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Abstract

Some aspects of the theory and computational complexity of covering pro-
jections of finite complexes are considered, from both the combinatorial and
topological perspectives. The relationship between these two perspectives is
explored. It is shown that there are 1-complexes (graphs) ¥ for which the
computational decision problem which takes as input a finite 1-complex X and
determines if X covers Y is N P-complete for both simplicial (combinatorial)
and topological covering projections. A theorem of Leighton concerning finite
common covers of 1-complexes, which holds both combinatorially and topolog-
ically, is shown to fail topologically for 2-complexes. Some results concerning
1-complexes which are mutual covers are also presented. The discussion is
intended to be accessible to both combinatorialists and topologists.

1. Introduction.

There are two principal motivations for the present study. The first of these is
the following elegant theorem of Leighton [Le].

Theorem. If G' and H are finite graphs having the same universal cover, then there
is a finite graph K that covers both G and H.

The theorem has an interesting history. It was first conjectured in the context of
a study of complexity classes of distributed algorithms by Angluin [An]. A proof of
the theorem was first offered from the combinatorial perspective in [Le] (and later,
independently [Mo]). Combinatorial covering projections for graphs are equivalent
to the notion of a simplicial covering projection as it is defined below for complexes
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of arbitrary dimension. Leighton’s theorem holds for both simplicial and topological
covering projections (the relationship between these is studied in the next section
of this paper).

It is natural to wonder: (1) whether Leighton’s theorem gencralizes to higher
dimensions, and (2) whether there might be an efficient algebraic proof of Leighton’s
theorem. We offer some limited results on these questions, showing that there is no
higher dimensional generalization of Leighton’s theorem in the topological category
(we conjecture that there is such a generalization in the simplicial category). We also
give a relatively short proof based on quasigroups (or Latin squares) of Leighton’s
theorem for regular graphs.

A second motivation for our work is provided by the reflection that covering
projections for 1-complexes (graphs) are a kind of local isemorphism. The computa-
tional complexity of graph tsomorphism appears to occupy a position of interesting
intermediate difficulty between P and NP (see [G]] for a discussion), assuming
P # NP. What then of the complexity of local isomorphism? We show that it is
apparently more difficult, exhibiting a fixed graph [l for which it is N P-complete
to determine if an input graph & covers H.

Generalizing the notion of common covering in a different direction, we consider
pairs of spaces which are mulual covers. Finite graphs that are (combinatorially)
mutual covers are necessarily isomorphic. We show that this statement is false for
infinite I-complexes. A number of interesting questions left open by our limited
results are discussed in the concluding section.

2. Preliminaries.

A graph may be viewed as the combinatorial data for a Il-dimensional CW-
complex [Ma]. One may think of this quite simply as the topological space corre-
sponding to a “string model” of the graph. For example, the two graphs depicted
in figure 1 (in the latter part of this section) are nonisomorphic combinatorially as
graphs (one bas order two and the other order ten), yet their string models are
topologically equivalent. More precisely, the string model of a graph is formed by
identifying, according to the incidence data, the endpoints of copies of [0,1]. The
topology (the open sets) may be taken to be given by the natural distance metric
on the model. '

If & is a graph then we write space((i) to denote the 1-CW-complex of G. If
space((7) and space(H) are homeomorphic, we write space(G) ~ space(H). Two
spaces have the same fopological lype if they are homeomorphic. A space has finite
topological type if it is homeomorphic to a finite CW-complex. Tt is evident that ver-
tices of degree two make essentially no difference topologically. Thus for a graph &,
space((7) is canonically represented by the graph obtained from (¢ by “suppressing”
all irrelevant vertices of degree two. We make this precise in the following definition.

Definition. A vertex v of degree two in a graph G is irrelevant if there are two
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distinct edges of G incident on v. (In other words, v is not the only vertex of a
component that is just v and a loop.) If v is an irrelevant vertex of a graph &
with incident edges e and f, where the endpoints of e are u,v and the endpoints
of f are v,w, then the graph G’ obtained from G by suppressing v has vertex set
V(G") = V(G) — {v} and edge set E(G’) = E(G) ~ {e, f} U {g} where ¢ is a new

edge incident on « and w.

It should be clear that for each graph G there is a unique (up to isornorphism)
reduced graph, red(() that canonically represents space((7) in the sense that red(G)
has no irrelevant vertices and space(G) =~ space(red(G)). The following definition
is standard (see, for example, [Ma]).

Definition.  For topological spaces X and X, a continuous map p: X — X is
a covering projection if for each © € X there is an arcwise connected open neigh-
borhood O of z such that each arcwise connected component of p~{(0) is mapped
homeomorphically onto O by p. We say that X covers X if there is a covering
projection p: X — X.

