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Abstract

We consider sets of three MOLS (xnutually orthogonal Latin squares) having
holes corresponding to missing sub-MOLS that are disjoint and spanning. We
show that three MOLS with n holes of size h exist for & > 2 if and only if
n > 5, with 61 possible exceptions {h,n).

1 Introduction

Let P = {51,...,5,} be a partition of & set S, where n > 2. A partitioned incom-
plete Latin square (or PILS) having partition P is an |P| x |P| array L, indexed by
5, which satisfies the following properties:

1. & cell of L either contains a symbol from § or is empty

2. the subarrays indexed by S; x §; are cxﬁpty, for 1 < i < n (these subarrays
are called holes)

3. the elements occurring in row (or column) s of I are precisely those in S\S,
where 5 € 5;.

The type of L is the multiset {|51],...,]5.|}. We use the notation 1129 . . to
describe a type, where there are precisely u; occurrences of i, for i = 1,2,....

Suppose L and M sre PILS having the same partition P. We say that L and M
are orthogonal if their superposition yields every ordered pair in S 1 (US:*). Several
PILS are orthogonal if every pair is. The term “orthogonal PILS” is abbreviated
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to OPILS. (The term HMOLS is also used in the literature and it has the same
meaning as OPILS. HMOLS is an abbreviation for “holey mutually orthogonal
Latin squares”.)

OPILS have been studied by several researchers. Some applications to the con-
struction of other types of designs are as follows: Room frames [9], Howell designs
[22], conjugate orthogonal arrays invariant under K [15], Steiner pentagon systems
(17], idempotent Schroeder quasigroups [8], perfect Mendelsohn designs [3] [4] and
2—perfect M—cycle systems [16].

The maximum number of OPILS of type T" will be denoted N(T'). The numbers
N(T) have been studied mainly in the case where T' = h™. It is easy to see that
N(h") < n—2. We are interested in the situations when N(h™) > 3. The following
results have been proved.

Theorem 1.1 1. [1],[4] N(1") >3 ifn > 5, n # 6, 10,18, 22, 26.

2. [18],[26],[14] If h = 2 or 10, then N(A™) > 3 if n > 5, except possibly for
n = 15,42,44,48,52,54, or 80, or for even n < 38.

3. [18],[14] N(3") > 3 ifn > 5, ezcept possibly for n = 15,28, 30, 32,34, 38,44, 48
or 58, or for even n < 24.

{. [19,[14] N(4") > 3 if n > 5, ezcept possibly for n = 14,18,22 or 28.

5. [14] N(6") > 3 if n > 5, ezcept possibly for n = 6, 7, 11, 19, 23, 27, 31, 32,
34, 38, 39, 42, 47, 51, 58, 59 or 62, or for evenn, 10 < n < 24.

6. [14] If b > 5, h # 6,10, then N(A") > 3 if n > 5, ezcept possibly for n =
6,10,14,18, 22,26, 30,34 or 38.

For the sake of completeness, we also mention the following lower bounds on
N(h™) which have been proved in [10] and [27].

Theorem 1.2 1. For any h > 2, N(h™) > 2 if and only if n > 4.
2. N(2') > 4 and N(2%) > 6 for n € {29,37,41,53,61,73, 89, 97}.

In this paper, we show that N(A") > 3 for b > 2 if and only if n > 5, with 61
ordered pairs (h,n) as possible exceptions, listed in Table 1.

We shall assume that the reader is familiar with the standard terminology of
group-divisible designs (GDDs), mutually orthogonal Latin squares (MOLS) and
transversal designs (TDs) (see, for example, [5] and [30]). Of course, a TD(k,n)
is equivalent to k — 2 MOLS of order n. Further, a TD(k,n) is equivalent to a
TD(k —1,n) in which the blocks can be partitioned into parallel classes; such a TD
is called resolvable.

