Black Box Analysis of Stream Ciphers

E Dawson*, H Gustafson, N Davies**

*School of Mathematics
and Information Security Research Centre
Queensland University of Technology
GPO Box 2434
Brisbane Qld 4001
Australia

**Department of Mathematics, Statistics and Operational Research
: Nottingham Polytechnic
Nottingham NG1 4BU
United Kingdom

ABSTRACT

In this paper methods are described for analysing the randomness of large binary strings
produced by pseudorandom number generatrs, In particular it will be assumed that such
a binary string is being used as the keystream in a stream cipher. Due to the simple nature
of a stream cipher it is very important that the keystream have the appearance of
randomness. The aim in this paper is to develop fast and efficient methods for measuring
the randomness of binary strings. The most significant new result is that many of the
standard tests can be replaced by other faster and more efficient methods.

1. Introduction

The use of binary strings which have the appearance of randomness plays an important
role in many cipher systems. In particular in a stream cipher the keystream should have
the appearance of randomness. A stream cipher is the process of encryption where the
plaintext is divided into characters and each character is encrypted separately by a time
varying function. The simplest and most often used stream cipher for encrypting binary
plaintext is where the bit at time interval t of a pseudorandom binary generator is
combined using modulo two addition with the plaintext bit at time interval t to produce the
corresponding ciphertext bit. The bits from the pseudorandom generator denote the
keystream. In most cases the keystream is formed by a deterministic generator which
produces a periodic sequence. The length of a cryptogram should be only a small fraction
of the period in order to avoid the cryptanalytic attack described in [12]. This being the
case a cryptographer or user of the cipher may be interested in testing binary strings for
randomness from such a large periodic sequence where the length of the string is equal in
length to that of an average cryptogram. If this string deviates significantly from
randomness in some fashion a cryptanalyst may be able to use the decrease in entrophy
caused by this deviation together with the redundancy of the plaintext to conduct a
successful statistical attack on an intercepted cryptogram. There are various computer
based techniques for conducting such an attack described in [4] and [12]. The techniques

Australasian Journal of Combinatorics 4(1991),pp 59-70

described in [4] are for attacking simple substitution, transposition and polyalphabetic
ciphers used on written text . These attacks are conducted automatically on a computer
based on the cryptanalyst knowing the frequency distribution of single characters,
digraphs and trigraphs from the language set; and based on the assumption that the
cryptanalyst has intercepted the cryptogram. In certain cases these same techniques can be
applied to a stream cipher in the case where the keystream is not random. For example
suppose that the plaintext consists of standard English text which is coded in 8-bit ASCII.
Suppose that this plaintext is encrypted using a stream cipher where 3/4 of the entries in
the keystream are zero. Assume that the cryptanalyst knows both the type of plaintext
being used (under this assumption the attacker knows the frequency distribution of the
plaintext in terms of single characters, digraphs and trigraphs) and the probability of a zero
in the keystream. In addition assume that the cryptanalyst has available an intercepted
cryptogram. At the start of the attack the probability of any 8-bits of ciphertext
corresponding to a plaintext character would be (3/4)8 which is approximately .10. Hence
about one in ten 8-bit ciphertext characters are in the clear. However, most other 8-bit
ciphertext characters have several bit positions correct. In general only a relatively few of
the ASCII characters correspond to most of the plaintext. The cryptanalyst can use a single
character frequency distribution to make "educated” guesses on several encrypted 8-bit
characters. By combining such guesses on single characters with digraph and trigraph
information on the language set it should be a relatively easy task for the cryptanalyst to
recover a substantial amount of plaintext. This entire attack procedure can be conducted
automatically on the computer.

Two types of measures are commonly used to examine the randomness of binary strings
of length n. The first measure examines the hypothesis that the string was based on n
Bernoulli trials with the probability of a one on each trial being one half. In a Bernoulli
trial as defined in [3] the trials are independent in that the probability of a one (or zero) in a
trial c'oes not change the amount of information about the outcomes of other trials. There
are several standard statistical tests described briefly in [2] for examining the above
hypothesis namely the frequency, serial, poker, runs and autocorrelation tests.

