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of randomness an important 
the should have 

of encryption where the 
pn,"'runt<,.r1 

generator 
to the 

the 
a generator which 

cn'pt()g-ram should be only a small fraction 
the in to avoid the cryptanalytic described in [12]. This the 

case cryptographer or user of the cipher may be interested in testing binary for 
randomness from such a periodic sequence where the of the string equal 

to that of an average cryptogram. If this deviates significantly from 
ralld()mne:ss in some fashion cryptanalyst may be able to use the decrease in entrophy 
caused by this deviation together with the redundancy the plaintext to conduct 
successful statistical attack on an intercepted cryptogram. There are various computer 
based techniques for conducting such an attack described in [4] and [12]. The techniques 
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described in [4] are for simple substitution, transposition and polyalphabetic 
ciphers used on written text. attacks are conducted automatically on a computer 
based on the cryptanalyst knowing the frequency distribution of single characters, 
digraphs and trigraphs from the language set; and based on the assumption that the 
cryptanalyst has intercepted the cryptogram. In certain cases these same techniques can be 
applied to a stream cipher in the case where the is not random. For example 
suppose that the plaintext consists of standard text which is coded in 8-bit ASCII. 
Suppose that this plaintext is encrypted a stream cipher where 3/4 of the entries in 
the keystream are zero. Assume that the cryptanalyst knows both the type of plaintext 
being used (under this assumption the attacker knows the frequency distribution of the 
plaintext in terms of single characters, digraphs and trigraphs) and the probability of a zero 
in the keystream. In addition assume that the cryptanalyst has available an intercepted 
cryptogram. At the start of the attack the probability of any 8-bits of ciphertext 
corresponding to a plaintext character would be (3/4)8 which is approximately .10. Hence 
about one in ten 8-bit ciphertext characters are in the clear. However, most other 8-bit 
ciphertext characters have several bit positions correct. In general only a relatively few of 
the ASCII characters correspond to most of the plaintext. The cryptanalyst can use a single 
character frequency distribution to make "educated" on several encrypted 8-bit 
characters. By combining such on single with digraph and trigraph 
information on the set should be a relatively task for the cryptanalyst to 
recover a substantial amount of plaintext. This entire procedure can be conducted 
automatically on the computer. 

Two types of measures are commonly used to examine the randomness of binary strings 
of length n. The first measure examines the hypothesis that the string was based on n 
Bernoulli trials with the probability of a one on each trial being one half. In a Bernoulli 
trial as defined in [3] the trials are independent in that the probability of a one (or zero) in a 
trial not change the amount of information about the outcomes of other trials. There 
are several standard statistical tests described briefly in [2] for examining the above 
hypothesis namely the frequency, serial, poker, runs and autocorrelation tests. 

Another method for examining the hypothesis that a binary string of length n was based on 
n Bernoulli trials is to use the binary derivative as defined in [1]. For a string s of length n 
the binary derivative of s, written as der(s), is the string of length n-l forn1ed by 
combining, modulo two, overlapping 2-tuples from the original string. In a similar 
manner the kth binary derivative, derk(s), is the string of length n-k formed by taking the 
binary derivative of the k-l th binary derivative. For example a string of length 16 and its 
first four derivatives are given by 

s 

der(s) 

der2(s) 

der3(s) 

der4(s) 

1000100011010101 

100110010111111 

10101011100000 

1111110010000 

000001011000 

In Section 2 it will be shown that several of the standard binary statistical tests are 
equivalent to faster and more efficient statistical tests based on the binary derivative. In 
particular it will be shown that statistical tests based on the binary derivative can replace the 
serial test, and paltially replace the generalised serial test and the autocorrelation test. 
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In Section 3 a string will be examined for a change point as described in [11]. A 
point in a string is a point where the Bernoulli structure For use in stream 
cipher it is desirable to have a string with a uniform Bernoulli structure 
throughout the string. As will be shown in Section a string can be examined for a 
change point in order to measure the uniform Bernoulli structure in the original 

A second measure for examining the randomness of a binary string is to obtain the 
complexity of the deterministic number generator used to form the string. Two different 
measures of complexity will be discussed in Sections 4 namely linear complexity and 
sequence complexity, These complexity measures examine the randomness of the string in 
the fashion in which knowledge of a small subsection of the can be used to predict 
the remainder of the string. If this is possible the string would not be considered to be 
random especially in relation to its use in a stream cipher. For each of these complexity 
measures a method shall be described for differentiating between random and highly 
patterned strings. It will be that the sequence measure can be used 
in place of the autocorrelation 

The aim in developing the various techniques for tYlF'~Cllr1ncr 
strings will be to have uniform,fast and efficient methods on statistical tests. In 
many communications systems such as Fascimile machines or digital speech the length of 
an average message to be encrypted may be several million bits long. Hence it useful to 
have fast and efficient techniques for the randomness of of such 
It will be shown how some of the standard can be and more 
efficient tests. 

