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Abstract. Every finite projective plane of odd order q has an associated self-dual
binary code with parameters (2(¢2 + ¢+ 1),¢% + ¢+ 1,2¢). We also construct other
related self-orthogonal and doubly-even codes, and classify the vectors of minimum
weight. The weight enumerator polynomials for the planes of orders 3 and 5 are
found. The boundary and coboundary maps are introduced.

1. Binary Codes from Projective Planes

The references (7] and [8] should be of help for non-experts in the field of error-
correcting codes, while [5] and [B] contain much of the basic theory of finite projec-
tive planes. Let us denote a given projective plane of odd order ¢ by 7. A binary
code C with parameters (n, m,d) is a subspace of dimension m of the vector space
of dimension n over the finite field GF(2), such that the minimum weight of any
non-zero vector of C is d, which is called the distance of the code. The weight of
a vector (or word) of the code is the number of non-zero entries. We also denote
the orthogonal (or dual) code of a binary code C by Ct. A code C is said to be
self-orthogonal if it is contained in Ct, while it is called self-dual if C = CL. In
the latter case, such a code is of type (n,n/2,d). There is a construction of such a
code with parameters (¢% + ¢ +2,(¢? + ¢ +2)/2, ¢+ 2) from any projective plane of
order ¢ = 2 (mod 4). However, it is not the same as the construction of the present
paper, because here we deal only with planes of odd order. Let us agree to use the
word dual to mean the point to line and line to point transformation of the plane
taking the projective plane to its “geometrical” dual. Of course, self-dual can still
take on its usual meaning for codes.

Before investigating the codes associated with m it is useful to define two mappings
0 and 6, the boundary and coboundary mappings respectively. These mappings have
been used by Glynn and Steinke [4] to define generalised projectivities of =.

DEFINITION. If S is any subset of points of r, the coboundary of S, denoted by 65,
is the set of lines that intersect S in an odd number of points, if |S| is even, or an
even number of points, if |S| is odd. Similarly, if T is any subset of lines of =, the
boundary of T', denoted by OT, is the set of points that are incident with an odd
number of lines of |T|, if |T| is even, or an even number of lines, if [T| is odd.

Let P and L denote the sets of points and lines respectively of #. Thus |P| =
|L] = ¢*+¢+1, where g is the order of 7. Associated with the boolean algebra of all
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subsets of PUL is a vector space V of dimension 2(¢? + ¢+ 1) over GF(2). We shall
construct our codes in V. Addition in V is equivalent to the set-theoretic operation
of symmetric difference A. Thus if E and F are subsets of PU L, E and F are also
vectors in V', or words in the code whichis V, and E + F is the same as EAF. The
weight of a word of V is the same as its size as a subset of PUL = P + L. Finally,
if ¢ is a point or line of = let & denote the word of V' that corresponds to the set of
lines or points incident with z in 7.

NoTE. Here we leave some simple combinatorial exercises that are important for
the following constructions.

(1) 0=38"4

(2) 6(R+ S)=6R+6S, VR, SC P;

3) (U +V)y=0U+4+0V, VU, VCL;

(4) [R|+|6R| =0 (mod 2), VRC P;

(5) U +10U| =0 (mod 2), YU C L;

(6) bx =L+ 2z, 0 =P+z, Ve e P;

(1) Oy=P+y, ég=L+y, VyeL;

(8) 6P =L, OL = P.
Thus we see that § and O are non-singular, linear mappings from the code of all
subsets of P to L and vice-versa. Also, the same holds for the restriction of 6 and
& to the codes of all even subsets of P and L.

For example, in (1) above if .. fix the natural bases of points and lines for the
two subcodes of V' corresponding to these sets, then § corresponds to the linear
mapping with matrix that is the complement J — M of the incidence matrix M
of 7, and 9 corresponds to the transpose M of M, where J is the matrix of all
1’s. Thus (1) corresponds to the fact that (J — M)(J — M)" = I (mod 2). Since
MM =J+4gl=J+1,MJ]=JM=(q+1)I=0,and J? = (¢* +q+ 1) =J
(mod 2), we see that J — M is in fact an orthogonal matrix modulo 2.