Another method for examining the hypothesis that a binary string of length n was based on
n Bernoulli trials is to use the binary derivative as defined in [1]. For a string s of length n
the binary derivative of s, written as der(s), is the string of length n-1 formed by
combining, modulo two, overlapping 2-tuples from the original string. In a similar
manner the kth binary derivative, der,(s), is the string of length n-k formed by taking the
binary derivative of the k-1 th binary derivative. For example a string of length 16 and its
first four derivatives are given by

s = 1000100011010101

der(s) = 100110010111111
dery(s) = 10101011100000
dery(s) = 1111110010000
dery(s) = 000001011000

In Section 2 it will be shown that several of the standard binary statistical tests are
equivalent to faster and more efficient statistical tests based on the Dbinary derivative. In
particular it will be shown that statistical tests based on the binary derivative can replace the
serial test, and partially replace the generalised serial test and the autocorrelation test.

60

In Section 3 a string will be examined for a change point as described in [11]. A change
point in a string is a point where the Bernoulli structure changes. For use in a stream
cipher it is desirable to have a string with a uniform distributed Bernoulli structure
throughout the string. As will be shown in Section 3 a string can be examined for a
change point in order to measure the uniform Bernoulli structure in the original string.

A second measure for examining the randomness of a binary string is to obtain the
complexity of the deterministic number generator used to form the string. Two different
measures of complexity will be discussed in Sections 4 namely linear complexity and
sequence complexity. These complexity measures examine the randomness of the string in
the fashion in which knowledge of a small subsection of the string can be used to predict
the remainder of the string. If this is possible the string would not be considered to be
random especially in relation to its use in a stream cipher. For each of these complexity
measures 2 method shall be described for differentiating between random and highly

patterned strings. It will be suggested that the sequence complexity measure can be used
in place of the autocorrelation test.

The aim in developing the various techniques for measuring the randomness of binary
strings will be to have uniform,fast and efficient methods based on statistical tests. In
many communications systems such as Fascimile machines or digital speech the length of
an average message to be encrypted may be several million bits long. Hence it is useful to
have fast and efficient techniques for measuring the randomness of strings of such length.
It will be shown how some of the standard tests can be replaced by faster and more
efficient tests.

It should be noted that the statistical tests described in this chapter are meant for the
designer or user of a new stream cipher for analysis of the randomness of the keystream,
It will be assumed in all of these tests that the keystream is being tested from a black box
point of view. Based on this assumption the user of the testing procedures described in
this paper only needs to have available the output binary sequence of the pseudorandom
generator. No knowledge of the actual algorithm used in the generator is required to
implement these procuedures. '

2. Binary Derivative and Standard Statistical Tests

In this section the equivalence of some of the standard statistical tests from [2] is
demonstrated for examining the hypothesis that a strings of length n was based on n
Bernoulli trials with a probability of a one on each trial being one half, and tests based on
the binary derivative for examining the same hypothesis. The notation p(i) will be used
for the fraction of ones in the i-th derivative where p(0) denotes this fraction in the
original string and 7(i) the corresponding population proportions.

2.1 Serial Test

For a string § let ngg, 037, Ngy, Mo denote the number of 00, 11, 01, 10 overlapping 2-
tuples respectively. Let Hog, H11, Hops 1o denote the corresponding population means.

Let Hy be the hypothesis
Hp: n(0) = m(1) = 3.)

61

The hypothesis that 7(0) is 0.5 is equivalent to

n
Moo * Moy = & ["raj‘ 1]; 9

n)
Hig +Hy =5 (Or_Z—’ 1]- OF

The hypothesis that (1) = 0.5 is eqﬁivalcnt to

n
Hog T Hyp = % [Ornzﬂ 1]; Q)

n_ ‘
Moy +Hyp =% (OYZ 1}' ®

In addition a 01 must occur in a string between two 10 pairs. Hence
Nyg=1ng; Or ny; +1 or ngy -1
and so