We shall make use of some results concerning existence of MOLS (for a list of
lower bounds up to order 10000, see [6]). For existence of three and four MOLS,
the following results are known.
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Table 1: Existence of three OPILS of type A"

h possible exceptions n
2 6,8,10,12, 14, 15, 16, 18, 20, 22, 24, 28, 30, 32, 34, 38, 42, 44, 48, 52
3 6,8,10,12,14,16, 18, 20, 22, 24, 28, 32, 34
5 6,10,18,22
6 7,10,11,12,14,16,18,19, 20, 23
10 6,8,10,15,16
11 6,10
14,17,18 8
23 6,10,18,22

Lemma 1.3 [5],[13] There ezist three MOLS of order n if n > 4, n # 6,10.

Lemma 1.4 There ezist four MOLS of order n if n > 5, n # 6, 10, 14, 18, 22, 26,
30, 34 or 42.

Proof: For most values of n, the result can be found in [5] and [13]. See [1] for the
two cases n = 28 and 52. Finally, the two cases n = 38 and 44 were done by D.
Todorov (private communication from P. Schellenberg). 1

We also require the idea of incomplete transversal designs [7]. Informally, an
incomplete TD(k,n)— TD(k,m) denotes a TD(k,n) “missing” a sub-TD(k,m).
We observe that an incomplete TD(k,n)— TD(k,0) and an incomplete TD(k,n)—
TD(k,1) exists if and only if a TD(k,n) exists. Also an incomplete TD(k,n) —
U1 TD(k,m;)is equivalent to k — 2 OPILS of type {my,...,m,} if "0, m; = n.

The following obvious construction comes from the direct product of MOLS.

Lemma 1.5 Suppose there ezists a TD(k,n) and ¢ TD(k,m). Then there ezists
an incomplete TD(k,mn)— TD(k,m).

For small values of m, the following is known.

Lemma 1.8 There ezists an incomplete TD(5,n)— T'D(5, m) in the following cases:

1. ifm=2,n>8andn #1213, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26,
27, 28 or 31

2. ifm="T,n>28 and n # 30,34, 38,41, 44,45, 46 or 48
3. if m=28,n2>32 and n # 46
4. ifm=29,n>36 and n # 38,42 or 50

Proof: See [20], [26], [32], [34] and [33]. O

We shall also make use of a few special examples.
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Lemma 1.7 There ezists an incomplete TD(5,n)— TD(5,m) if (m,n) = (12,3),
(18,4), (21,4), (22,4) or (30,5).

Proof: See [23], [24], [28] and [31]. O

2 Constructions

In this section, we give several recursive constructions for OPILS, most of which
are previously known. These include two Wilson-type constructions [29], a group-
divisible design construction, and a “filling in holes” construction. We also describe
a new construction based on k—{rames.

The following four constructions were used in [26].

Lemma 2.1 [10] Suppose (X,G, A) is e group-divisible design, and let w : X —
Z+U{0}. Let k be a positive integer. Suppose that there are k OPILS of type w(A)
for every block A € A. Then there are k OPILS of type {T,.cw(z): G € G}.

Lemma 2.2 [7] Suppose there is ¢ TD(k + 1,t) and letu; > 0 for 1 < i <t —1.
For 1 €4 <t 1, suppose there is an incomplete TD(k,m + u;)— TD(k,v;). Then
N{m'u') > k — 2, where u = Y u,.

Lemama 2.3 [7] Suppose there is @ TD(k + £,t) and let u; > 0 for 1 <i < £—1.
For 1 <4 < £~ 1, suppose there is an incomplete TD(k,m + u;)~ TD(k,u;). If
£ <t+1-L, then suppose there ezists a TD(k,m). Then N(m*Y(m+u)') > k-2,
where u = Yt u,.

Lemma 2.4 [26] Suppose there are k OPILS of type {t1,...,1,}, and let € > 0.
For1 < i < n, suppose there are k OPILS of type T;U{e}, where t; = ¥ycpt. Then
N((UT) U{e)) > k.

Combining Lemmas 2.2 and 2.3, we get

Lemma 2.5 Suppose there is ¢ TD(k + £,1), let u; > 0 for 1 <i < £—1 and let
v;j20for1<j<t—1 For1<i<f-1andl<j<t—1, suppose there is an
incomplete TD(k,m +u;+v;)— TD{k,u;)— TD(k,v;). Then N(m!(m +u)'v!) >
k-2, where u =S¥ u; and v = i vse

As & new generalization of Lemma 2.2, we present the following.