Note also that the constructions of this paper can be generalised to certain sym-
metric (v, k,X) designs that have an incidence matrix which is orthogonal modulo
2. This is the case when the parameter A is even, and k is odd. The complementary
design of the projective plane is a symmetric (¢* + ¢ + 1,¢%, ¢> — ¢) design, and so
it satisfies these conditions. The self-dual code (corresponding to Cp below) has
a generating matrix that is made up of the identity matrix side-by-side with the
incidence matrix of the design.

THEOREM 1.1. Associated with n are three codes C4 C Cg C C;’{. Cy is self-
orthogonal and Cp is self-dual.

ProoOF: First let C4 be the set of all even sets of points of P, together with the
sets of lines that intersect those points in an odd number. Thus

Ca=1{S+65|5CP |S|=0 (mod2)}.

Equivalently, one could define this code as the set of all even sets of lines of I,
together with the sets of points on an odd number of those lines. Thus

Ca={T+0T|TCL, [T|=0 (mod 2)}.
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C4 is a code because it is closed under addition. Thus
(S1+651) + (82 +852) = (81 + S2) + 8(S) + S2), VS1, S2 CP.

It is easy to see that the dimension of C4 is ¢ + ¢, because this is the dimension of
the code of sets of even size in P.

Next we form the orthogonal code C% of all vectors in V orthogonal to those in
Ca. This gives a subcode of V of dimension ¢* + ¢ + 2. One can easily see that it
has a basis in V consisting of the ¢2 4+ ¢ + 1 words of weight g + 2 given by m + r#,
where m € L. In addition one can adjoin the word of all g* + ¢ + 1 points P to get
the basis. Now the words

m+n+dm+n)y=m+n+m+i=(m+m)+(n+n)
generate C4 when we vary m and n in L. Thus C4 is contained in C%, and so is
self-orthogonal. Since C4 is also a subgroup of index 4 in C%, when considered as
an additive group, it has 4 cosets. These are: C4,Ca+ P,Ca+ L, Cs+ P+ L. If
we take the subgroups of dimension ¢* + ¢ + 1 formed by unions of these cosets, we
obtain three codes of which one is self-dual. It is the code Cg := C4U(Ca + P + L),
which is made up of all the words of C4, and their complements in P + L. These

complements are all of the form S + 65, where |S| is odd, S C P, because |S + P|
would then be even, and because (S + P)+ §(S+ P)-+ P+ L =5+65.

THEOREM 1.2.
(1) Each word of C4 has weight divisible by 4. (Thus C 4 is a doubly-even self-
orthogonal code.)
(2) Each word of the coset Cg \ C4 has weight = 2 (mod 4).
(3) Fach word of the cosets C4 + P and C4 + L has weight = —q (mod 4).

PROOF:

(1) Each word of C4 is of the form §+65, where S is a subset of P and n := |S}is
even. Let there be )\; lines of L intersecting S in ¢ points. Then by counting
flags and pairs of points of S on lines one has that > ;i\ = (¢ + 1)n, and
that 3, ()N = (3). Hence it follows that Y ;i%X; = n(n + ¢) and so
nt 2 oag i = n(n+g+1) (mod 4). Thus the weight of S+ 65 is divisible
by 4, since n is even and ¢ is odd.

(2) The words of Cp \ C4 are all complements of words of A. Since |P + L] =
2(¢*> + g+ 1) = 2 (mod 4) the result follows from (1).

(8) Consider a word S + P + 85 of the coset C4 + P, where |S| is even. From
part (1) {5+ 85| =0 (mod 4). But ¢> + ¢+ 1= —¢ (mod 4) and so

|S + P + 65| =|P|—|S|+165] = |P|+ S|+ |6S| = —¢ (mod 4);
since S + P = P\ § and |5| is even. The other coset is shown similarly.

N.B. These codes do not depend on whether the plane or its dual are taken,
so that if a statement is made about points it can also be made about lines. For
example, every word of C4 is given by an even set of lines and the lines intersecting
it in an odd number of points. Dually, every word of C4 is also given by an even
set of lines and the points which are on an odd number of those lines.
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THEOREM 1.3. The minimum distances of C4, Cp and C+ are at least 2g + 2, 2q,
and q + 2 respectively.

