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Abstract

An edge coloring of a graph G seeks to assign unique colors to each edge in
G, such that adjacent edges do not receive the same color. Edge colorings
are known to have many practical applications. In this paper, we present
a self-stabilizing distributed algorithm which will {2A — 1}-edge-color an
arbitrary graph G in O(A?m) moves, where A is an upper bound on the
degree of a node and m is the number of edges in G. The algorithm
is resilient to transient faults and changes in the network topology. In
addition, the algorithm does not require initialization of the nodes in the
system in order to converge to a correct solution.

1 Introduction

Consider a graph G = (V, E), where V is a nonempty set of nodes and E CV x V
is the set of edges. We denote the cardinality of the sets V and E as |V] = n
and ||E|| = m respectively. A k-coloring is a function f : V. — {1,2,...,k} from
the vertex set V onto the set of positive integers {1,2,...,k} having the property
that f(i) # f(j) for every edge (i,j) € E. The minimum % for which G has a
k-coloring is called the chromatic number and is denoted x(G). A k-edge-coloring
f', may be defined analogously. Here however adjacent edges receive different colors,
ie. f'(i,7) # f'(u,v) whenever u (or v) € {4,j}. The minimum % for which G has a
k-edge-coloring is called the edge chromatic number or chromatic index of G and is
denoted x/'(G). Edge colorings have applications to map coloring, matching theory,
job shop scheduling, packet routing and resource allocation [19, 13]. Although not as
extensively studied as the vertex coloring problem [13], there are a number of known
results for the edge coloring problem in the literature. We mention some of them
here.

It is obvious that at least A colors are needed to edge color a graph G, where A is
the maximum degree of any node in G. In 1964 Vizing showed that x' < A+1 9, 6].
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This also leads to a ploynomial time sequential A + 1 -edge-coloring algorithm [9]. It
is NP-complete to determine if an arbitrary graph is A-edge colorable or A + 1-edge
colorable. Mitchell and Hedetniemi[18] present an O(n) sequential algorithm for
edge coloring trees. A slight modification is also presented to edge-color a unicyclic
graph (after the underlying tree is colored). The tree algorithm uses A colors which is
optimum since the edge-chromatic number of a bipartite graph G satisfies, x'(G) = A
[13, Theorem 27]. It was also shown when x'(H) = A + 1 for a unicyclic graph H.

In 1987 Karloff and Shmoys gave a RNC PRAM algorithm [15] that used A +
VA colors and logn time. It is possible to derandomize this algorithm to obtain a
deterministic parallel version.

In 1992 Panconesi and Srinivasan gave two randomized distributed algorithms
for edge coloring bipartite graphs [19] and a means to extend the algorithms to gen-
eral graphs is given using an idea from [15]. Note that the same time complexities
are achieved. In 1997 Grable and Panconesi present a distributed (1 + )A(G) col-
oring randomized algorithm which executes in O(loglogn) time for large enough n
(polylog n < n < nf, for some positive ¢) [9]. This algorithm was modified later in
[17, 16] to reduce the failure probability.

Recently Sakurai et al. [20] presented a self-stabilizing algorithm resilient to
Byzantine fault and crash failures which edge colors a tree network. The algorithm
uses A + 1 colors (1 more color than is necessary) in order to achieve the constant
containment radius of (2, 1) and assumes that the tree is rooted. There the model
used was a shared memory model and both the central and distributed daemons were
considered. In this paper we present a self-stabilizing distributed algorithm which
will edge color an arbitrary graph G. The algorithm uses 2A — 1 colors, which ap-
pears to be the current known upperbound for deterministic distributed algorithms
[19]. We show that our algorithm requires O(A%m) moves to stabilize.

The rest of the paper is organized as follows. Section 2 introduces the model of
computation and the self-stabilizing algorithm is presented in Section 3. The proof
of correctness and the complexity related issues are provided in Section 4 and finally
Section 5 concludes the paper.