Lemma 2.6 Suppose there is ¢ TD(k + 1,t) and let w; > 0 for 1 < i < t—1.
Let s be a positive integer, and for 1 < j < s, let a; be positive integers such that
m 2 365, Forl <i<t-1, suppose there is an incomplete TD(k,m + u;)~
TD(k,w;) — Ui, TD(k, a;).
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1. Suppose there ezist k—2 OPILS of type (a;)t, for 1 < j < s. Then N(m'u') >

k—2, where u = T u,

2. Suppose m = Yi_; a; and let € > 0. Suppose there ezist k — 2 OPILS of type
(a;)'e, for 1 < j < s. Then N(mi(u + €)') > k — 2, where u = ¥ ;.

Next, we mention the well-known direct product construction.

Lemma 2.7 [10] Suppose there ezist k OPILS of type {t1,...,t.} and k MOLS of
side m. Then there exist k OPILS of type {mty,...,mt.}.

Our final construction is a new construction that uses a type of design known
as a frame, as defined in [24]. We note that this construction is not necessary to
prove the results in this paper, but we include it because we feel it is of independent
interest and may be of use in the future.

A GDD in which every block has size m is denoted an m—GDD. Suppose
(X,6,A4) is an m~GDD. A holey parallel class is a set of blocks which partition
X\@G for some G € G. If the block set .4 can be partitioned into holey parallel
classes, then the GDD is called an m—frame. The type of the frame is the type of
the underlying GDD. In the construction, we shall make use of the fact that there
are exactly |G|/(k — 1) holey parallel classes that partition X\G, for every G € G
(see [24] and [25]).

Theorem 2.8 Suppose there ezists an m—frame of type {t1,...,1,} and k MOLS
of side m. Then there ezist k OPILS of type {t1,...,t.}.

Proof: Suppose (X,G,A) is an m—frame, where § = {G1,...,G,}. For1 <i <n,
name the parallel classes having G; for their hole Py, where 1 < j < |Gil/(m — 1).
For 1 < i < n, partition G; into disjoint (m — 1)—subsets, denoted G,;, 1 < 5 <
IGil/(m —1). For 1 <i<mand1<j<|Gl|/(m—1),let ¢ : {2,...,m} — Gy
be a bijection. Also, for 1 <h <k +2, define X), = X x {h}, and let Y = UFF2X,.

We shall construct an incomplete TD(k +2,|X|) — UL, TD(k + 2, |G;]), which is
equivalent to k OPILS of type {t1,...,.}. The incomplete TD will have groups X,
1 < h < k+2, and the ith missing sub-TD will have groups G; x {h},1 < h < k+2
(1£ign). )

The blocks are as follows. For any block B, B € P;;, construct a resoclvable
TD(k + 1,m) on point set UyY} B x {h}, having groups B x {h}, 1 < h < k + 1.
Denote the parallel classes by Qg 1 < £ < m. We can take the parallel class Qp,
to consist of the blocks {B, : = € B}, where B, = {(z,1),...,(z,k + 1)}. For
2 < £ < m, define a set of blocks By, by adjoining the point (¢:;(£),k + 2) to every
block in @p,. Define By = UP,Bg, and B = UpeaBp. Then B is the block set of
the desired incomplete TD.

We need to verify that two points from different groups and different holes occur
in a unique block. So, let (z,h) and (z', 2') be two points, where 1 < h < h' < k+2
and z and z' are from different groups of G. There are two cases to consider: (1)
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h < k+1, and (ii) ' = k+ 2. In case (i), find the unique block B such that
{=z,2'} € B. Then, the pair {(z,k),(z',h')} C Bp. In case (ii), there are unique
values ¢ and j such that z’' € G;;. Then there is a unique block B € F;; such
that z € B. Finally, define £ = (¢;;)""(z’). Within the parallel class Qg,, there
is a unique block containing the point (z,h). Hence, {(z,h),(z',h')} C Bp,. This
completes the proof. (3