Definition.  Topological spaces X and Y are mutual covers if X covers ¥ and Y
covers X. A common cover of X and Y is a space Z that covers both X and Y.

A graph G is a topological cover of a graph H if there is a covering projection
from space(G) to space(H). For the spaces of graphs it is generally easier to work
combinatorially. The {ollowing lemma is easily verified.

Lemma 1. If G, H are connected graphs with no irrelevant vertices then ¢ is a
topological cover of H if and only if there is a surjective coloring from the vertices
of G to the vertices of H and from the edges of (i to the edges of H such that the
incidence relation of edge and vertex colors in G is exactly as in H. That is, there
are surjective maps p; : V(G) — V(H) and p, : E(G) — E(H) which satisfy

1. If e € E(G) has endpoints u and v (not necessarily distinct) then p,(e) has
endpoints p;(u) and py(v).

2. If py(u) = z and f € E(H) has endpoints z,y with = # y, then there is a
unique edge e € E(G) such that p,(e) = f and the endpoints of e are u«, v with
piv) = y.

3. If py(v) =z and [ is a loop at z in H then either:

{4) there is a unique loop e at v in & with py(e) = f and there are no edges ¢
incident once on v with py(g) = f, or

(i) there are exactly two edges e; and e, incident once each on v in G with

p2er) = pales) = f. a

A general combinatorial point of view is provided by the (standard) notion of a
simplicial complex.
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Definition. A simplicial complexr (K, %) is a set K together with a family ¥ of
finite subsets (simplices) of K that satisfies: (1) § ¢ £, (2) if v € K (v is a vertex)
then {v} € ¥, and (3)if s € S and § # s’ C s then & € . The dimension of a
simplex s € L is dim(s) = |s| — 1 and the dimension of (K, %) is maz dim(s).

Definition. A simplicial map ¢ : (K,L£) — (K',%') is a function ¢ : K — K’ such
that if {v,,...,v,} = s € ¥ then ¢(s) = {¢(vo),...,d(v,)} € T". '

A simplicial complex of dimension 1 is just a simple graph (a graph without loops
or multiple edges) and a simplicial map between simple graphs is a graph homomor-
phism. A combinatorial notion of covering projection is described as follows.

Definition. A simplicial map ¢ from (K,Z) to (K',%') is a simplicial covering
projection if and only if: (1) ¢ : K — K’ is surjective, and (2) if ¢(s) = s, s € 5,
s’ € &' and 30’ € K’ such that s’ U {v'} € ¥’ then there is a unique vertex v € K
with ¢(v) = v’ and sU {v} € %.

Associated to each simplicial complex (K, X) there is a topological space |(X, ),
the polyhedron of (K, X). For a one-dimensional complex (simple graph) G the poly-
hedron of G is homeomorphic to space (G). If there is simplicial covering projection
¢ : (K,5) — (K',¥') then there is a topological covering projection from (K, )|

o [(K’,%')|. The nice thing about dimension one is that, conversely, topological
covering projections can be uniformly represented simplicially. This is not true for
higher dimensions.

Definition.  If G is a (general) graph then simp(G) is the simple graph obtained
from red(G) by introducing two vertices of degree two into each edge and each loop

of red(G). (See figure 1.)

OO XX

H simp (H)

Figure 1.

Lemma 2. For graphs G, H there is a (topological) covering projection from
space(G) to space(H) if and only if there is a simplicial covering projection from
simp(G) to simp(H). O

The above lemma, which the reader may routinely verify using Lemma 1, has
the consequences: (1) Leighton’s theorem, proved for the simplicial category, holds
as well topologically in dimension one, and (2) the complexity result proved in the
next section holds in both the simplicial and topological categories.
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3. The complexity of covering in dimension one.

We consider the computational complexity of the following decision problem.

H-COVER
Instance: A graph G.
Question:] Is G a cover of H?

We may simplify our considerations by using Lemma 1. Given G, the canonical
representation red(G) of space(G) can be easily computed, so we henceforth assume
that G and H are reduced.

We note in passing that for some graphs H, H-COVER can be solved in poly-
nomnial time; for example, if H is the graph with one vertex and two loops or if I
is the graph with two vertices and three edges between them.

The following theorem shows that for some graphs H, H-COVER may be com-
putationally intractable.

Theorem I.  For the graph H of figure 1, H-COVER is N P-complete.

Proof. The problem is clearly in N P. To show that it is N P-hard we reduce from
the problem NOT-ALL-EQUAL 3SAT [GJ].

An instance of this decision problem is a Boolean expression B in conjunctive
normal form with exactly 3 literals of distinct variables per clause, and the question
is whether there exists a truth assignment 7 to the variables of B that makes at least
one literal in each clause true and at least one literal in each clause false. We show
how to construct, in polynomial time, a graph G'g such that G covers H if and only
if B is not-all-equally satisfiable. A small example illustrating the main ideas of the
of the construction is shown in figure 2. (In this example, the variable components
have been made smaller — just big enough to supply the necessary connections to the
clause components — than in the general construction of (G5 which we next describe.)

