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ABSTRACT 

of random element is described means of ac<:oumtimg 
retllres:enl:ati'ves of certain of elements in finite groups (when the 

Pf()dllctilon or of such classes is restricted by the available cOlmputing 

resources), in the context of the some of the sp()ra,dlC 

finite groups. 

1. INTRODUCTION 

of 
computer, and the 

pel'101mf:d with the 

in the 

of 

permutatlO,n group, or matrix group, or in terms of generators 

and relations), 

aPl)roaCI"lCS to some 

qu('~stl!ons can often 

and even when the reJ:'re~;entatlOn 

,",UH,","" nro,l1lemS may be found. 

the use of random element geI1eratll:Jn, 

of elements restricted 

discussed in this paper, in the context of 

sporadic finite groups. 

Before v'"'I-'AUI.BU'" ba(;ke:rotmd to 

little to 

title may 

mathematics" . 

The genus 

smallest genus of all those 

finite group G was defined by Tom Tucker in [91 as 
orientable surfaces ( on which acts 

faithfully a group of c:."t.nrnnrrlhH:t"YI<';: that is, homeomorphisms of the surface onto 
itself, nrp,<:p~""inl(J the local structure but allowing reversal of the surface's orientation. 
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Also he defined the strong symmetric genus aO(O) of 0 to be the smallest genus of 

those surfaces on which 0 acts faithfully as a group of ori.entatiorl-p1re!"ervj 

automorphisms, so that a(O) aO(O) in general although in many cases these two 

numbers coincide (for instance when 0 has no subgroup of index two). 

eXl:enlClmg a theorem Hurwitz, Tucker showed that if a(O) > 1 (that is, if G 
either the sphere or the torus), then both I G 1/(a(G) 1) and 

I G I - 1) are bounded above, by 168 and 84 furthermore, he 

showed that when values close to these bounds are attained, the group G has at least one 

geJ1eratlJ1g··set of a given number of types, determined by the orders of the generators and 
their products (or their commutators). 

He also considered what is known simply as the genus YCO) of 0, the 

smallest genus of all such surfaces into which can be embedded some graph for G, 
and showed that YCO) a(O) s aO(O): any which corresponds to the 

action of 0 on some surface of genus provides embeddable in that 

surface: on the other hand the action of G on one of its graphs not 

extend to an action of 0 on an embedding surface, so y(O) and o(G) do 

coincide. 

Whichever type of "genus" is of interest, the Riemann-Hurwitz equation may used to 

enumerate the types of generating-sets that need to be considered for a given group. 

For when satisfies 6(0°(0) - 1) < 101 < 84(0°(0) 1), the exact 

value of 0° (0) may be determined by finding from among the following types of sets one 

which value of the quantity M: 

(i) a (x, y, z) of elements of orders p, q and r respectively, such 

that xyz element, and M::: 1 - (lIp + 11q + 1/r) ; 

(ii) a generating-quadruple (x, y, z, of elements of orders p, q, rand 

respectively, such that xyzw is the identity, and M ::: 2 (lIp + llq + llr + lIs) . 

In the optimal case, aO(G) is then given by 0°(0) 1 + 112M 101 (see [9] or [10]). 

Precisely this sort of information has been used to calculate the "genus" (in one form or 

other) of a number of finite groups - see [2], [3], [6] and [10]. In particular, the 

detem1ination of the genus of all but three of the sporadic finite simple groups is 

announced in [6], 

Some of the methods most commonly used in this context are discussed briefly in the 
next Section, and further to/,h",,,,,,3C' involving random element generation are described in 

Section 3, 

50 



2. FURTHER BACKGROUND 

The usual approach when attempting to detennine the symmetric genus of a given finite 
group is to first make a list of types of possible ranked in ascending order 
of the associated genus (given by the Riemann-Hurwitz fonnula), and then to eliminate 
each possibility in turn until one is found that succeeds. For simple groups (which have 
no of index 2), this often amounts to enumerating triples (p, q, r) of orders of 
elements of the group, ranked according to the value of M 1 - (l/p + 1/q + lIr), and 
then the first such triple for which the group can be "(p, q, that 
gerlera.ted by elements x, y and z of elements of orders p, q and r respectively, with 
xyz the identity element. For example, in the case of the Mathieu group M12 (which 
has elements of orders 1, 2, 3, 4, 5, 6, 8, 10 and 11 only), such check-list 
with the possibilities of (2, 8)-, (2, 4, 5)- and (2, 3, and once the 
first two cases are eliminated, and (2, 3, is established, the SYll1nletnc 

genus of is found to be 1 + 1/2 (1 (1/2 + 1/3 + 1/10» I I, that is, 3169. 

There are numerous ways of establishing the or non-generation of a group G 
by type of the most methods involve the use of character 

as illustrated in the final Section of flO], for example. On the 
other hand, when it comes to possibilities of certain types, there are a couple 
of tricks which can be easier to apply and as effective. 