Hig =Koy OF Hoy +1 or pg; - L. (6

(2) - (6 in four unknowns are equivalent to the hypothesis that

_ _ _(n-1)
Hog =Hyg = Hoy = Hyy =—7 M

The hypothesis in (7) is the hypothesis of the serial test. Hence the null hypotheses
associated with (0) and nt(1) for the original string s and its first binary derivative are
equivalent to the null hypothesis of the serial test. '

A comparison was made between the execution times on a personal computer of applying
the serial test together with the frequency test, and calculating p(0) and p(1). A string of
length one million bits was used. The execution time for computing p(0) and p(1) for the
string was 128 seconds. In comparison the execution time for computing the statistics for
the frequency and serial tests for this string was 248 seconds. Hence the test for
randomness on a string of million bits using the binary derivative is almost twice as fast as
using a combination of the frequency and serial tests on the computer used.

2.2 Generalised Serial Test
One can show that the hypothesis based on the binary derivative that
n0) = n(1) =....=n(d) = 0.5)
is partially equivalent to the hypothesis of the generalised i + 1-serial test. For example if
nj denotes the number of overlapping 3-tuples in the string of the form ijk then it can be

shown that the hypothesis that

62

7(0) = n(1) = n(2) = 0.5 ‘ ©)
is equivalent to

Hooo = Ho11 = Hiio = K101 3 (10)
111 = Hioo = Hoor = Ho1o ‘(11)

where iy correspond to the population mean number of triples of the form ijk. The
expressions (10) and (11) are derived in a similar fashion used to find (7).

It should be noted that it is possible for a string to be classified as random using the
hypothesis (9) when in fact the string would be classified as patterned under the
hypothesis of the generalised 3-serial test that all Mk are equal. For example let s denote
the string of length 42 given by ‘

s = 101101101101101101101101101101100000000000

This string would be classified as random using the hypothesis (9) since p(0) = 0.5, p(1)
= 0.512 and p(2) = 0.525. This string clearly has an inbalance in the distribution of Dy
since

gy = Nyjg =nyop = 10

oo =
Nygp =1

111 = Doy =gy =0

The above string would be classified as patterned under the hypothesis of the generalised
3-serial test that the Hij are equal. By using an appropriate scaling factor one can clearly

define a large string which satisfies (10) and (11) yet is unbalanced in the distribution of
the njy, in that the values in (11) are approximately zero.

2.3 The Autocorrelation Test

For a string s of length n let s' be the substring of length n - i formed by deleting the
last i entries of s. The autocorrelation test at lag i calculates the number of matches

between s' and the substring y' formed by deleting the first i places of s. The expected
number of matches if s is based on Bernoulli trial with a probability of a one on each trail

being % is '9‘2;1' . The binary derivative can be used in place of the autocorrelation test
forlagsof 1,2, .., Zj ford < % since as shown in [6]
der Zi(al a..a) = a; @ayl,), 2,® a0 o, ., a, @ a, (12)

where @ denotes modulo two addition. Hence the number of zeros in der,i(a; a, ... a,)
is the number of matches between s2' and y2'.

63

3. Change Point Problem

If a binary string is to be used as the keystream in a stream cipher it should have an
approximately uniform distributed Bernoulli structure throughout the string. A string with
3/4 ones in the first half of the string and 1/4 ones in the second half would pass the
frequency test. However, such a string would be considered to be highly patterned due to
its nonuniform distribution of ones and zeros. Clearly if such a string was used as the key
stream in a stream cipher, a cryptanalyst who was aware of such a change could use this
information to conduct a statistical attack on the intercepted ciphertext.

The place in a string where the largest change occurs in the distribution of ones and zeros
is called a change point. The change point problem is the problem concerned with finding
this change point and measuring its significance. In [11} there is described a method for
solving the change point problem. A brief description of this method is given as follows:

For a string s of length n let
S denote the number of ones in the string;

S, denote the number of ones in the first t entries;
tS
Ut = n(S‘ T

The hypothesis to be examined is that there is no significant change in the distribution of
ones and zeros in the string. The point in the string where there is the greatest change in
Bernevulli structure occurs at the absolute value maximum of the U, which we shall denote
as K. In order to test the above hypothesis a significance probability is calculated using
the value of K. The approximate significance probability associated with this change point
denoted by Py, is given by

P, = expl- 2K’(Sn*-n 8% 1], 13

It should be noted that the above approximation of the significance probability of the

change point is conservative in that the exact significance probability is less than or equal
to this value.