(a+b+C) (a+b+d) (a+c+d) (B+crd)

Figure 2.
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Let B = [T75 (liy + lig + lis) where [;; is the gt literal in the i** clause and the
set of variables of Bis {z,:1 <v <n}. Forv=1,...,nlet S} = {i: the variable

T, occurs in the i** clause of B} and let S = {i : the negation of z, occurs in the
i** clause of B}.

The set of vertices of the variable components is V; = {u(v,k,t) : 1 < v <
n,0 < k< 2m —1,0 <t < 3}. The set of vertices of the clause components is
Vo={w(i,j,r):0<i<m—-1,0<7<3,0<r <2 U{e(d):0<i<m—1}.

The edge set of G is E(Gg) = Fy U Ey where E, is the set of edges of the
variable components and F3 is the set of edges of the clause components. These are
described as follows.

E;: For 1 <v<nandfor0<k<2m—1 the set of vertices {u(v, k,0),u(v, k,1),

u(v,k,2)} induces a subgraph isomorphic to K, and there are two edges joining
u(v, k,2) to u(v, k,3). Additionally, there are two edges joining u(v, k,0) to u(v,k +
(mod 9m) 1). if g ¢ S then there is a loop on the vertex u(v, Zq(mod 2m), 3). If
q ¢ 57 then thereis a loop on the vertex u(v,2q 4+ 1(mod 2m), 3).

Ey: For1l <¢ < mandforr = 0,1 the set of vertices {w(7,0,7),w(i,1,r),w(s,2,r),
w(7,3,7)} induces a subgraph isomorphic to Ky. For 1 <i < m and for 0 < j <3
the vertex w(é, 7,2) is joined by a single edge to each of the vertices w(s,7,0) and
w(t,7,1). For 1 <i < m the vertex z(¢) is joined by two edges to the vertex w(s,0, 2)
and there is a loop on the vertex z(7).

The graph Gp is obtained from the disjoint union of the sets of variable and
clause components described above by identifying certain pairs of vertices. (Note
that this does not alter the edge set.) These vertex identifications are described:

1. For 1 v < n,if g€ S} and [, = x, then identify the vertex
u(v,2¢{mod 2m),3) with the vertex w(q, h,2).

2. For1 <v <n,if ¢ €S, and l; = T, then identify the vertex
u(v,2¢ + 1(mod 2m), ) with the vertex w(q, k,2).

Note that, counting incidence twice for each loop, there are four edges incident
on each vertex of G and H. If the vertices and edges of G are labeled according
to a covering projection from G g to H then each vertex u of Gz must be adjacent
twice to a vertex labeled  and twice to a vertex labeled y, where we consider that
a loop makes a vertex adjacent twice to itself. An immediate consequence of this
observation is the following.

Claim 1. If there is a covering projection from G to H then for each variable
component, the vertices of each subgraph isomorphic to K3 must all be colored the
same.
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The next claim establishes that “signals” are sent consistently from each variable
component to the clause components for the clauses in which the variable occurs as
a literal. The verification is left to the reader.

Claim 2. Let Ty...,Ty,; denote the sequence of subgraphs isomorphic to K5 of
a variable component. If the vertices of Ty are all colored z according to a covering
projection (as per Claim 1) then for each even index 7 all the vertices of T} must be
colored x, and for each odd index j all the vertices of 7; must be colored y.

Thus the sample lines (see figure 2) emerging from a variable component can be
grouped into two equivalence classes according to the parity of the indices of the
K3’s to which they are attached. Denote by So and S; the two equivalence classes
of sample lines for a given variable component.

If 7 is a not-all-equally satisfying truth assignment then a coloring that is valid
on the variable components can be described so that for each clause component,
two of the three vertices w(z,1,2),...,w(,3,2) are colored z and one is colored y
(or wice versa). In this case w(7,0,2) should be colored y and z(¢) should be colored
z. Note that there is a symmetry of the clause component (ignoring z(z)) taking
any two vertices of {w(z,0,2),...,w(7,3,2)} to any other two. This makes it easy
to check that the coloring can be extended to all of the clause components.

