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to OPILS. (The term HMOLS is also used in the literature and it has the same 
meaning as OPILS. HMOLS is an abbreviation for "holey mutually orthogonal 
Latin squares".) 

OPILS have been studied by several researchers. Some applications to the con­
struction of other of designs are as follows: Room frames [9], Howell designs 
[22], conjugate orthogonal arrays invariant under K4 [15], Steiner pentagon systems 
[17], idempotent Schroeder quasigroups [8], perfect Mendelsohn designs [3] [4] and 

systems [Hi]. 
The maximum number of OPILS of type T will be denoted N(T). The numbers 

N(T) have been studied mainly in the case where T hn. It is easy to see that 
N(hn) n 2. We are interested in the situations when N(hn) ~ 3. The following 
results have been 

Theorenl 1.1 1. [1],[4] N(ln) ~ 3 ifn 5, n 6,10,18,22,26. 

2. [18], [26], [14] If h = 2 0'1' 10, then N(hn) ~ 3 if n ~ 5, except p088ibly for 
n = 15,42,44,48,52,54, or 80, or for even n 38. 

9. [19],[14J N(3n
) 3 ifn ~ 5, exceptpo8aibiy 

or 58, or for even n ~ 24. 
n 15,28,30,32,34,38,44,48 

4. [19], [14] N( 4n) 3 if n ~ 5, except pO&IJibly for n 14,18,22 or 28. 

5. [14] N(6n
) 3 if n ~ 5, except p08sibly for n 6, 7, 11, 19, 23, 27, 31, 32, 

38, 39, 42, 47, 51, 58, 59 or 62, or for even n, 10 ~ n :::; 24. 

6. [141 If h 5, h i 6,10, then N(hn) 3 if n ~ 5, except possibly for n = 
6,10,14,18,22,26,30,34 or 38. 

For the sake of completeness, we also mention the following lower bounds on 
N(hn) which have been proved in [10] and [27]. 

Theorcnl 1.2 1. For any h ~ 2, N(hn) 2 if and only if n ~ 4. 

2. N(211) ~ 4 and N(2n) ~ 6 for n E {29, 37,41,53,61,73,89, 97}. 

In this paper, we show that N(hn) ~ 3 for h 2 if and only if n ~ 5, with 61 
ordered pairs (h, n) as possible exceptions, listed in Table 1. 

We shall assume that the reader is familiar with the standard terminology of 
group-divisible designs (GDDs), mutually orthogonal Latin squares (MOLS) and 
transversal (TDs) (see, for example, [5] and [30]). Of course, a TD(k, n) 
is equivalent to k - 2 MOLS of order n. Further, a TD(k, n) is equivalent to a 
TD(k l,n) in which the blocks can be partitioned into parallel classesj such a TD 
is called reaolvable. 

We shall make use of some results concerning existence of MOLS (for a list of 
lower bounds up to order 10000, see [6]). For existence of three and four MOLS, 
the following results are known. 
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Table 1: Existence of three OPILS of type hn 

h possible exceptions n 
2 6,8,10,12,14,15,16,18,20,22,24,28,30,32,34,38,42,44,48,52 
3 6,8,10,12,14,16,18,20,22,24,28,32,34 
5 6,10,18,22 
6 7,10,11,12,14,16,18,19,20,23 
10 6,8,10,15,16 
11 6,10 

14,17,18 6 
23 6,10,18,22 

Lemma 1.3 [5], [13] There e:ci8t three MOLS of order n if n ;;::: 4, n =f 6,10. 

Lemma 1.4 There e:ci.st four MOLS of order n if n ;;::: 5, n =f 6, 10, 14, 18, 22, 26, 
30, 34 or 42. 

Proof: For most values of n, the result can be found in [5] and See [1] for the 
two cases n = 28 and 52. Finally, the two cases n = 38 and 44 were done by D. 
Todorov (private communication from P. Schellenberg). 0 

We also require the idea of incomplete transversal designs [7J. Informally, an 
incomplete TD(k,n)- TD(k,m) denotes a TD(k,n) "missing" a sub-TD(k,m). 
We observe that an incomplete TD(k,n)- TD(k,O) and an incomplete TD(k,n)­
TD(k,l) exists if and only if a TD(k,n) exists. Also an incomplete TD(k,n)-
Uj=::l TD(k, mj)is equivalent to k - 2 OPILS of type {mIl' .. , m.} if mj = n. 