One such trick involves a theorem of Ree [81 on if xl' x2' ... , xm are 
pelIDlltalti0I1s glene:ratmg a transitive group on a set Q of n, such that Xl x2 ... xm 

pelJlllltalti0l1, and ci the number of orbits of on Q for 1 sis m , 
(m-2)n 2 (In other words, the permutations 

For alternative proofs of this 
result and a similar one for matrix [41 and the references listed there. 

Ree's theorem an obvious restriction on the structures of possible generators 

in any known transitive representation of the group G; but of course the 
inequality can still be satisfied by pennutations which generate a proper, imprimitive, or 
even intransitive subgroup of the image group, in which other means may be required 
to eliminate the associated type(s) of n"',('"";"I,,, geller:atulg-:set. 

In the case of generating-triples, the standard character-theoretic fornmla for the 
calculation of class multiplication constants is particularly useful for detennining the actual 
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number of triples of a type. Specifically, if K1 , K2 and K3 are conjugacy 
classes of elements in the group G, the number of pairs (x, y) with x E KI , Y E K2 

and xy E K3 is by 

where Xl' X2 ... , Xm are the irreducible complex characters of G, Xr(Ks) denotes the 
common value of the character Xr on the class and is complex conjugation. 

This formula is easy to apply, given the character table for G. The problem is to 

determine which triples (if any) generate the whole group, rather than a proper subgroup, 

and often that may involve some extensive local analysis. 

One way around this problem, especially suitable in the case of groups which have 
pennutation representations of small involves the use a computer. In particular, 
the CAYLEY system (see [1]) can be used to create a list of all the appropriate triples, 

enumerating the elements of the class K1 , and then for any fixed Z E 

every element x in Kl to see whether x-1z E once the set of all such x 

the order (and other properties) of the subgroup generated by each triple (x, can 

be computed. Alternatively - and this applies not only in the cases of 

subgro of small index may be found in the abstract group whose presentation is 

by the type of possible generating-set, and the corresponding factor groups (induced by 

the natural action on co sets) analysed to see if G occurs (ef. [2, 5]). 

3. USE OF RANDOM ELEMENT GENERATION 

In the case of permutation groups of somewhat larger degree, the computing methods 

referred to at the end of the previous Section may no longer be appropriate - especially so 
for the "low index subgroups" method, as the time taken to find subgroups of index n in 

a given finitely-presented group increases exponentially with n. Nevertheless, as long as 

the computer is able to handle the given pennutation representation in a comfortable fashion 
(and for CAYLEY, this can now mean representations of degrees up to several thousand), 

answers to questions like those which arise from the genus problem may often be found. 

Incidentally, we note that storage of pennutation groups in CA YLEY is achieved through 
the use of a base and a strong generating set (see [1] for references). In rough terms, 

a base is a set of points with the property that every element of the group is uniquely 
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determined by its effect on those points, and a strong set a set of 

generators for the group, constructed in such way that element has a unique 

eXlpression as a word in those generators, determined by its effect on base. Thus 

rpl<lti'"",I" small amount of space can be finite groups that 

all their elements. 

CAYLEY also has the facility for geIler,ltlflg random elements of a group, and 

indeed this is an part of some of its other ca1pat)ihtie:s, such the enumeration of 

element C011Jugac:y classes. 

The latter process is a useful initial step in a search for the sorts of minimal gerler:atillg-

reCIUlI~ed for genus but sometimes as in the of pelrmuta.tIo,n groups 

of 

other hand, 

The 

check whether 

and if it is, 

classes 

On 

5B, 

to 

be used also in nrr.nl1,rincr a selection of of 

and z are known of the classes 

then for every choice of one may 

by at 

z, z) will be a 
structure I-'vA ""-1-''', 

of elements from the 

In this way gerlerlitlCm of the group G type may be 
established, that after a brief random selection of ro",'n" ,,('f";-C'''' of a fixed element of the 

class 

What is more difficult is to prove that none of the triples of a type generate G, 

In the case of small groups, one can always resort to an enumeration of elements of 

Kl of or ). When comes to groups, however, such an exhaustive 

enumeration may impossible; but still it may be possible to account for the aPlJropriate 

triples, random selection: 

First note that the number of pairs (x, y) with x E , Y E , and xy 

to a fixed element Z E is obtainable from the fonnula in Section 2. 
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Also note that these 

centralizer of z in G: 
fall into equivalence classes under conjugation by elements of the 

if c E CG(z) then (c-1xc, c-1yc) is an equivalent pair, with 

c-1xcc-1yc c-1zc z, and < c-1yc> < x, y c = < x, y> . 
In particular, all that 

classes of such pairs. 

needs to be done is to account for representatives of all CG(z)-

An easy way to set about this involves again letting g run through a random 
selection of elements of G in each case to see whether (g-l xgrl z is in K2 , 

but this time a record of representatives of those distinct CG(z)-c1asses of elements 

of Kl that have been met. Then whenever a random conjugate of x is found to provide 

a pair of the sort, ~ut is a conjugate by some element in CG(z) of an element 

previously found to have this property, it discarded, and the next one chosen. If the 

"'V'l.Ju~al'v is of the right sort and does not provide a pair that is equivalent to 

then it added to the set of representatives. 