The change in Bernoulli structure of the string s of length 42 given in Section 2.2 can be
highlighted by applying the above formulae. For this string the change point occurs at
position 31. The significance probability of this change point from applying the formula in
(13) to this string is .003. Hence this change point is highly significant.

As demonstrated by the above example the change point statistic can be a powerful
technique for identifying highly patterned strings. In particular as shown in this example
the change point statistic provides a method of identifying highly patterned strings which
are classified as random when only a few binary derivatives are used to examine the
distribution of ones and zeros in the string.

As shown in [11] the above test for a change point can be applied to examine the
hypothesis that a string was based on n Bernoulli trials with the probability of a one on

64

each trial being m independently of the value of x. In this case it would be assumed that
before the change point test has been applied one has already applied the frequency test to
test the hypothesis that t=1/2.

4. Complexity Measures

A deterministic binary number generator is not considered to be complex for a certain
measure if it is possible to predict a large string produced by the generator from knowledge
of a small subsection of the string. If such a noncomplex string is used in a stream cipher
as the keystream a cryptanalyst might be able to find a small amount of known plaintext of
the same length required to predict the keystream. The cryptanalyst may be easily able to
find such plaintext by using the redundancy of the language set i.e. silence periods in
digital speech. In the case where the attacker is conducting wiretapping the equivalent
portion of the keystream can be found. Using this portion of the keystream and the
complexity weakness in the cipher an attacker may be able to derive the entire keystream
and hence decrypt an entire intercepted cryptogram. Clearly, the number generator should
be classified as complex with respect to any measure for which such an attack can be
formed. There are two different complexity measures which will be discussed in this
section namely linear complexity and sequence complexity. For each of these measures
methods to differentiate between complex and noncomplex strings will be described.

4.1 Linear Complexity

An important complexity measure which can be used to differentiate between random and
patterned strings is linear complexity. The length of the shortest linear feedback shift
register (LFSR) which produces a given finite or periodic sequence is the linear complexity
of the sequence. If the linear complexity of a sequence is L then the equivalent LFSR from
[9] used to form the sequence can be found by applying the Berlekamp-Massey algorithm
provided 2L consecutive terms of the sequence are known. Given L consecutive terms of
the sequence and the defining LESR of length L the entire sequence can be reconstructed
by substitution into the recurrence relation given by this LESR. Hence, in order to avoid
sequence reconstruction as described above the value of L should be large. Anexample of
a periodic sequence with good random statistical properties in terms of the distribution of
ones and zeros but a small linear complexity is an m-sequence as described in [2]. A
binary string consisting of the first period of an m-sequence would be classified as random
using the standard statistical tests to test the hypothesis that the string was based on
Bernoulli trials with the probability of a one on each trial being 1/2. However an m-
sequence has a very small linear complexity in relation to its period length. In this fashion
an m-sequence should not be used as the keystream in a stream cipher even though it has
the "best" possible distribution of ones and zeros for a string with such a length.

For a binary string s of length n, the symbol L(s) will be used to denote the linear
complexity of s. In [13] there are several properties developed for L(s) which we will
use to differentiate between random and patterned strings. Three statistical tests for L(s)
will be developed to measure the local randomness of s in terms of linear complexity based
on applying these properties. It should be noted that these tests are dependent on
computing the value of L(s) using the Berlekamp- Massey algorithm.

As shown in [13] for large n the expected value of L(s), E(L(s)), and variance of L(s),
V(L{(s)), for random strings are approximately given by E(L(s))=n/2 and V(L(s))=86/81.

65

The first statistical test on linear complexity is derived from applying Chebyshev's
inequality [7] to these values of E(L(s)) and V(L(s)). From Chebyshev's inequality for
large n the probability that L(s) differs from n/2 by k or larger is less than or equal to
86/(81k2). For example for k=10 at least 99% of all random strings have a linear
complexity within the range of n/2-10 and n/2+10 for a sufficiently large value of n. In
this fashion one can test the hypothesis that the linear complexity of a string of length n is
n/2 by comparing the actual linear complexity of the string with a confidence interval
derived from Chebyshev's inequality.