It should be noted that the statistical tests described in this are meant for the 
designer or user of a new stream for of the randomness of the keystream. 
It will be assumed in all of these tests that the is tested from a black box 
point of view. Based on this assumption the user of the described in 
this paper only needs to have available the output of the pseudorandom 
generator. No knowledge of the actual algorithm generator is required to 
implement these procuedures. 

2 . Binary Derivative and Standard Statistical Tests 

In this section the equivalence of some of the standard statistical tests from [2] is 
demonstrated for examining the hypothesis that a strings of length n was based on n 
Bernoulli trials with a probability of a one on each trial being one half, and tests based on 
the binary derivative for examining the .same hypothesis. The notation p(i) will be used 
for the fraction of ones in the i-th derivative where p(O) denotes this fraction in the 
original string and xCi) the corresponding population proportions, 

2.1 Serial Test 

For a s let noo, nIl' n01' nlO denote the number of 00, 11, 01, 10 overlapping 2-
tuples Let 1100, 1111, 1101, IllO denote the corresponding population means. 

Let be the hypothesis 

Ho: x(O) x(1) 
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The hypothesis that nCO) is 0.5 is equivalent to 

~OO + ~Ol = I 
_n 

~10 + ~11 - 2" 

The hypothesis that n(l) == 0.5 is equivalent to 

_ n 
~oo + ~11 - "2 

n 
~Ol + ~10 == 2" 

(or I- 1} 

In addition a 01 must occur in a string between two 10 pairs. Hence 
nlO = nO} or nOl + 1 or nOl - 1 

and so 
~1O = ~Ol or ~Ol + 1 or ~Ol - 1. 

(2) - (6) in four unknowns are equivalent to the hypothesis that 

(n - 1) 
~oo == ~1O == ~Ol = ~11 = -4-

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

The hypothesis in (7) is the hypothesis of the serial test. Hence the null hypotheses 
associated with nCO) and n(1) for the original string s and its first binary derivative are 
equivalent to the null hypothesis of the serial test. 

A comparison was made between the execution times on a personal computer of applying 
the serial test together with the frequency test, and calculating p(O) and pel). A string of 
length one million bits was used. The execution time for computing p(O) and p(1) for the 
string was 128 seconds. In comparison the execution time for computing the statistics for 
the frequency and serial tests for this string was 248 seconds. Hence the test for 
randomness on a string of million bits using the binary derivative is almost twice as fast as 
using a combination of the frequency and serial tests on the computer used. 

2.2 Generalised Serial Test 

One can show that the hypothesis based on the binary derivative that 

nCO) == n(l) == .... = n(i) == 0.5 (8) 

is partially equivalent to the hypothesis of the generalised i + I-serial test. For example if 
11jjk denotes the number of overlapping 3-tuples in the string of the form ijk then it can be 
shown that the hypothesis that 
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nCO) = n(l) = n(2) 0.5 
is equivalent to 

~OOO = ~Oll = ~110 ~101; 

~1l1 = ~100 = ~OOl = ~010 

(9) 

(10) 

(11) 

where ~ijk correspond to the population mean number of triples of the form ijk. The 
expressions (10) and (11) are derived in a similar fashion used to find (7). 

It should be noted that it is possible for a string to be classified as random using the 
hypothesis (9) when in fact the string would be classified as patterned under the 
hypothesis of the generalised 3-serial test that all ~ijk are equal. For example let s denote 
the string of length 42 given by 

s = 101101101101101101101101101101100000000000 

This string would be classified as random using the hypothesis (9) since p(O) = 0.5, p(1) 
= 0.512 and p(2) = 0.525. This string clearly has an inbalance in the distribution of nijk 
since 

nOl1 = n110 nlOl = 10 
noo~ 9 
nlOO = 1 
n1l1 = noO! = nOlO = 0 

The above string would be classified as patterned under the hypothesis of the generalised 
3-serial test that the ~ijk are equal. By using an appropriate scaling factor one can clearly 
define a large string which satisfies (10) and (11) yet is unbalanced in the distribution of 
the nijk in that the values in (11) are approximately zero. 