Example 2.1 Let X = {0,1,2,3,4,5,6,7}, G = {Go,...,Gs} where G; = {i,1+4}
for 0 < i < 3, and A is obtained by developing the block {0,1,6} modulo 8. Then
(X,6,A) is a 3—GDD of type 2*. For 0 < i < 3, define P; = {{i +1,i +2,i +
7} {i+ 3,4 4 5,1+ 6}} (where all points are reduced modulo 8). Then, we have a

3—frame. If we apply the construction of Theorem 2.8, we get the following set of
two OPILS of type 2*.

o
e
(=]
=N
[

fu—
o
244
-3
(2]
N

6 3
37 054 1
2104 11615

2N
~3
[

As another application of Theorem 2.8, we can construct three OPILS of type
6" if n = 5,9 or 13. This follows immediately form the existence of 4—frames of
these types (see [24] and [21]); and from the existence of three MOLS of order 4.

(OPILS of these types have previously been constructed by Lamken in [14], using
other methods.)

3 Hole size six
In [14], Lamken proves the existence of three OPILS of type 6™ with 25 possible

exceptions. We can remove 15 of these exceptions, leaving 10 values unsettled. We
give a complete existence proof here, since it is quite short.
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Lemma 3.1 There ezist three OPILS of type 6™ if n = 5,9,13 or 17.

Proof: This follows immediately from Theorem 4.3 of [14]. OO

Lemma 3.2 There ezist three OPILS of type 6™ if n = 8 or 15.

Proof: There exist (v,7,1)—BIBDs for v = 49 and 91 {11]. Deleting a point from
each BIBD, we get 7—GDDs of types 6° and 6'®. Apply Lemma 2.1, noting that
three OPILS of type 17 exist. O '

Lemma 3.3 There ezist three OPILS of type 6°.

Proof: Apply Lemma 22 witht =5, k =5, m'= 6, u; = uy = 1 and ug = ug =
2. The required incomplete TD(5,7)— TD(S 1) and TD(5 8)— TD(5,2) exist by
Lemma 1.4 and Lemma 1.6 respectively. [J

Lemma 3.4 Suppose there ezist three OPILS of type 6" and four MOLS of order
q, where g — 1< 6n < 2(q—1). Then there ezist three OPILS of type 697",

Proof: Apply Lemma 22 witht =5, k=5 m=6,u; =1lor2, 1 <i<g¢g-1.
Incomplete TD(5,7)— TD(5,1) and TD(5,8)~ TD(5,2) exist, as noted in the proof
of Lemma 3.3. We obtain three OPILS of type 62(6n)!. Fill in the hole of size 6n
with OPILS of type 6°. O

Lemma 3.5 There ezist three OPILS of type 6™ if 21 < < 302, m # 23.

Proof: We apply Lemma 3.4 with the values of n indicated in the following table.
For each n, three OPILS of type 6" exist. We get three OPILS of type 6™ for all m,
dn+1<m < Tn+ 1, except when m —n € {6,10,14, 18, 22,26,30,34,42}. These
possible exceptions are listed in the third column of the table. It is easy to check
that all stated values of m are obtained. [J

n | interval covered | possible exceptions
5 21— 36 23, 27, 31, 35

6 25 — 43 28, 32, 36, 40

8 33— 57 34, 38, 42, 50

9 37— 64 39, 43, 51

15 61 — 106

25 101 — 176

43 173 — 302
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Theorem 3.8 There ezist three OPILS of type 6™ if n > 5, n 5 7, 10, 11, 12, 14,
16, 18, 19, 20 or 29.

Proof: By Lemmas 3.1, 3.2, 3.3 and 3.5, the result is true for n < 302. Hence,
assume n > 303. Write n = 5¢ + a where a € {5,6,8,9,17}; then ¢ > 58 and
a TD(6,q) exists. Define k = 5,¢ = qand m = 30. For1 < i < ¢—1, take
u; € {0,1,5} such that 6a = ¥"%"] u;. Now, apply Lemma 2.2, noting that TD(5, 30)
and incomplete TD(5,31)— TD(5,1) and TD(5,35)— TD(5,5) all exist (this last
example comes from Lemma 1.5). We obtain three OPILS of type 309(64)*. Fill in
the holes with three OPILS of types 6° and 6%, thus producing three OPILS of type
goete = 7. [

4 Hole sizes two, three and ten

First, we deal with hole size three. When = is odd, n > 5,n # 15, three OPILS of
type 3" exist by [19] and [14]. Type 3'® can be done as follows.