There are some problems associated with using the above test as the only method for
testing the linear complexity of a string. This test by itself would classify as random
strings which may be highly patterned or contain large substrings which are highly
patierned. For example the string of length n consisting of n/2-1 zeros, followed by a one
and then followed by repeating these n/2 terms has a linear complexity of n/2. This string
would be classified as being random using the above test for linear complexity. Clearly,
such a string is highly patterned and would fail all the standard statistical tests. However
it is possible to construct a string of length n which would pass the standard statistical tests
based on the Bernoulli measure described in this paper which the would have a linear
complexity of approximately n/2 and yet which would contain a large highly patterned
substring. For example suppose that the first half of the string was formed by taking a
large substring from an m-sequence and the second half of the string was formed by a
"good" pseudorandom number generator. In this case it would be possible to predict the
first half of the string based on knowing only knowing a few initial terms since the linear
complexity of this part of the string is constant after a few terms.

Methods for avoiding the above problem has been suggested by several authors including
[53,110]. [13] and [14]. These methods use the concept of the linear complexity profile of
a string. For a string s of length n let (i) be the substring formed by taking the first i bits
of s. et L(s(i)) for i=1,....n denote the linear complexities of the s(i). The values of
L(s()) are defined to be the linear complexity profile of s. From the above test the linear
complexity profile of a random string should follow approximately the i/2 line. In [9] itis
shown that the values of L(s(i)) are subject to the following constraints

if L(s(i-1)) > i/2 then L{s(i))=L(s(i-1)); (14)
if L(s(i-1)) €1/2 then L{s(1))=L(s(i- 1))or L(s)=i-L(s(i-1)). (15)

Using the above inequalities two statistical tests will be described for examining the
hypothesis that a string has the the expected linear complexity profile of a random string.
Each of these tests will be based on using the concept of a jump. If there is a change in
linear complexity from s(i-1) to s(i) then this is called a jump. If a change in the linear
complexity occurs at s(i) then the size of the jump is given by 1-2L(s(i-1)) from (15).
Hence if k bits occur between jumps the height of a jump is k. In {5] a chi-squared
goodness of fit test is designed based on the number of jumps of height k as follows:

For a large string s of length n let the total number of jumps in linear complexity be F
where f(k) is the number of jumps of height k. It can be shown that for a random string
based on Bernoulli trials where the probability of a one on each trial is one half that the
probability, p(k), that a given jump has height k is (1/2)%. The hypothesis of the test is
that the expected number of jumps of height k,e(k), in s is given by

e(l)=pF. (16)
66

The hypothesis as given by (16) can be tested using the chi-squared goodness of fit test
from [3] to compare the values of the e(k) and f(k).)

An alternative test for the linear complexity profile can be formed using the standard
normal statistic. In [10] it is shown that the expected value and variance of the height of a
jump are each two. For the given string s let u be the average height of the jumps. The
value of u can be standardised using the standard normal statistic given by

z=4F@u-2)42 an

where F is the total number of jumps in the string as stated above. It should be noted the
statistic given by (17) should only be evaluated in the case where the total number of
jumps is larger than 30.

It is possible for a highly patterned string to have a good linear complexity profile. In
[15] an infinite binary sequence y = y;y, ... is said to have a perfect linear complexity
profile if the string of length i consisting of the first 1 terms of the sequence for all i has a
linear complexity of [(i+1)/2] where [] denotes the integer part of the number. In [13] it
is conjectured and proven in [15] that the infinite sequence y whose terms are given by

(18)

{1 if j=2" for 1=0,1,2, ..

¥;)
0 otherwise

has a perfect linear complexity profile. Clearly any finite string taken from the above
sequence would be highly patterned especially since there is a very bad balance in the
distribution of zeros and ones. A sufficiently large string taken from the starting of the
sequence defined by (18) would pass the statistics test based on the normal distribution
given by (17). On the other hand this string would fail the above chi-squared test on the
linear complexity profile given by (16). This suggests that the chi-squared test is a better
test for identifying highly patterned strings.