The following obvious construction comes from the direct product of MOLS. 

Lemma 1.5 SuppoJe there e:ci.stJ a TD(k, n) and a TD(k, m). Then there exists 
an incomplete TD(k,mn)- TD(k,m). 

For small values of m, the following is known. 

Lemma 1.6 There e:ci&iJ an incomplete TD(5,n)- TD(5,m) in the following caus: 

1. if m = 2, n ~ 8 and n =f. 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 
27, 28 or 31 

2. if m = 7, n ~ 28 and n =1= 30,34,38,41,44,45,46 or 48 

3. if m = 8, n ~ 32 and n =1= 46 

-I. if m = 9, n ;;::: 36 and n =f. 38,42 or 50 

Proof: See [20], [26], [32], [34] and [33]. 0 

We shall also make use of a few special examples. 
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Lemma 1.'1 There ezilJts an incomplete TD(5,n)- TD(5,m) if (m,n) (12,3), 
(18,4), 4) or 

Proof: See [23]' [24], [28] and [31]. 0 

2 

several recursive constructions for most of which 
are TU"""V1l1"'lH.llv These include two constructions [29], group-

and "filling in holes" construction. We also describe 
I"'011Rt.l"11,'t.U)n based on k-frames. 

For 1 
f < t+ 

and let w X--+ 
OPILS of type w(A) 
w(x) : G 

t - 1. 
Then 

.. :HHJ"V(J,SI; there is a TD(k + I, t) and let u. 0 for 1 f - 1. 
- 1, lJuppOIJe there is an m + TD(k, If 

then JUpp08e there exiJt.~ a TD(k,m). Then N(mt - 1(m+u)1) 2:: k-2, 

Lemma 2.4 there are k OPILS type {tll ••. , tn }, and let f 2::. o. 
For 1 ~ i ~ n, lJuppo.se there are k OPILS of type T;, U where ti = t. Then 

U ?:. k. 

VUll . .lLU.I. .. '.I.10 I,emmas 2.2 and 2.3, we 

Lemma 2.5 there iIJ a TD(k + i, t), let Ui ?:. 0 1 ~ i ~ f. - 1 and let 

1 ~ j ~ t - 1. For 1 ~ i ~ 1.- 1 and 1 ~ j ~ t 1, lJuppOlJe there is an 
+Ui+Vj)- TD(k, Then N(mt-l(m+u)1v 1 ) 2:: 

and v = 

As a new OC.lJ.C.l.a..ul~n~.lUll of Lemma 2.2, we present the .. ' .. 'HI\I",,' 

there is a TD(k + 1, t) and let Ui ?:. 0 for 1 ~ i ~ t - l. 
Let 3 be a and for 1 ~ j ::; 3, let (}..j be integers 8'uch that 

m 2::. aj' For 1 ::; i ::; t - 1, supp08e there iJ an incomplete TD(k, m + ud-­

TD(k, 11..:) - Uj::::l TD(k, aj). 

36 



1. there ezi"t Ie - 2 OPILS of type (aj)t 
Ie 2, where U Ui. 

2. aj and let to O. ,"unn.""", there ezi8t Ie OPILS of type 

Then N(mt(u + Ie 2, where U Ui. 

we mention the well-known direct Pf4lQl1ct construction. 

':>Ul:J'!}O.U! there exist Ie OPILS of type "'j and Ie MOLS of 

lJide m. OPILS of type ... j 

c.onstruction that type of known 
note that this construction is not necessary to 

include we feel it 

an m--GDD. Suppose 

partrU(Jlned into 
the frame is the type of 

of the fact that there 
nU1"l,'hn.n X\G, for every G E () 

Theorem 2.8 there exists an of type "'j and Ie MOLS 

of "ide m. Then there exiJt Ie OPILS of type {tl, .. 

