average number ,,[ matchings ill the soJ llf;ions of the initial AP 
relaxal; ions. Costs uniformly distributed in the ra.nges (a) 1 100; (b) 1-1000; (c) 
L=JilOOO 

Arc Densii,y 
n 20% 40% 60% 80% 100% 

100 49.5 4~).5 4~IA 49.6 49.!J 
200 99.6 99.6 9g,4 99.3 99.1 

(a) 300 149.5 149.3 149A 118.9 148.9 
400 199.1 199.2 19!-).3 199.0 199.2 
500 2iW.3 249.3 2/18.9 248.9 249.0 

100 49.7 49.5 4!J.5 49.5 49.5 
200 99.3 99.7 P9.5 99.5 99.7 

(b) 300 149.5 JilD.!J JA!-J.5 J4D.5 1'~!).3 

400 1m~.5 JP9A IHD.5 J!-I~J.() H)9.6 
500 249.6 24~L3 249.5 249.3 249.3 

JOO 49.tj 4H.5 49.5 4!L5 40.6 
200 g9.3 g9A 9\-).7 g\).5 99.'1 

(c) 300 149.3 149.3 14g.4 149.:) 14\-1.4 
400 199.6 199,4 199.3 199.3 199.5 
500 249.:3 249.4 249.0 2!HJ.3 249.3 
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