Lemma 4.1 There ezist three OPILS of type 3'5.

Proof: Use the 7-GDD of type 3'® constructed by Baker [2]. Give every point
weight 1 and apply Lemma 2.1. OO

In the case of an even number of holes, we are able to remove five of Lamken’s
exceptions from [14], namely orders 30, 38, 44, 48 and 58. We give an alternate
proof of ihe existence result here.

Lemma 4.2 There ezist three OPILS of type 3™ if n is even, n > 26, n ¥ 28,32
or 34.

Prooft Write n = 5¢ 4+ a where a € {1,5,7,9,13} and ¢ is odd. Define k = 5,
= ¢ and m = 15. If possible, take u; € {0,1,5} for 1 <4 < ¢ — 1, such that
3a = Y%} u;. This can be done in the following cases: n > 30, n = 0 mod 10;
n 242, n = 2mod 10; n > 54, n = 4 mod 10; n > 26, n = 6 mod 10; and n > 78,
n = 8 mod 10. In each case, t > 5, so there is & TD(6,t). Now, apply Lemma
2.2, noting that TD(5,15) and incomplete TD(5,16)— TD(5,1) and TD(5,20)—
TD(5,5) all exist (Lemma 1.5). We obtain three OPILS of type 15%(3a)'. Fill in
the holes with three OPILS of types 3° and 3%, thus producing three OPILS of type
3eate = gn,
We still need to provide constructions for the following cases: n = 44; and
38 < n < 68, n = 8 mod 10. For n € {38,48, 58,68}, we proceed as follows. Write
n = 5t + 3, where ¢t € {7,9,11,13}. Let k = 5, m = 15 and £ = 3; and define
up=1l,up=56vy=v;=v3=1landv;=0if4<j<i{-1. Apply Lemma 2.5,
constructing three OPILS of type 1571213, Filling in holes with three OPILS of
types 3° and 37, we get three OPILS of type 3%+® = 37,
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Finally, we need to consider n = 44. Write 44 = 7x 5 +2+7. Let k = 5,m=15
and £ = 3; and define u; =1, u3 =5, 0, = ... =vg =5, v = 1 and vg = 0. Apply
Lemma 2.5, constructing three OPILS of type 156212. Filling in holes with three
OPILS of types 3° and 37, we get three OPILS of type 3. [

Summarizing previous results, we have

Theorem 4.3 There ezist three OPILS of type 3" if n > 5, n # 6, 8, 10, 12, 14,
16, 18, 20, 22, 24, 28, 32 or 34.

Next, we discuss the case of hole size two. We can construct four new examples.
Lemma 4.4 There ezist three OPILS of type 2% and 254,

Proof: For type 2%, apply Lemmea 2.2 with £ = S, k=5, m=14,u; =u; =1 and
u3 = uq = 0. This gives us three OPILS of type 1452!. Filling in holes with three
OPILS of type 27, we get three OPILS of type 2%.

For type 2%, apply Lemma 2.2 with ¢t = 7, k = 5, m = 14, u; = u, = 4,
u3 = u4 = 1 and ug = ug = 0 (an incomplete TD(5,18)— TD(5,4) exists by Lemma
1.6). We get three OPILS of type 14710, Filling in holes with three OPILS of types
2° and 27, we get three OPILS of type 254. [

Lemma 4.5 There ezist three OPILS of type 2% and 2°°.