2.3 The Autocorrelation Test 

For a string s of length n let si be the substring of length n - i formed by deleting the 
last i entries of s. The autocorrelation test at lag i calculates the number of matches 
between si and the substring yi formed by deleting the first i places of s. The expected 
number of matches if s is based on Bernoulli trial with a probability of a one on each trail 

being is . The binary derivative can be used in place of the autocorrelation test 

for lags of 1, 2, ... , 2J for 2j ~ I since as shown in [6] 

(12) 

where EB denotes modulo two addition. Hence the number of zeros in der2i(al a2 ... an) 

is the number of matches between s2i and y2i . 
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3. "-''''"'''10.''' Point Problem 

If a binary string is to be used as the keystream in stream it should have an 
approximately uniform distributed Bernoulli structure throughout string. A string with 
3/4 ones in the first half of the string and 1/4 ones in the second half would pass the 
frequency test However, such a string would be considered to be patterned due to 
its nonuniform distribution of ones and zeros. if such a string was used as the key 
stream in stream a cryptanalyst who was aware of such change could use this 
information to conduct a statistical attack on the intercepted clp,hel:te}ct. 

Fora 

denote 

where the largest change occurs in the distribution of ones and zeros 
The change point problem is the problem concerned with finding 

and measuring its significance. In [11 J there is described a method for 
problem. A brief description of this method is given as follows: 

n let 

number of ones in the 

St denote the number of ones in the first t entries; 

n 

The to examined is that there in the distribution of 
ones in the The point in the where there the greatest change in 
Bern(YJ.1li structure occurs at the absolute value maxunUlm of the U t which we shall denote 
as K. In order to test the above hypothesis probability is calculated using 
the value of K. The approximate significance associated with this change point 
denoted by by 

It should 
change 
to this 

2 2 2 " 1 
P

sig 
== exp[- 2K (Sn - n S) ]. (13) 

noted that the above approximation of the slgmt'lC~mc:e probability of the 
is conservative in that the exact is less than or equal 

The change in Bernoulli structure of the s of length 42 in Section 2.2 can be 
highlighted by the above formulae. For this string change point occurs at 
position 3 L The probability of change point from applying the formula in 
(13) to this is .003. Hence this change point is highly slgmtlc3.nt. 

the above example the statistic can be a powerful 
Hi,,·nt,hl1,nf'f highly patterned as shown in this ex:ample 

the change point provides a method patterned strings 
are classified as random when only a few binary rlp'·nT·~t"T"'C are used to examine the 
distribution of ones and zeros in the string. 

As shown in [11] the above test for a change point can be applied to examine the 
hy!)otJ1eSlS that a was based on n Bernoulli trials with the probability of a one on 
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each trial 1t independently of the value of 1t. In this case it would be assumed that 
before the change point test has been applied one has already applied the frequency test to 
test the hypothesis that 1t= 1/2. 

4 . Complexity Measures 

A detenninistic binary number generator is not considered to be complex for a certain 
measure if it is possible to predict large string produced by the from knowledge 
of a small subsection of the string. If such a noncomplex string used in a stream cipher 
as the keystream a cryptanalyst might be able to find a small amount of known plaintext of 
the same length required to predict the key stream. The cryptanalyst be easily able to 
find such plaintext using the redundancy of the set i.e. periods in 
digital In the case where the attacker is wiretapping the equivalent 
portion the keystream can be found. Using this portion of the keystream and the 
complexity weakness in the cipher an attacker may be able to derive the entire keystream 
and hence decrypt an entire intercepted cryptogram. Clearly, the number generator should 
be classified complex with respect to any measure for which such an attack can be 
fonned. There are two different complexity measures which will be discussed in this 
section namely linear complexity and sequence For each of these measures 
methods to differentiate between complex and noncomplex strings will be described. 

4.1 Linear Complexity 

An important complexity measure which can be used to differentiate between random and 
patterned strings is linear complexity. The length of the shortest linear feedback shift 
register (LFSR) which produces a given finite or periodic sequence is the linear complexity 
of the sequence. If the linear complexity of a sequence is L then the equivalent LFSR from 
[9] used to form the sequence can be found by applying the Berlekamp-Massey algorithm 
provided 2L consecutive terms of the sequence are known. Given L consecutive terms of 
the sequence and the defining LFSR of length L the entire sequence can be reconstructed 
by substitution into the recurrence relation given by this LFSR. Hence, in order to avoid 
sequence reconstruction as described above the value of L should be large. An example of 
a periodic sequence with good random statistical properties in terms of the distribution of 
ones and zeros but a small linear complexity is an m-sequence as described in [2]. A 
binary string consisting of the first period of an m-sequence would be classified as random 
using the standard statistical tests to test the hypothesis that the string was based on 
Bernoulli trials with the probability of one on each trial being 1/2. However an m­
sequence has a very small linear complexity in relation to its period length. In this fashion 
an m-sequence should not be used as the keystream in a stream cipher even though it has 
the "best" possible distribution of ones and zeros for a string with such a length. 