Such a method is invoked in the tnlln\XJ1f1ICf CA YLEY procedure, where x y and z are 

initial of the classes K1 , K2 and of elements of the group 

called 

r= ranelt 
for j = 1 to do u 

if order(uA -1*z) eq oy then 
if structure (uA -1*z) eq esy then 

end; 

order(ue meet repset) eq 0 then 

end; 

join [u]; 
nxs+order (ue); nes = nes+ 1; 

f '; print nes,order(ue),nxs,order z»; 

if nxs eq ntr then break; end; 
end; 
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Here the variables "repset It, "nxs" and If ncs II respectively stand for the set of 
representatives of CG(z)-classes of conjugates of x, the number of conjugates of x 
found so far to provide pairs of the required sort, and the number of of 
such pairs found so far. The constant "ntr If is the actual number of pairs that need to be 
accounted for, obtained from the formula given earlier, and the variable "r" is of course a 
randomly chosen element of the group. 

At any particular stage of the process, the variable "u" is a conjugate of x, and the 
command tt u = uAr II replaces u by r-1ur, another random conjugate of x. Also, 
rather than choosing a new random element r every step of the way, the procedure uses 
the current r as many times as it can (that is, up to m -1 times, where m is its order), 
without obviously obtaining the same u as obtained a few steps previously. Even in this 
non-standard fashion, the steps used in obtaining such conjugates of x may be thought of 
as part of a random walk the group G. The command "uc uAcz" enumerates 
the elements of the class cu of all of u by elements of CG(z), denoted by cz· 
this class is of course expected to be much smaller than the whole of K1 , and hence 
capable of temporary storage. The other parts of the procedure should be self­
explanatory. 

Analogues of this procedure were used by the author in a joint project with 
Robert Wilson and Andrew Woldar on the symmetric genus of some of the 
sporadic finite simple groups and the groups McL, Suz and Co2 , 

which have faithful permutation representations on 275, 1782 and 2300 
points respectively. 

The answers are announced in [6], with the details expected to appear in a sequel, 
however one of the cases that had to be eliminated provides a good illustration of the 
method outlined here, namely the possibility of generation of CO2 by a pair of elements 
from the classes 2C and 4G with product in the class 5B. The group CO2 itself has 
order 42305421312000, the class 2C has size 28690200, and the centralizer of an 
element of 5B has order 600; and given any element z in 5B, there are 18000 pairs 
(x, y) with x in 2C, Y in 40, and xy = z. Obviously it would be impractical to 
enumerate all the elements of 2C, and for this reason the random conjugates method was 
adopted. As it turned out (after several hours of computing time), all 18000 pairs were 
found to generate proper subgroups of Co2 , as follows: 

9 CG(z)-classes of pairs, each class of size 600, generate subgroups.of order 88704000, 

6 Cdz)-classes of pairs, each class of size 600, generate subgroups of order 1 351680, 
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8 CG(z)-classes of pairs, each class of size 600, generate subgroups of order 368640, 

8 CG(z)-classes of pairs, each class of size 300, generate subgroups of order 5 120, 

1 CG(z)-classes of pairs, of size 600, generate subgroups of order 600, and 

4 CG(z)-classes of pairs, each class of size 300, generate subgroups of order 120. 

Incidentally, we note that this information may lead to a proof by hand that (2C, 4G, 5B)­
generation of CO2 is impossible indeed the results of such computation often point the 
way for the appropriate local analysis. 

Finally we consider some of the probabilistic aspects of this method. First of all, 
every time a new random conjugate of x is taken, there is a fixed probability that it will 

provide a pair of the required sort - namely n/K, where K = I Kl I and n is the 
number of these pairs (given by the character-theoretic formula). Hence, as the search 
progresses, one might reasonably expect to find such a pair, say, every s seconds 
(where s depends on the speed of the machine). On the other hand, as the stored set of 
representatives gets larger, the probability of finding a new pair - that is, a pair not 
equivalent to any found already - will decTease. 

This like sampling from a population with replacement, and naturally what is of 
interest to us is the expected waiting time before the whole population is exhausted (cf. 
[7; Section IX.3] ). If we forget about the partitioning into CG (z)-classes for the 
moment, the expected number of pairs to be tested before accounting for all of them would 
be n (lin + 1/n_1 + ... + 1h + 1), which is rather large. If however, we make the 
simplifying assumption that there are, say, m classes, each of the same size, the 
expected number reduces to m (11m + I/m_l + ... + 1/2 + 1), and an estimate of the waiting 

time is then m ( 11m + I/m_l + ... + 1 h + 1) s seconds. Clearly this may not be the most 
accurate of estimates, but at least it serves as a useful guide. 
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