2 Model of Computation

We define a distributed system to be a collection of processing elements (or nodes)
which do not share a global memory. Every node has a distinct set of local variables,
whose contents specify the local state of that node. Note that each node is permitted
to read its own state and the state of its neighbors (adjacent nodes) but may modify
only its local state. The union of the local states of all nodes in the system specifies
the global state of the system. Two classes of global states exist. These are (i)
legitimate state, and (ii) illegitimate state. The goal in a self-stabilizing distributed
system is to start from an arbitrary (possibly illegitimate) initial state and reach a
legitimate state after a finite number of moves (steps). Self-stabilizing algorithms are
resilient to transient faults. A transient fault is defined to be a fault that perturbs the
state of the system but not its program. If any transient fault occurs, the algorithm
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is automatically reactivated and brings the system back to the legitimate state within
a finite time. Dijkstra first introduced the concept of self-stabilization in distributed
systems [7]. Since then, self-stabilizing algorithms for many fundamental problems,
including some graph theory problems have been reported in the literature (see e.g.,
[1, 3,4, 5, 12, 14, 11]).

The system is modeled as an asynchronous network of processors with their own
local memory, such that each processor corresponds to a node of the given graph
G = (V,E). The set of edges E correspond to bidirectional communication links.
Therefore, adjacent nodes i,j € V (i.e. (,5) € Eor(j,i) € E) can access each others
data. The algorithm for each node ¢ € V' can be expressed as

+[G[1] —» M[1] o G[2] = M[2|o..q Glk] — M[k]],

where *[S] refers to the repeated execution of the statement S until all guards are false
and O denotes the nondeterminism symbol. Each action is of the form G[z] — M|[z]
for some z,1 < z < k. The guard of an action G[], is a Boolean expression over the
variables of node 7 and those of its adjacent neighbors. A move M[], is defined to
be the execution of an assignment statement of an action and is atomic in nature.
A node i is said to enjoy the privilege when any one of its guards evaluates to true.
Such a guard and the corresponding move is said to be enabled. Only a privileged
node can make a move. If more than one node enjoys the privilege, then one of
the privileged nodes is nondeterministically selected to make the move. Further,
if the selected node has more than one enabled guard, then one of the enabled
actions is nondeterministically selected for execution. For successful termination of
an algorithm the following global criteria must be satisfied.

GC1 In every illegitimate state, at least one node enjoys the privilege.

GC2 In a legitimate state, no node enjoys the privilege. Therefore, once the system
reaches a legitimate state, no further move is possible.

GC3 Regardless of the initial state and regardless of which node out of a set of nodes
enjoying the privilege is selected each time for the next move, the system is
guaranteed to reach a legitimate state after a finite number of moves.

In self-stabilizing systems, two types of schedulers (daemons) exist. These are
distributed and centralized daemons. Under the centralized daemon, only one enabled
node is selected to execute a move at any given time, whereas under the distributed
daemon, an arbitrary subset of the enabled nodes are allowed to execute at any given
time. Therefore the centralized daemon may be considered as a special instance of
the distributed daemon. We initially assume a central daemon, but later show that
the proposed algorithm also works under a distributed daemon.

In Dijkstra’s definition of a self-stabilizing system [7], the system can make a
move from one legitimate state to another legitimate state and therefore algorithm
executions are infinite. However, for self-stabilizing graph algorithms (i.e. algorithms
which compute some relation on the current network topology), once the system has
reached a legitimate state, each state is merely repeated. Such algorithms have
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also been called static [20, 8], silent [8] or noninteractive [21]. As a consequence, we
assume that once the system is in the legitimate state the algorithm is terminated. In
this case, if any transient fault occurs that takes the system back into an illegitimate
state, the algorithm is automatically reactivated and brings the system back to the
legitimate state within a finite time.

3 The Self-stabilizing Algorithm

3.1 Outline of the Algorithm

In this section we present ALGORITHM-SEC, a self-stabilizing algorithm for produc-
ing an edge coloring of any graph. It is known that the problem of edge coloring a
given graph G is equivalent to node coloring the line graph of G (denoted by L(G)).
A A +1 node coloring of £(G) translates to a 2A — 1 edge coloring of G [19]. Al-
though it appears possible to allow the actual nodes in V' to emulate virtual nodes
in £(G), and then run either of the node coloring algorithms in [10] on top of the
virtual network £(G), we run into a problem since a pair of nodes in £(G) may
actually be a physical distance of two away in G. Note that in [8] a generic scheme
is provided which allows self-stabilizing algorithms to use distance-two information,
but the presented scheme requires distinct node IDs which are totally ordered. In
addition, algorithms GRUNDY-COLORING () and FAST-COLORING() in [10] would run in
O(m?) and O(n x m) time respectively, under the scheme described above [8, Theo-
rem 1]. Nonetheless, we still make use of the self-stabilizing node coloring algorithm
presented by Hedetniemi et al. [10].