4.2 Sequence Complexity

Another important complexity measure which can be used to differentiate between random
and patterned strings is sequence complexity. For a string s of length n the sequence
complexity of s, written as c¢(s), denotes the number of new patterns in § as one moves
from left to right along the string. For example the string s = 100111101100001110 has a
value of six for c(s) since s can be broken into 1/0/01/1110/1100/001110 where new
patterns are separated by a "/".

For large strings s of length n it is shown in [8] that the threshold level of n/log(n) can be
used to distinguish between patterned and random strings in terms of sequence
complexity. It should be noted that log(n) is evaluated base two. A string with a value of
¢(s) below this threshold level would be considered to be patterned.

The sequence complexity measure can replace the autocorrelation test as described in

Section 2.3. The autocorrelation test examines a string for any periodic type behavior
within the string. If there is such a periodic behavior then there is a repetition of a

67

significant portion of the string. Such a repetition implies that the same patterns are being
repeated in the string. In this fashion a string which has a high correlation between two or
more components of the string would have a low sequence complexity. For example lety
be a string of length n/2. Let s be the string of length n formed by the concatenation of y
with itself. The value of c(s) is either c(y) or c(y)+1 depending on the format of the last
pattern in s. The periodic behavior in the string § would be demonstrated by the fact that
c(s) is significantly less than n/log(n).

1t is much faster to determine c(s) for a string of length n than to evaluate all the different
autocorrelation values at lags i=1,...,n/2. In Table 1 there is a list of the times required to

. . n
evaluate c(s) and the autocorrelation test at lags i=1,2, ..., 5 ona personal computer.

It can be seen that it is much faster to evaluate c(s) on the computer used. It should be
noted that it is very fast to evaluate the autocorrelation test if one only wants to test a few
specific lags.

Sequence
Length of Complexity Autocorrelation
String Time in Seconds | Time in Seconds
1000 1 4
2000 4 16
4000 15 60
8000 55 241
Table 1

Comparison of Times to Compute Sequence
Complexity and Autocorrelation

It is possible to have a string which is classified as random using one of the measures of
linear complexity or sequence complexity when the string would be classified as patterned
using the other complexity measure. For example let s be a large string selected from the
infinite sequence as given by (18). As mentioned in Section 4.1 such a string would be
classified as random using the statistics test as defined by (17). However, this string
would clearly be considered to be patterned using the sequence complexity measure since
there are only a small number of new patterns formed in the string as one moves from the
left to the right along the string. As a second example let z be the string of length 2L~ 1
consisting of the first period of an m-sequence. Such a string would be considered to be
random using the sequence complexity measure since every L bits in the string defines a
different L bit pattern. However, this string would be c¢lassified as patterned using the
linear complexity measure since the linear complexity is very small in relation to the string
length.

68

5. Conclusion

Methods for measuring the randomness of a binary string which is to be used as the
keystream in a stream cipher have been described. These methods have been concerned
with the analysis of two hypotheses. The first hypothesis is that the string is based on
Bernoulli trials with the probability of a one on each trial being 1/2. In general this
hypothesis is equivalent to the hypothesis that the string represents the first period of a
sequence which satisfies Golomb's Postulates as described in [2]. In [14] it is shown that
a keystream in a stream cipher which deviates slightly from ene or more of these postulates
causes only a slight decrease in entrophy. For example it is shown that if the probability
of a one in the keystream is 1/2+e instead of 1/2 then the amount of information leaked to
an attacker is quadratic in e under the assumption that the attacker is aware of this
probability i.e. if € is of the order of .001 then the amount of information per bit leaked to
the cryptanalyst is of the order .000001. The results for Golomb's second and third
postulates are similar. Hence slight deviations from the above hypothesis by a string
should be allowed when applying one or more of the tests in standard statistical tests from
[2] and the tests described in Sections 2 and 3.