Proof: :"ill'nn,rUIP 

na,me the 
For 1 

1 Ie + 2, and the ith 
(1 n), 

The blocks are as follows. 
+ 1, 

Denote the 

block in 

B 

n, 

2 

class QB1 
... , (x, + For 

(<Pij( f), Ie + 2) every 
Then B is the block set of 

that two points from different groups and different holes occur 
in a unique block. So, let (Xl h) and (x', hi) be two points, where 1 ~ h < hi Ie + 2 
and X and x' are from different groups of g. There are two cases to consider: (i) 
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h' ~ k + 1, and (il) h' = k + 2. In case (i), find the unique block B such that 
{x,x'} ~ B. Then, the pair {(x,h),(x',h')} ~ BB. In case (il), there are unique 
values i and j such that x' E Gij. Then there is a unique block B E Pij such 
that x E B. Finally, define l = (q,ijt1(X'). Within the parallel class QBl, there 
is a unique block containing the point (x, h). Hence, {(x,h),(x',h')} ~ BBL. This 
completes the proof. 0 

Example 2.1 Let X = {0,I,2,3,4,5,6, 7}, g = {GO, .. o,Ga} where Gi = {i,i+4} 
for 0 ~ i ~ 3, and A is obtained by developing the block {OJ 1, 6} modulo 8. Then 
(X,Q,A) is a 3-GDD of type 24. For 0 ~ i ~ 3, define 'Pi = {{i + I,i + 2,i + 
7},{i + 3,i + 5,i + 6}} (where all points are reduced modulo 8). Then, we have a 
3-frame. If we apply the construction of Theorem 2.8, we get the following set of 
two OPILS of type 24. 

6 3 2 7 1 5 
6 7 4 3 0 2 
3 7 0 5 4 1 

2 4 0 1 6 5 
3 ;) 1 2 7 6 

7 4 6 2 3 0 
1 0 5 7 3 4 
5 1 6 0 4 

3 1 2 7 6 

7 0 2 6 3 4 
5 4 1 3 7 0 
1 6 5 2 0 4 

2 7 6 3 1 5 
6 3 4 7 0 2 
3 7 0 5 4 1 
2 0 4 1 6 5 

As another application of Theorem 2.8, we can construct three OPILS of type 
6» if n = 5,9 or 13. This follows immediately form the existence of 4-frames of 
these types (see [24] and [21])j and from the existence of three MOLS of order 4. 
(OPILS of these types have previously been constructed by Lamken in [141, using 
other methods.) 

3 

In [14], Lamken proves the existence of three OPILS of type 6» with 25 possible 
exceptions. We can remove 15 of these exceptions, leaving 10 values unsettled. We 
give a complete existence proof here, since it is quite short. 
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Lemma 3.1 There exi,t three OPILS of type 6" if n = 5,9,13 or 11. 

Proof: This follows immediately from Theorem 4.3 of [14]. 0 

Lemma 3.2 There exid three OPILS type 6n if n 8 or 15. 

Proof: There exist (v, 1,1)-BIBDs for v 49 and 91 [11]. a point from 
each BIBD, we get 1-GDDs of types 68 and 616. Apply Lemma 2.1, noting that 
three OPILS of type 11 exist. 0 

Lemma 3.3 There exi&t three OPILS of type 66 

Proof: Apply Lemma 2.2 with t = 5, k U:z 1 and Us U4 

2. The ... p.r.n",~ .. rf mC:Olllplete 8)- 2) exist by 

Lemma 3.4 .~U'''''' .• r there exiJt three OPILS of type 6n and 
q, where q 1 ~ 6n Then there eziJt three OP ILS 

Proof: Apply Lemma 2.2 with t 
1) and 

of Lemma 3.3. We obtain three OPILS of type 
with OPILS of on. 0 

Lemma 3.5 There exid three OPILS of if 21 Tn 

MOLS of order 
type 61l+n 

q 1. 

m 

Proof: We Lemma 3.4 with the values of n. indicated in the ." .. ,,""'"'' table. 
For each n, three OPILS of 6n exist. We three OPILS of om for all Tn, 

4n + 1 ~ m ~ 1n + except when m n E 10,14,18, 42}. These 
possible are listed in the third column of the table. 
that all stated values of m are obtained. 0 

n interval covered 
21 36 
25 - 43 

8 33 57 
9 
15 
25 101 176 
43 173- 302 
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Theorem 3.6 There exist three OPILS type 6n if n ~ 5, n =I 7, 10, 11, 12, 14, 
16,18,19,200 .. 23. 