Proof: For type 2, apply Lemma 2.6 with ¢ = 5, k = 5, m = 10, u; = u, = 1,
us =ug =0, s =1 and a; = 2. We need an incomplete TD(5,10)— TD(5,2), an
incomplete TD(5,11)— TD(5,2)— TD(5,1), and three OPILS of type 2°. This gives
us three OPILS of type 10°2". Filling in holes with three OPILS of type 2% we get
three OPILS of type 2%¢,

For type 2*°, apply Lemma 2.6 with t = 9,k =5, m = 14, u; = ... = ug = 4,
§ =14 and a; = ... = a4 = 1. An incomplete TD(5,18)— TD(5,4) — 14 TD(5,1)
is equivalent to three OPILS of type 141, Let € = 2 and observe that there are
three OPILS of type 1°2'. We get three OPILS of type 14°341. Filling in holes with
three OPILS of types 27 and 2'7, we get three OPILS of type 2%0. (]

Theorem 4.6 There ezist three OPILS of type 2% if n > 5, n # 6, 8,4 10, 12, 14,
15, 16, 18, 20, 22, 24, 28, 30, 32, 34, 38, 42, 44, 48 or 52.
Proof: Combine Theorem 1.1 and Lemmas 4.4 and 4.5. [J

Finally, we consider the case of hole size ten. We can remove all but five of the

possible exceptions from [14]. We give a complete proof of our existence results,
since it is quite short.
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Lemma 4.7 There ezist three OPILS of type 10™ if n is even, n > 12, n # 16.

\Proof. Apply Lemma 2.6 with t = n —1, k = 5, m = 10, u; = 0 or 1 such that

lu; =10, s = 1 and a; = 2. We need an mcompletc TD(5,10)— TD(5,2),
an incomplete TD(5,11)— TD(5,2)— TD(5,1). Three OPILS of type 2* exist by
Theorem 4.6 since ¢ is odd and ¢ # 15. This gives us three OPILS of type 10™. O

Theorem 4.8 There ezist three OPILS of type 10™ if n > §, n # 6, 8, 10, 15 or
16.

Proof: If n is even, apply Lemma 4.7. Hnis odd, n # 15, take three OPILS of
type 2" and apply the direct product construction (Lemma 2.7) with m = 5. O

5 Other hole sizes

In this section, we discuss the hole sizes not yet considered, namely h > 2, h # 2,
3, 6 or 10.

Lemma 5.1 Suppose h > 2, h # 2,3,6 or 10, and n > 5, n # 6, 10, 18, 22, or 26.
Then there ezist three OPILS of type h™.

Proof: 1ake three OPILS of type 1® and apply the direct product construction
(Lemma 2.7) with m = h. O

In dealing with the remmmng cases, n = 6, 10, 18, 22, 26, we shall require
some results on mcomplete transversal desxgns TD(5 v)— TD(5 u) The fo]lowmg
recursive construction is Proposition 3.4 of [7.

Lemma 5.2 Suppose there is « TD(k+1,t), a TD(k,m) and a TD(k,m +1), and
let 0 < s <t. Then an incomplete TD(k,mt + s)— TD(k,s) exists. Further, if a
TD(k,s) ezists, then the following ezist: an incomplete TD(k,mt+s)— TD(k,t), an

incomplete TD(k,mt + 3)— TD(k,m) (if s # t) and an incomplete TD(k, mt+ 9)-—
TD(k,m+1) (if s #0).

We obtain the following corollary.

Corollary 5.3 Suppose there is a TD(6,t) and a TD(5,s), where 0 < s S/t. Then
an incomplete TD(5,4t + s)— TD(5,1) ezists.

The following direct construction comes from [23].

Lemma 5.4 If h = 3a + 1 is a prime ezceeding 7, then there is an incdhplete
TD(5,4a+ 1)~ TD(5,a).
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Finallly, we use a singular direct product construction of Horton. The following
is Theorem 4 of [12].

Lemma 6.5 Suppose there ezist k — 2 OPILS of type 1*, a TD(k,v — w) and an
incomplete TD(5,v)— TD(5,w). Then an incomplete TD(k,n(v—w)+w)— TD(k,n)

ezists.

We can now proceed to the construction of three OPILS of type h” when n =
6, 10, 18, 22, 26. Our main tool will be Lemma 2.2. We shall split the problem into
three parts according to the congruence class of A modulo 3.

Lemma 5.6 If h = 0mod 3, h > 9, and n € {6,10,18, 22,26}, then there exist
three OPILS of type h™, ezcept possibly when (h,n) = (18, 6).