The second hypothesis examined in this chapter is that the string is complex in that it is not
possible to predict the string based on knowledge of a smaller subsection of the string.
There were two complexity measures for examining this hypothesis, namely linear
complexity and sequence complexity. Various methods were described for examining
whether a string is classified as being complex with respect to each measure.

The aim in this paper was to develop fast and efficient methods for examining binary
strings for randomness. It was shown that one can replace the serial test with a faster
statistical test based on the binary derivative. In addition it was shown that the generalised
serial test can be partially replaced by a statistics test based on higher binary derivatives.
However in this case there are certain highly patterned strings which will be classified as
random when using a statistic test based on higher binary derviatives alone and will be
classified as patterned using a generalised serial test. As was shown one can overcome
this problem by determining the significance of the largest change point in the string. The
change point statistic allows one to identify a change in distribution of ones and zeros
within a string. It was shown that the autocorrelation test can be replaced by the sequence
complexity measure. It was shown that it is much faster to evaluate sequence complexity
for a string than to apply the autocorrelation test.

In conclusion it would be recommended that the following set of tests be included in a

computer based package for analysis of the randomness of a binary string

(a) poker test with hand size depending on the format of. plaintext;

(b) runs test;)

(¢) statistical test (8) based on the distribution of ones and zeros in the string and its
first three binary derivatives;

(d) statistical tests based on lincar complexity profile of string;

(e) testas defined by (13) to measure the significance of the largest change point in the
string;

() sequence complexity measure.

It would not be recommended to use a generator for forming the keystream in a stream
cipher in the case where several binary strings from this generator equal in length to an
average cryptogram fail one or more of the above set of tests at a highly significant level.
However, there may be a weakness in the design of the generator which a cryptanalyst
can use, provided the actual format of the generator is known, which will not be identified
by any of the above tests.

69

1 10.

11.

12.

13.

14.

15.

References

Barbe, A. "Binary Random Sequences: Derivative Sequences and Multi-Level o-
Typical Randomness”, Proceedings of the 8th Benelux Symposium on
Information Theory, 1987, pp. 21-38.

Beker, H. and Piper, F. Cipher Systems: The Protection of
Communications, 1982, John Wiley and Sons.

. Bhattacharyya, G. and Johnson, R., Statistical Concepts and Methods, 1977,

John Wiley and Sons.

Carroll, J. and Robbins, L., "Computer Cryptanalysis”, Technical Report No.
223, 1988, Dept. of Computer Science, The University of Western Ontario,
London, Ontario.

Carter, G., "A statistical test for randomness based on the linear complexity profile
of a binary sequence”, Technical Report for Racal Comsec Ltd., 1987.

Dawson, E., Davies, N. and Gustafson, H., "Binary derivative and random binary
strings”, Technical Report No. 4/90, School of Mathematics,
Queensland University of Technology, 1990.

Kreyszig, E., Introductory Mathematical Statistics, John Wiley and Sons,
1970.

Lempel, A. and Ziv, J., "On the complexity of finite sequences", IEEE Trans. on
information Theory, Vol. IT-22, Jan. 1976, pp. 75-81.

Massey, J.L., "Shift register sequences and BCH decoding”, IEEE Trans. on
Information Theory, Vol. IT-15, Jan. 1969, pp. 122-127.

Niederreiter, H., "The probabilistic theory of linear complexity”, in Proc.
EUROCRYPT '88, Lecture Notes in Computer Science, Bol. 330, 1988,
pp. 191-209.

Pettitt, A.N., "A non-parametric approach to the change-point problem", Appl.
Statist., Vol. 28 No. 2, 1979, pp. 126-135.

Rubin, F., "Computer methods for decrypting random stream ciphers”,
Cryptologia, Vol. 2 No. 3, 1978, pp. 215-231.

Rueppel, R.A., Analysis and Design of Stream Ciphers, Springer-Verlag,
1986.

Wanders, H.E., "On the significance of Golomb's randomness postulates in
cryptography”, Philip J. Res., Vol. 43, 1988, pp. 185-222.

Wang, M., "Cryptographic A‘spects of Sequence Complexity Measures", PhD.
Thesis, Swiss Federal Institute of Technology, 1988.

70