Proof: By Lemmas 3.1, 3.2, 3.3 and 3.5, the result is true for n ~ 302. Hence, 
assume n ~ 303. Write n = 5q + a where a E {5, 6, 8, 9, 17}; then q ~ 5.8 and 
a 'rD(6, q) exists. Define k = 5, t = q and m 30. For 1 ~ i ~ q - 1, take 
Ui E {O, 1, 5} such that 6a = 21::.: Ui. Now, apply Lemma noting that TD(5,30) 
and incomplete TD(5,31)- TD(5,1) and TD(5,35)- TD(5,5) all exist (this last 
example comes from Lemma 1.5). We obtain three OPILS of type 30'il(6a)1. Fill in 
the holes with three OPILS of types 66 and 6a thus producing three OPILS of type 
6liq+a = 611.. 0 

4 Hole two, three and ten 

First, we deal with hole size three. When n is n ~ 5, n ::J. 15, three OPILS of 
type 3n exist by [19] and [141. Type 3 l1i can be done as follows. 

Lemma 4.1 There ezid three OPILS of type 316. 

Proof: Use the 7-GDD of type 316 constructed by Baker [2]. Give every point 
1 and Lemma 2.1. 0 

In the case of an even number of holes, we are able to remove five of Lamken's 
exceptions from [141, namely orders 30, 38, 44, 48 and 58. We give an alternate 
proof of existence result here. 

Lemma 4.2 There exi8i three OPILS of type 3n if n is even, n ~ 26, n i= 28,32 
or 34. 

Proof: Write n = 5q + a where a E {I, 5, 7, 9, IS} and q is odd. Definek = 5, 
t = q and m= 15. If possible, take Ui E {O, 1, 5} for 1 ~ i ~ q 1, such that 
3a 2:1::.; Ui. This can be done in the following cases: n ~ 30, n == 0 mod 10; 
n ~ 42, n == 2 mod 10j n ~ 54, n == 4 mod 10j n ~ 26, n == 6 mod 10; and n ~ 78, 
n 8 mod 10. In each case, t ~ 5, so there is a TD(6, t). Now, apply Lemma 
2.2, noting that TD(5,15) and incomplete TD(5,16)- TD(5,1) and TD(5,20)­
TD(5,5) all exist (Lemma 1.5). We obtain three OPILS of type 15Q(3a)1. Fill in 
the holes with three OPILS 36 and 3a

, thus producing three OPILS of type 
36 '1+<1 = 3n • 

We still need to provide constructions for the following cases: n = 44j and 
38 ~ n ~ 68, n == 8 mod 10. For n E {38,48, 58, 68}, we proceed as follows. Write 
n = 5t + 3, where t E {7,9, ll,13}. Let k = 5, m = 15 and l = 3; and define 
Ul 1, U2 = 5, VI = V2 = Va = 1 and Vi = 0 if 4 :5 j :5 t - 1. Apply Lemma 2.5, 
constructing three OPILS of type I5 t

-
121131 • Filling in holes with three OPILS of 

types 36 and 37 , we get three 0 PILS of type 36t+3 = 3n
• 

40 



Finally, we need to consider n 44. Write 44 = 7 + 2 + 7. Let Ie 5, m = 15 
and l = 3j and define Ul I, U2 5, Vi v4 5) Vii 1 and V6 O. 
Lemma 2.5, constructing three OPILS of type 156 21 2

• Filling in holes with three 
OPILS of types 36 and 31 , we get three OPILS of type 344 0 

Summarizing previous results, we have 

Theorem 4.3 There ezi.d three OPILS of type 31'1 if n ~ 5, n =1= 6, 8, 10, 14, 
16, 18, 20, 22, 24, 28, 32 or 34. 

Next, we discuss the case of hole size two. We can construct four new eXI:tmples. 

Lemma 4.4 There ezi,t three OPILS of type 236 and 264
• 

Proof: For apply Lemma 2.2 with t 5, k 5, m 14, Ul U2 1 and 
Us = U4 = O. This us three OPILS of type 14621

, Filling in holes with three 
OPILS of type :t') we get three OPILS of 236. 