Proof: First, suppose h # 18,30, Write h = 3c andlet t = n — 1,k =5, m = h,
Uy = Uz = ug = @ and ¥y = ... = w3 = 0. Apply Lemma 2.2, noting that the
following ingredients exist: a TD(5,3a), an incomplete TD(5,4a)— TD(5, a) (from
Lemma 1.5 if h # 9, and from Lemma 1.7 if h = 9) and a TD(6,n — 1). We get
three OPILS of type A".

Forh=30lett =n—~1, k=5 m=~h u =u; =8 anduy = uy = 7
and g = ... = %,y = 0. An incomplete TD(5,38)~ TD(5,8) and incomplete
TD(5,37)~ TD(5,7) exist from Lemma 1.6 and & TD(6,n—1) exists. Apply Lemma
2.2.

Fineily, suppose h = 18 andn > 10. Let t =n~ 1L, k=86, m=h, u, = ... =
g = 4and vy = ug = 1l and uy = ... = u,, = 0. An incomplete TD(5,22)-
TD(5,4) exists from Lemma 1.7, and TD(5,19) and TD(6,n — 1) exist. Apply
Lemma 2.2. The case h = 18,n = 6 remains as a possible exception. [

Lemma 5.7 If h = 1mod 3, h # 10 and n € {6,10,18, 22,26}, then there ewist
three OPILS of type h™.

Proof: First, assume h # 55. Write h =3a+ 1 andlet t =n —1,k =5, m = h,
Uy = Uy = ug = @, ug = 1 and w5 = ... = u;; = 0, and apply Lemma 2.2. We
need the following ingredients: a TD(5,3a + 1), a TD(5,3a + 2), an incomplete
TD(5,4a + 1)~ TD(5,a) and & TD(6,n — 1). The TDs with five and six groups
come from Lemmss 1.3 and 1.4. The incomplete TD is ‘obtained as follows. If
a > 5, a# 6,10, 18, 22, 26, 30, 34, or 42, then there is a TD(6,4), and hence we
can apply Corollary 5.3 with b = 1 to construct the incomplete TD. When a = 4, 6,
10, 22, 26, 34, or 42, then apply Lemma 5.4. When o = 1, an incomplete TD(5,5)~
TD(5,1) clearly exists; and when a = 2, an incomplete TD(5,8)— TD(5,2) exists
from Lemma 1.6. For a = 30, apply 5.5 with k =4, n =30, v = 5 and w = 1.
There remains the case b = 55 (i.e. a = 18). Here, we apply Lemma 2.2 with
ixnml,k=5,mxh,u1 xu;:ug,::17,u4=4mdu5:...:u;_1:0‘
We now need a TD(5,55), an incomplete TD(5,72)— TD(5,17), an incomplete
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TD(5,59)— TD(5,4) and a TD(6,n — 1). If we apply 5.3 with £ = 17 and s = 4, we
get an incomplete TD(5,72)~ TD(5,17). To construct the other incomplete TD,
start with a TD(5,12) and delete a point to produce a {5,12}—~GDD of type 4'%11%,
Give every point weight one and apply 2.1. obtaining three OPILS of type 4'*11%.
Then, fill in holes with three MOLS of sides 4 and 11, but leave one hole of size 4
empty. O

Lemma 5.8 If h = 2mod3, h > 5 and n € {6,10,18,22,26}, then there exist
three OPILS of type h®, ezcept possibly for (h,n) = (5,6), (5,10), (5,18), (5,22),
(11,6), (11,10), (14,6), (17,6), (23,6), (23,10), (23,18) or (23,22).