Proo¥r: If there was a non-zero word of C4 of weight less than 2¢+ 2 we would have
that the number of points and/or lines would be less than ¢ + 1. Since everything
we say about the code C4 also holds for the dual plane, let us assume that a
minimal word of C4 is of type S+ 65, where S is a set of n points,with n even and
2 <n < g+1. Then at each point of S there are at least ¢-+2-—n tangents, and so the
number of lines belonging to 6.5 is at least n{g+2—n). Hence |S+65| > n(g+3—n).
Since 2(g+1) —n(g+3—n) = (n—2)(n~(g+1)) <0, it follows that the minimum
distance of C 4 is least 2¢g + 2.

Now consider the code Cg = C4 U (Cq + P + L) and in particular the words
of the coset C4 + P + L. Such a word is given by 5§+ 68, where § C P and
n = |§| is odd. We can assume that n < g. There will be external lines to S,
and each external line will be in §5. The main fact is that there will be at least
g.(q + 1 — |S]) external lines, the minimurm occurring when the points of § are
collinear. (We leave this as a simple exercise.) Thus [S+ 65| > n+g.(¢ +1 —n).
But n+¢(g+1—n)—2¢ = (g—1){g+1—n) > 0, and this proves that the minimum
distance of Cg is least 2¢, since the minimum distance of C4 is greater than this.

Finally, consider the code C} and in particular the coset C4 + L. A word of
this coset is given by S + 65 + L, where $ C P and n := |S]| is even. Suppose
that n < ¢ + 1. Then all external lines to § are in 65 + L. But there are at least
g{g+1—n) > 2q of these, so we can exclude this case. Thusn > g+ 1. fn > g+2
then the weight of the word is at least n > ¢ + 3, since n is even. When n = ¢ +1,
the size of 65 + L is at least 1, and so the weight of the word is at least ¢ + 2. Our
argumerit for the coset Ca + P is dual to this.

Now let us list the words of minimal weight in the three codes, so that the minimal
distances of the codes are determined. The proofs are not hard and are very similar
to the analysis of Theorem 1.3, so we omit them.

THEOREM 1.4. The minimal words of C4 of weight 2q + 2 are of three types:

(1) u+v+14+ 96, where v and v are distinct points of P;

(2) m+n+m+n, where m and n are distinct lines of I;

(3) the union of an evel (or (¢+1)-arc) and its set of tangent lines (a dual oval).
N.B. The first two words above are dual to one another, while the last is “self-dual”,

2

in the geometrical sense. There are (* ‘;‘7“) words of each type (1} and (2), while
the number of ovals depends on the projective plane and is not given by any known
function of ¢, except for ¢° — ¢* in the Desarguesian case where n is PG(2,¢).
THEOREM 1.5. The minimal words of Cg of weight 2q are given by u + v + @ + 0,
for flags (u,v) of 7, wherew € P,v € L, u is incident with v. Note that v+ is
an odd set of ¢ points, and that

S(u-+9) =6u+ 80 = (L+6u)+ (L+60)=a+v.

(See the previous Note, parts (6) and (7).} There are (¢* + ¢+ 1)(g + 1) such words.
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THEOREM 1.6. The minimal words of C% of weight ¢ + 2 correspond to the words
u + 14 where u is a point or line of m. There are 2(¢* + ¢ + 1) such words.

EXAMPLE 1.1. Any pair of ovals (i.e. (¢ + 1)-arcs) of = intersect in an even total
of points and tangents.

PROOF: Cy is self-orthogonal, and so any pair of words of C4 intersect in an even
number of elements. It is easy to check that an oval and its set of tangents is a word
(of weight 2¢ + 2) of the code C4, because an oval has ¢ + 1 points, which is even,
and the lines intersecting the oval in an odd number of points are just the tangents.

EXAMPLE 1.2. Let ¢ be a perfect odd square. Then a Baer subplane of w gives a
word of Cpy of weight 2(q+./d+1). A unital gives a word of C 4 of weight 2(¢./G+1).
These words, together with the oval-words of Example 1.1, pairwise intersect in even
numbers of elements.