For a binary string s of length n, the symbol L(s) will be used to denote the linear 
complexity of s. In [13) there are several properties developed for L(s) which we will 
use to differentiate between random and patterned strings. Three statistical tests for L(s) 
will be developed to measure the local randomness of s in terms of linear complexity based 
on applying these properties. It should be noted that these tests are dependent on 
computing the value of L(s) using the Berlekamp- Massey algorithm. 

As shown in [13] for large n the expected value of L(s), E(L(s», and variance of L(s), 
V(L(s»), for random strings are approximately given by E(L(s»=n/2 and V(L(s»)=86/81. 
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The hYl)otlhesls the r>n,_cnln",'"'''''' gO()dness of fit test 
from 

An alternative test for the linear complexity can be formed 
normal statistic. In [10] it is shown that the expected value and variance 
jump are each two. For the string let u be the of the 
value of u can be the standard normal by 

statistic 
jumps is 

4.2 

c(s) 

z = IF (u (17) 

stated above. It should be noted the 
PU",ill'>tpri in the where total number of 

{~ if j = 2' for t 0,1, 

used to differentiate between random 
of n the sequence 

s one moves 
s 1101100001110 a 

110/1100/001110 where new 

that the threshold level of be 
random 

is evaluated base 
considered to be n~j·tpv·nprl 

The se(~m~nc:e measure can the autocorrelation test as described in 
Section The autocorrelation test v"'-"'UUH"':> string for periodic type behavior 
within the If there is such a behavior then is a repetition of a 
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Sl~;mtlcant portion of the that the same patterns are being 
in the In this a high correlation between two or 

the would have low sequence For example let y 
of n/2, Let s be the string of length n concatenation of y 

with The value of c(s) is either c(y) or c(y)+ 1 on the format of the last 
pattern in s. The periodic behavior in the string s demonstrated by the fact that 
c(s) is significantly than n/log(n). 

n than to evaluate all the different 
is a list of the times required to 

n 
evaluate c(s) and the autocorrelation test at "2 on a personal computer. 

It be seen that it is much faster to evaluate on the computer used, It should be 
noted that it is fast to evaluate the aUitocon'ei<iltioln if one only wants to test a few 
specific lags. 

of Complexity Autocorrelation 
String Time in Seconds Time in Seconds 

1000 1 4 

2000 4 16 

4000 15 60 

8000 55 241 

Table 1 
Comparison of Times to Sequence 

Complexity and Autocorrelation 

It is possible to have string which is classified random one of the measures of 
linear complexity when the classified as patterned 
using the measure. For example let s a selected from the 
infinite sequence as by (18). As mentioned in Section a would be 
classified as random the statistics test as defined by (17). However, this string 
would clearly be to be patterned the complexity measure since 

are only a small number of new patterns formed in as one moves from the 
left to the right the string. As second example let be string of length 2L - 1 
consisting of the first of an m-sequence. Such would be considered to be 
random using the sequence complexity measure since bits in the string defines a 
different L bit pattern. However, this would be classified as patterned using the 
linear complexity measure since the linear complexity is very small in relation to the string 
length. 
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5 . Conclusion 

which to be used the 
methods have been concerned 

is based on 
this 
of 
that 

The aim in 

one can overcome 
the The 

of ones 
shown that the autocorrelation test can be by the cpril'p,V'"," 

c0I11plexlty measure. It was shown that it much faster to evaluate sequence COlnpleXltV 
than to apply the autocorrelation test. 

In conclusion it would be recommended that included in a 
computer based for of the randomness of a 
(a) test on the fomlat of plaintl~xt; 
(b) 
(c) based on the distribution of ones and zeros in the string and its 

derivatives; 
on linear cOlnplex.ity 

defined by (13) to rnf'''"cnrp slgmJtlcance point in the 

(f) sequence cOlnplex;ity measure. 

It would not be recommended to use generator for forming the keystream in a stream 
the where several from this generator equal in length to an 

C~yptog;rarn fail one or more set of tests at a highly significant level. 
be a weakness in the of the generator which a cryptanalyst 
actual format of the generator is known, which will not be identified 

the above tests. 
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