Prooft Write h =3a+8andlet i =n—1, k=5 m=h, v = u; = ug = q,
ug = 8 and ug = ... = wy; = 0. In order to apply Lemma 2.2, we need the
following: a TD(5,3a + 8), an incomplete TD(5,4a + 8)— TD(5, a), an incomplete
TD(5,3a + 16)— TD(5,8) and a TD(6,n — 1). As before, the required TDs with
five and six groups exist. The incomplete TDs exist in the following cases. If a > 8,
a # 10, 14, 18, 22, 26, 30, 34, or 42, then there is an incomplete TD(5,4a + 8)—
TD(5,a) by Corollary 5.3; and when a = 7, an incomplete TD(5,4a + 8)— TD(5,a)
exists by Lemma 1.6. If ¢ > 6, a # 10, then there is an incomplete TD(5,3a+16)—
TD(5,8) by Lemma 1.6. Hence, we are finished if h # 5, 8, 11, 14, 17, 20, 23, 26,
38, 50, 62, 74, 86, 98, 110 or 134.

Next, we write h =3a+5andlet it =n—1, k=5 m = h, u; = uy = u3 = q,
ug = § and us = ... = .y = 0. Now, we need a TD(5,3¢ + 5), an incomplete
TD(5,4a+5)— TD(5, a), an incomplete TD(5,3a+10)— TD(5,5) and a TD(6,n—1).
As before, the TDs exist. Incomplete TDs exist as follows. If A = 20, 28, 38, 50, 62,
74, 86, 98, 110 or 134 , then we construct an incomplete TD(5,4a + 5)— TD(5,q)
from Corollary 5.3. If h = 38, 50, 62, 86, 98, 110 or 134 , then we construct an
incomplete TD(5, 3a + 10)— TD(5,5) from Lemma 5.2 using the equation h + 5 =
4t + 7, where it can be checked in each case that a TD(6,t) exists. If b = 74, then
instead use the equation 79 =4 x 17+ 11. If h = 26, then we first construct three
OPILS of type 4%6" from Lemma 2.3 with k=5,£=3,t =T, m =4, u; =u, = 1
and ug = ... = ug = 0. Then, fill in holes using € = 1 in Lemmae 2.4, leaving & hole
of size 5 empty. If b = 20, then an incomplete TD(5,25)— TD(5,5) exists from
Corollary 5.2. Hence, we can apply Lemma 2.2 in all these cases.

We have yet to do the cases b = 5, 8, 11, 14, 17 and 23. When & = 8, we let
t=n-—-1, k=5 m=8 u =uz=ug=uy=2and ug = ... = u,; = 0. We have
s TD(5,8), an incomplete TD(5,10)— TD(5,2) (Lemma 1.6) and a TD(6,n — 1).
Apply Lemma 2.2.

When (h,n) = (11,18), (11,22), (11,26) or (23,26), we can apply Lemma 2.2
withi=n—1,k=5,m=h and u; € {0,1} such that u = h.

When h = 14 and n = 10, 18, 22, or 26, we can apply Lemma 2.2 with t = n 1,
k =5, m = 14 and u; € {0,1,4} such that v = 14 (note that an incomplete
TD(5,18)~ TD(5,4) exists by Lemma 1.7). Similarly, when h = 17 and n = 10, 18,
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22, or 26, we can apply Lemma 2.2 witht =n—1, k=5, m = 17 and v, € {0,1,4}
such that u =17 (an incomplete TD(5,21)~ TD(5,4) exists by Lemma 1.7).

Finally, we can do the case (h,n) = (5,26) as follows. Apply Lemma 2.2 with
t =25 k=25 m =25and uy = 5 and u; = ... = u, = 0. An incomplete
TD(5,30)— TD(5,5) exists by Lemma 1.7. We get three OPILS of type 2555, Fill
in the holes of size 25 with three OPILS of type 5°, obtaining three OPILS of type
5%

Summarizing, we have

Theorem 5.9 If h > 2, h ¢ {2,3,6,10}, and n > 5, then there ezist three OFILS
of type h™, except possibly for (h,n) = (5,6), (5,10), (5,18), (5,22), (11,6), (11,10),
(14,6), (17,6), (18,6), (23,6), (23,10), (23,18) or (23,22).

Proof: Combine Lemmas 5.1, 5.6, 5.7 and 5.8. ]
We have now discussed all possible hole sizes, so we have our main result.

Theorem 5.10 Ifh > 2 and n > 5, then there exist three OPILS of type h™, ezcept
possibly for the 61 possible exzceptions (h,n) listed in Table 1.
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