PRrOOF: For the definitions and basic properties of Baer subplanes and unitals see
[5] or [6]. To construct the word from a Baer subplane first note that it has an
odd number of points. Then the lines intersecting it in an even number are just the
lines of the Baer subplane ... they intersect in /7 + 1 points. Thus we get a word
of Cp of the given weight. To construct the word from a unital first note that it has
an even number of points. Then the lines intersecting it in an odd number are just
the tangents of the unital ... all other lines intersect in /g + 1 points. Thus we get
a word of C4 of the given weight. All these words from ovals, Baer subplanes and
unitals belong to C, which is self-dual, so that they pairwise intersect in an even
number of elements.

Finally, let us summarize the results of this section with the main theorem.
THEOREM 1.7. The code C4 of a projective plane = of odd order is a doubly-even
self-orthogonal (2(¢* + ¢+ 1),¢* + ¢, 2q + 2) binary code. The code Cp is a self-dual

(2(¢* + ¢ +1),¢% + ¢+ 1,2q) binary code that contains C4 as a subcode. The code
Cxisa(20¢®+q+1),¢* +q+2,q9+2) binary code.

2. Weight Enumerator Polynomials

The weight enumerator polynomial of a code in n-dimensional vector space is defined
to be the homogeneous polynomial in x and y of degree n such that the coefficient
of 2" Iy’ is the number of code-words of weight j.

THEOREM 2.1. The weight enumerator polynomial for the self-dual code Cp of the
projective plane of order 3 is given by:

228 + 5222095 4 3902 18y® + 131321090 4 23402 *y*? + 2340212y
+ 1313@103}16 + 390x8y18 + 52:176y20 + y?8
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PROOF: By Gleason’s theorem (see [8]), a self-dual code has a weight enumerator
polynomial that is made up of the two polynomials a(z,y) = 2% + y* and bz, y) =
2% + 14a*y* + y®. Hence the polynomial W(z,y) for the (26,13,6) code of the
projective plane of order 3 is given by

W(z,y) = aa'® + Ba’b + va®b? + 6ab®,

for some rational numbers a, £, v and 6. Let W: be the coefficient of 2?61y’ in
W(z,y) ... it is the number of code-words of weight ¢ in Cp. Since we know the
coefficients Wy = 1, Wy = W, = 0, Wy = 52, we can solve the linear equations
uniquely and obtain o = ~23/16, § = 13/8, v = 13/16 and 6 = 0. Substituting
these in the equation for W(z,y) gives the code distribution above.

THEOREM 2.2. The weight enumerator polynomial for the self-dual code Cp of the
projective plane of order 5 is given by:

2% + 186y 2" 4 4030y ?2%0 + 16275y 104 4 259625y 16246

+ 1775990y *2** 4 8492450y*°x%% + 318742005272 + 90578280y %* 2%
+ 195332612y 2% 4 325217900y% 2% + 4201902754022
+420190275y°%2°° + 325217900y 2%® + 195332612y°¢ 226

+ 90578280y z** + 31874200y*02%2 + 8492450147220 + 1775090y%4518
+259625y*21® + 16275y* 1% 4 4030y°0212 + 18652210 4 462

ProOF: The number of words in Cp of weights 0, 2, 4, 6, 8, 10, and 12 are 1, 0, 0,
0, 0, 186, and 4030 respectively. The number 186 comes from the classification of
words of weight 2¢ coming from flags, since the number of flags is (P +g+1)(g+1) =
31.6 = 186. And the number 4030 comes from the knowledge that the number of
ovals in the plane is ¢° —~ ¢* because the plane of order 5 is desarguesian. (See
[9] for the classification of ovals.) To this one must add the number of pairs of
points and the number of pairs of lines, which always sum in any projective plane
of order ¢ to (¢* + ¢ + 1)(¢® + ¢). Thus the total number of words in C B of weight
2q+ 2 for a desarguesian projective plane of order ¢ is (¢* +¢+1)(¢* + q), which is
31.130 = 4030 in this case. The number of words of weight 14 (= 2g+4) is harder
to calculate. However it can be found that there are two types of configuration of
points corresponding to this weight, both with 7 points and 7 lines: each anti-flag
(point not on a line), and also each 4-arc together with the set of 3 ‘diagonal points’
on the intersections of 2 chords of the arc. (A word of weight 2¢ + 4 must be in
the coset C4 + P+ L and so consists of an odd set of points and the set of lines
intersecting it evenly.) Counting the number of anti-flags (== 31.25) and adding the
number of 4-arcs (= 31.30.25.16/4!) gives us 775 + 15500 = 16275. Table 4.8 of
[3] was useful in finding and classifying these words of weight 14. Finally, we can
find the polynomials of Gleason’s theorem by solving a set of linear equations in 8
variables. In fact 256W(z,y)