For 264, apply Lemma 2.2 with t 7, Ie U1 U2 = 4, 
Us U4 = 1 and Us U6 0 (an 4) exists Lemma 
1.6). We three OPILS of type 147101

, Filling in holes with three OPILS oftypes 
26 and , we get three OPILS of type 264 • 0 

Lemma 4.5 There ezist three OPILS of type 226 and 280
• 

Proof: For type 226 , apply Lemma 2.6 with t = 5, Ie 
Us = U4 = 0, 8 = 1 and 0.1 = 2. We need an incon:lpl~~te 
incomplete TD(5, 11)- TD(5, TD{5, 1), and three OPILS oftype 26

• This 
us three OPILS of type 10621. Filling in holes with three of type 26 we get 
three OPILS of type 226

• 

For type 280 
I apply Lemma 2.6 with t 9, Ie 5, m Us 4, 

s 14 and 0.1 = ... = 0.14 = 1. An TD(5,18)- 14 TD(5, 1) 
is equivalent to three OPILS of 11441

, Let f 2 and observe that there are 
three OPILS of type 1921. We get three OPILS of type 149341 • Filling in holes with 
three OPILS of types 21 and 211, we get three OPILS of type 280. 0 

Theorem 4.6 There ezisi three OPILS of type 2ft if n ~ 5, n =1= 6, 8, 10, 12, 14, 
15, 16, 18, 20, 24, 28, 30, 34, 38, 42, 44, 48 or 52. 

Proof: Combine Theorem 1.1 and Lemmas 4.4 and 4.5. 0 

Finally, we consider the case of hole size ten. We can remove all but five of the 
possible exceptions from [14]. We give a complete proof of our existence results, 
since it is quite short. 
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Lemma 4.1 There ezilt three OPILS of type Ion if n i8 even,n ~ 12, n =1= 16. 

Proof: Apply Lemma 2.6 with t = n 1, k 5, m = 10, Ui 0 or 1 such that 
Ui = 10, s = 1 and 0.1 = 2. We need an incomplete TD(5, 10)-TD(5, 2), 

an incomplete TD(5,11)- TD(5,2)- TD(5,1). Three OPILS of type 2t exist by 
Theorem 4.6 since t is odd and t =1= 15. This gives us three OPILS of typelOn

• 0 

Theorem 4.8 There ezist three OPILS of type 10" if n ~ 5, n ¥ 6, 8, 10, 15 or 
16. 

Proof: If n is even, apply Lemma 4.7. If n is odd, n =1= 15, take three OPILS of 
type 2n and apply the direct product construction (Lemma 2.7) with m = 5. 0 

5 Other hole sizes 

In this 
3,6 or 10. 

we discuss the hole sizes not yet considered, naInely h ~ 2, h =1= 2, 

Lemma 5.1 Supp08e h ~ 2, h i= 2,3,6 or 10, and n ~ 5, n ¥ 6, 10, 18, 22, or 26. 
Then there ezi.f:t three OPILS of hn. 

Proof: three OPILS of type In and apply the direct product construction 
(Lemma 2.7) with m h. 0 

In dealing with the remaining cases, n 6, 10, 18, 22, 26, we shall require 
some results on incomplete transversal designs TD(5,v)- TD(5,u). The following 
recursive construction is Proposition 3.4 of [7J. 

Lemma 5.2 Suppo8e there is a TD(k + 1, t), a TD(k, m) and a TD(k, m + 1), and 
let 0 $ s :;:; t. Then an incomplete TD(k,mt + s)- TD(k,s) ezilts. Further, if a 
TD(k!s) ezi8t8, then the following eziJi: an incomplete TD(k,mt+s)- TD(k,t), an 
incomplete TD(k,mt+s)- TD(k,m) (if s i= t) and an incomplete TD(k,mt+ s)­
TD(k, m + 1) (if" i= 0). 

We obtain the following corollary. 

CClrolHa,rv 5.3 Suppose there is aTD(6, t) and a TD(5, s), where 0 $ s $ t. Then 
an incomplete TD(5,4t + s)- TD(5, t) ezisis. 

The following direct construction comes from [23]. 

Lemma 5.4 If h = 30. + 1 iJ a prime exceeding 7, then there u an incomplete 
TD(5,4a + 1)- TD(5, 
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we use a. ......... '5 ............ direct nrl"lrhlrt. construction of Horton. The ,nllnurnHI 

is Theorem 4 of [12]. 

OPILS of type In a 
Then an TD(k, 

We can now to the construction of three OPILS 
6, 10, 26. Our main tool will be Lemma 2.2. We shall 
three parts to the congruence class of h modulo 3. 