Conversely, one easily checks that no coloring of w(i,0,2),...,w0(i,3,2) that
colors 3 vertices the same can be extended to a valid coloring of the entire clause
component. Thus any valid coloring, by Claims 1 and 2, corresponds to a not-all-
equally satisfying truth assignment (for example, the one that assigns the variable
z, the value “true” if and only if the vertices of the odd:indexed triangle of the
corresponding variable component are colored with the vertex y of H). O

4. Nonisomorphic mutual covers.

It is easy to see that if G and H are simple finite graphs for which there arc
simplicial covering projections p : ¢ — H and ¢: H — G then G and H must be
isomorphic. By Lemmas 1 and 2 it follows that if G and H are finite graphs such
that space(G) and space(H) are mutual covers then space(G) = space(H). This
implication fails for infinite graphs (and therefore, if you like, it fails for mutual
simplicial covers).

b b b b b b b b b

The graph §

Figure 3.
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Let T' denote the graph that has a single vertex and 3 loops denoted a, b, c. Let
U be the universal cover of T. There are covering projections from U to S and from
S to T where S is the string of loops shown in figure 3. The edges of S in figure 3
are labeled in accordance with the projection onto T. Similarly, there are covering
projections from U to G, and from G to S where G is depicted in figure 4 and the
projection respects the edge labeling.

The graph G
Figure 4.

The graph G is a cover of itself by a projection p : G — G that maps vertex ¢
to vertex i + 1. The projection p can be factored as p = p, o p; where p; : G — H
maps vertex ¢ of (7 to vertex i of H and respects the edge labeling shown for H in

figure 5.
b b b '
b
a a aO OW a V
PO
c c
The graph A
Figure 5.

The projection p, : H — G sends vertex ¢ of H to vertex ¢ + 1 of G. Thus G
and H are mutual covers, but they are not isomorphic graphs.

5. Common covers of regular graphs.

The following pretty theorem was originally conjectured by Angluin in the con-
text of a study of complexity classes of distributed algorithms [An]. The special
case of regular graphs was proven by Angluin and Gardiner [AG] and the general
case was first established by Leighton {Le] and later, independently, by Mohar [Mo].

Theorem 2. (Leighton) For finite graphs G and H, space(G) and space(H) have
homeomorphic universal covers if and only if there is a finite graph K such that
space(I{) is a common cover of space(G) and space(H).
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We offer here a short proof for the special case of simple regular graphs by an
argument employing Latin squares.

Proof.  Assume that G = (V;, Ey)andH = (V,, E;) with Vi NV, = 0. We argue
that there is a common finite simplicial cover K = (V, E) defined as follows. For
each pair of vertices (¢, z) in V; x ¥, choose

(1) a Latin square L., with entries in the set {1,...6} where é is the degree of
the graphs G and H, and

(2) bijections between the rows of L., and the set of neighbors of ¢ in G, and
between the columns of L., and the set of neighbors of z in H.

The vertex and edge sets of K are
V= {(a,z,1)|e € i,z € Vo,i € {1,...,6}}
E = {(a,z,0)(by, )| Lsyla,z) = j, Lo (by) = i,ab € Ey,zy € Ey}

where Ly, (a,z) denotes the entry of Ly, in the row corresponding to a and in the
column corresponding to r according to the bijections chosen in (2).

The projections are defined by p : V. — Vi : (a,z,i) — ¢ and ¢ : V — V5 :
(ayz,1) — z. We verify that p is a simplicial covering projection (the verification for
¢ is just the same). Suppose p((a,z,1)) = a and ab € E;. We must argue, according
to Lemma 2, that there is a unique vertex (d’,z’,1') adjacent to (a,z,) in K with
p((a’,z',7")) = b. By the definition of p the only possibility for o’ is o’ = b, and 2
must be adjacent to x in H. By the properties of a Latin square, there is a unique
neighbor y of z such that L,.(b,y) = i. Given that ' = b and 2’ = y, the value of
i is uniquely determined, ¢ = L ,(a, z). 0

Theorem 2 fails to generalize to spaces of 2-dimensional topological type as shown
by the following.

Counterezample.  Recall that if X is a cover of ¥ then the Euler characteristic
x(Y) of Y divides the Euler characteristic x(X) of X. Let S; and S; denote,
respectively, the orientable surfaces of genus 1 and genus 2. The universal cover of
each is homeomorphic to the plane. Suppose S is a common finite cover. (That
is, suppose S =z space(K) for a finite simplicial complex K). Since S must be a
compact orientable surface with x(5) = 0, we must have S =~ 5;. But 5y does not
cover S;. ]

Note, however, that Theorem 2 may still be true in the simplicial category, since

Sy and S, do not have a common universal simplicial cover. We conjecture that
Leighton’s theorem generalizes in the simplicial category.
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6. Open Problems.

There are a number of open problems connected with this work that we have
so far been unable to settle. Among these is the problem of classifying the graphs
H for which H-COVER can be solved in polynomial time. Are there graphs H for
which the problem of determining if an input graph G is a regular cover of H is
NP-hard?

Our construction showing that for 1-complexes mutual covers need not be iso-
morphic involves covering projections that are not finite-fold. Are mutual finite-fold
covers isomorphic? Are there nonisomorphic mutual regular covers?
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