= 101a* — 155a%"b+682a%* 1% — 26664'°6° +2821a55% — 651a' 115 + 124a75° +0a3b".
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3. New Codes From Old

Every singly-even self-dual code can be extended to a doubly-even self-dual code by
a method known as ‘glueing’, which is explained in the paper by Conway and Pless
[2]. We now explain how this is done in the special case of the projective plane code

Cp.

THEOREM 3.1. Ifg=1 (mod 4) the self-dual code Cp can be extended to a unique
doubly-even self-dual code Cp with parameters (2(¢* + ¢+ 2),¢* + ¢+ 2,9 + 3).

PROOF: Let us add two basis elements co and oo’ to the set of basis elements PUL.
Now extend the code C%, which is of the dimension needed. By

(1) setting words of C4 to be also zero on oo and oo,

(2) setting words of C4 + P to be one on oo and zero on oo,

(3) setting words of C4 + L to be zero on co and one on oo,

(4) setting words of C4 + P + L to be one on co and one on oo,
we obtain the code Cp. From Theorem 1.2 every code-word has weight divisible
by 4. Also, it is easy to check that every pair of code-words of Cp are orthogonal.
The minimum weight of Cp is ¢ + 3 because the minimumm weight of C4 + P and
Ca+Lis g+2, and the weight increases by 1 when we construct Cp. The minimum
weight of non-zero words in C4 is 2¢ + 2, and these stay the same in Cp, while the
minimum weight of words in C4 + P + L is 2¢, and these weights increase by 2 in

Cp.

THEOREM 3.2. Ifg =3 (mod 4) the self-dual code Cp can be extended to a doubly-
even self-dual code C with parameters (2(¢* + ¢ +4),¢* + ¢ +4,4).

PROOF: Let us add 8 basis elements to the set of basis elements P U L. Let Dg
be the (6,2,4) code on the new basis of size 6 generated by (110011) and (001111).
From words w in the 4 different cosets of C4 in C} we create new cosets of Ds.

(1) If w € C4 we just add Dg;

(2) if we Cy+ P we add (010101) + De;

(3) if we Cs+ L we add (010110) + Ds;

(4) f w e Cy+ P+ L we add (000011) + Ds.
In this case the code obtained has distance 4, because the zero code-word of C4 is
added to D¢ to produce 4 words, three of which have weight 4.

NoOTE. The automorphism groups of the two extended codes Cp and Cp are the
same as the codes Ca, Cp and Ci, which are isomorphic to the group of all
collineations and correlations of the plane. One can see this from the classifica-
tion of the minimal weight words of C4, Cp and C;;L given in Theorems 1.4-6.

ExampLES, By Gleason’s theorem every self-dual doubly-even binary code has a
weight enumerator polynomial made up of the two polynomials

bz,y) = 2° + day* +¢°
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and
oz, y) = 2% + 759205% + 257621 %y'% 4 75028y10 4 %4

We can use this fact to calculate the polynomials for the codes Cp and Cp of small
projective planes.

(1) The projective plane of order 3 gives a self-dual doubly-even code with pa-
rameters (32,16,4), which has 3 words of weight 4. In table I1II of [2], it is
referred to by dg +(2f13). Its weight enumerator polynomial is given in table
IV of (2] by

2% 4 328 y* 4 650224 y® + 1374122012 + 367462 10y1°
+ 137412'2y%% 4 6502°y** + 3aty?® + %2

(2) The projective plane of order 5 gives a self-dual doubly-even code with pa-
rameters (64,32,8), which has 62 words of weight 8. The calculation of its
weight enumerator polynomial can be left as an exercise.

4. Conclusions

The methods of coding theory are being applied with increasing frequency to finite
geometry while the knowledge of geometry can lead to codes which have more of
their properties specified than with purely algebraic constructions. Hopefully this
paper will bring this class of projective geometry codes to the readers’ attention,
and that new results in both areas will arise.
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