ALGORITHM-SEC is fairly simple and works as follows. For each edge, a leader
must be chosen (and we refer to non-leaders as gatherers rather than followers). The
leader u of an edge wv € E will color that edge based on the color of all incident
edges uv', where v’ # v and the color of all edges u'v, where u' # u, incident to
the gatherer v. The gatherer v of an edge uv will collect the colors in use by all
of its incident edges except u and make this information available to u through the
variable N_Color(v)(u). These concepts are illustrated further in Section 5. Note
that node v maintains N_Color(v)(u) only if node u is the leader of edge uv.

3.2 The Algorithm

We now present the algorithm more formally in the figures that follow. All terminol-
ogy used in the algorithm is shown in Table 1. The procedures which the algorithm
makes use of are provided in Figure 1 and ALGORITHM-SEC is shown in Figure 2.

4 Correctness and Complexity

In this section of the paper, we provide a correctness proof of ALGORITHM-SEC.
Note that from [10], only O(n) moves are required to elect a leader for each edge and
that if no leader has been elected for an edge, it will not be colored.
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1. procedure ELECT( )/*FAST-COLORING[11]*/
2 if {c¢(j):j € N()} ={1,2,...,deg(i)} then
3 (i) :==deg(i) + 1

4: else

5 c(i) =z € {1,2,...,deg(1)} —{c(j) : € N(2)}
6 end if

7: end procedure

8: procedure GATHER(Z, j)/*NB: j in N(i)*/

9: T := {}
10: for all k € N(i) — {j} do
11 if ELECTED(i, k) then
12: T :=T U Color(i)(k)
13: else
14: T :=T U Color(k)(i)
15: end if
16: end for
17: return T’

18: end procedure

19: procedure COLOREDGE(s, j)/*NB: j in N(i)*/
20: T := GATHER({, j) U N_Color(j)(i)

21: x:=min{l,2,...,deg(i) + deg(j) — 1} = T
22: for all ke N(i) — {j} do

23: if GATHERER(i, k) then

24: N_Color(i)(k) := GATHER(i, k) /*Allow neighbors to see new color*/
25: end if

26: end for

2T: return v

28: end procedure

Figure 1: Procedures used in ALGORITHM-SEC

gl
/*R1:*/ CORRUPT (i) — ELECT()

/*R2:*/ 0 There exists j € N(i) AND GATHERER(i,j) AND
N_Color(i)(j) # GATHER(j) — N_Color(i)(j) := GATHER(Z, j)

/*R3:*/ 0 There exists j € N(i) AND ELECTED(i, j) AND
Color(i)(j) # COLOREDGE(Z, j) — Color(i)(j) := COLOREDGE(, j)

Figure 2: ALGORITHM-SEC
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Terminology Definition
N(1) The set of neighbors of node i
(i) The color assigned to the node ¢ by algorithm

FAST-COLORING ()

Color(i) The set of colors assigned to the edges incident to node i

Color(i)(j) The color assigned to edge ij, where j € N(i)

N_Color(i)(7) The set of colors assigned to all the neighbors of node 14,
except j

CORRUPT (1) There exists a neighbor j € N(i) with ¢(i) = ¢(j)

ELECTED(i,j) |~or CORRUPT(i) aND j € N(i) anD c(i) < ¢(j)
GATHERER(i,j) | nor CORRUPT(i) AND j € N(i) AND c(i) > ¢(j)

Table 1: Terminology used in ALGORITHM-SEC

Lemma 1. In any legitimate state of ALGORITHM-SEC, the color assigned to any
edge is at most 2A — 1.