Le:m:ma 5.6 If h 0 mod 3, h ~ 9, and n 
three OPILS of type hn except when 

Lemma. if h f. 9, a.nd from Lemma 1.7 if h 
three OPILS of hR. 

let t n 1, Ie 
O. An Inoomplc'te 

2.2. 
n 

'U6 1 and U7 = .. 
exists from Lemma. a.nd 

Lemma 2.2. The case h 

Le:mJ:na 5.1 h 1 mod 3, h 
three OPILS of type h'n. 

10 and n 

Proof: Write h 3a + 1 and t n 

type hn when n 
the into 

then there eziJ t 

m h, 
that the 
a) 

We 

then there 

an InC:Olllpl,ete 
and six groups 

obtained as follows. 

with 

an incomplete 
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- 1). If we 5.3 with t 17 and .5 4, we 
17). To construct the other TD I 

and delete a point to a {5, oftype 412 111, 
Give every point one and 2.1. obtaining three OPILS of type 41:1111. 

fill in holes with three MOLS of sides 4 and 11, but leave one hole of size 4 
empty. 0 

Lemma 5.S If h 2 mod 3, h 2:: 5 and n E {6,10,18, then there e:cist 
three OPILS of type h", possibly for (h,n) (5,6), (5,10), (5,18), (5,22), 
(11,6), (11,10), (14,6), (17,6), (23,6), (23,10), (23,18) or 22). 

Proof: Write h 3a + 8 and let t = n - 1, k = 5, m = h, Ul U2 U3 a, 
U4 8 and Us Ut-l O. In order to apply Lemma we need the 
tollo~71nl(!: a 3a + 8), an incomplete TD(5,4a + 8)- a), an incomplete 

3a + 16)- 8) and a TD(6,n - 1). As before, the required TDs with 
five and six groups exist. The incomplete TDs exist in the cases. If a 8, 

14, 22, 30, or then there is an TD(5,4a + 
a) 5.3; and when a = 7, an incomplete TD(5,4a+8)- TD(5,a) 
by Lemma 1.6. If a ~ 6, a "110, then there is an TD(5, 3a+ 16)-
8) Lemma 1.6. Hence, we are finished if h =I- 5, 8, 11, 14, 17, 26, 

74, 110 or 134. 
we write h Sa + 5 and let t n 1, k 5, m Ul = U2 Us a, 

Ut-l = O. Now, we need a TD(5,3a + 5), an incomplete 
TD(5, a), an incomplete TD(5, 3a+10)- TD(5, 5) and a TD(6, 
As before, the TDs exist. Incomplete TDs exist as follows. If h20, 26, 38, 50, 62, 

86, 98, 110 or 134 , then we construct an incomplete TD(5,4a + 5)- TD(5, a) 
from Corollary 5.3. If It = 38, 50, 62, 86, 98, 110 or 134 , then we construct an 
incomplete TD(5, 3a + 10)- TD(5,5) from Lemma 5.2 using the equation It + 5 
4t + 7, where can be checked in each case that a TD(6, t) exists. If h = 74, then 
instead use the 79 = 4 X 17 + 11. If h = 26, then we first construct three 
OPILS of type 4661 from Lemma 2.3 with k 5, l = 3, t = 7, m = 4, Ul = U2 

and 'U4 = ... = Ua O. Then, fill in holes using f 1 in Lemma 2.4, leaving a hole 
of size 5 empty. If h = 20, then an incomplete TD(5,25)- TD(5,5) exists from 
Corollary 5.2. we can apply Lemma 2.2 in all these cases. 

We have to do the cases h = 5, 8, 17 and 23. When h = 8, we let 
t = n - 1, k 5, m = 8, Ul = 'U:! = U3 = U4 = 2 and Us = ... = Ut-l = O. We have 
a 8), an 10)- TD(5) 2) (Lemma 1.6) and a TD(6, n -
Apply Lemma 2.2. 

When (h, = (11,18), (11,22), (n,26) or 26), we can Lemma 2.2 
with t = n - 1, k 5, m = h and Ui E {O, I} such that U h. 

When h = 14 a.nd n = 10, 18, or 26, we can apply Lemma 2.2 with t = n 1, 
k = 5, m = 14 and Ui E {O, 1, 4} such that 'It = 14 (note that a.n incomplete 

18)- 4) exists by Lemma 1.7). Similarly, when h = 17 and n = 10, 18, 
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