Proof. Consider a node u which is elected to color edge uv. In one worst case, all of
the edges incident to v, except edge uv, are assigned the colors {1,2,...,deg(v) —
1} and all of the edges incident to w, except edge wv, are assigned the colors
{deg(v),deg(v) + 1,...,deg(u) + deg(v) — 2}. In this case, u must assign to the
edge uv the color deg(u)+deg(v)— 1. Since deg(u)+deg(v) —2 < 2A —2, the lemma
holds. d

By the definition of ALGORITHM-SEC, the following lemma holds.

Lemma 2. In any legitimate state of ALGORITHM-SEC, the coloring of edges is a
proper edge coloring.

We now provide the move complexity of ALGORITHM-SEC. To simplify the com-
plexity analysis we assume that each move takes constant time. Note that this
assumption does not affect the correctness proof of ALGORITHM-SEC.

Lemma 3. ALGORITHM-SEC requires at most O(A?m) moves to converge.

Proof. Consider an arbitrary directed edge (so,t) in G', as shown in Figure 3. Recall
that the directed graph G’ shows the elected node for each edge in G, and that
(u,v) € G’ implies that node u will color the edge uv € G. We note that the number
of times a node can change any of its N_Color-values is bounded (to within a constant
factor) by the number of times its neighbors can change their color, therefore we count
only the maximum number of times a node sy will color the edge {so,t} € G.
Whenever sy colors {sg,t} with say x, the nodes in A will not choose x for any
of their incident edges and sg will not choose x when coloring any of the edges with
endpoints in B. Similarly, node ¢ will not choose  when coloring edges in C'. Only
a change in the color of the edges {s;,t}, 1 < i < k, can cause node so to recolor
{50,t}. Without loss of generality assume that each s; colors the edge {s;,t} for the
first time only after s;_; has colored the edge {s;_1,t}, for 1 < ¢ < k. Then, clearly
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S-{s,}

Figure 3: An arbitrary edge (so,t) in G’ and its neighboring edges.

O(k?) such moves are possible.Note that because of the automatic neighbor update
in procedure ecolor(), each s; cannot be forced to recolor {s;,t} because of changes
in the color of {s;,w}, for w € N(s;) — {t}.

Since there are m edges in G, at most O(c?m) moves are possible, where o is an
upperbound on the size of any S in G. Clearly 0 < A, thus completing the proof. [

By the above lemma, it can be seen that each node can execute a finite number of
moves, therefore ALGORITHM-SEC satisfies total correctness. Lemma 2 shows that
partial correctness is also satisfied, therefore we get the following theorem.

Theorem 1. ALGORITHM-SEC is correct.

We now show that ALGORITHM-SEC is self-stabilizing. Let GP be a global
predicate defined over the set of global states GS. Then ALGORITHM-SEC is self-
stabilizing with respect to GP if it satisfies:

(1) Closure: If a global state ¢ € GS satisfies GP, then any global state reachable
from ¢ also satisfies GP

(ii) Convergence: Starting from any arbitrary state, the system is guaranteed to
reach a global state satisfying GP in a finite number of steps.

Lemma 4. ALGORITHM-SEC satisfies both closure and convergence properties.

Proof. Let GP be defined as follows. GP = (-G1 A =G2 A ~G3) where Gi is the
guard of the i-th rule. Then, (i) by definition, if GP is satisfied, then no node
enjoys the privilege and hence the algorithm returns the color for each edge uv € G
and terminates. Since no other global state is reachable after ALGORITHM-SEC
terminates, closure is trivially proved. (ii) by Theorem 1, predicate G P is eventually
satisfied. Hence convergence is also satisfied. O
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We may now state the following theorem.

Theorem 2. ALGORITHM-SEC is self-stabilizing and computes a {2A — 1}-edge-
coloring of an arbitrary graph G after O(A’m) moves.

5 Illustrative Example

Figure 4(a) shows a system which has a leader for each edge and the contents of the
remaining variables are arbitrary. The directed edges (u,v) indicate that node u is
the leader of the undirected edge uv. The contents of the variables Color(u)(v) are
shown adjacent to the corresponding directed edge and the contents of N_Color(u)(v)
are shown within the square brace connected to u. For instance, node a is not the
leader for any incident edge and N_Color(a)(b) = {6,1}. Also, node f is the leader of
edge cf, Color(f)(c) =2 and N _Color(f)(e) = {2,2,3}. In Figure 4(b), we assume
the scheduler applies some rules of ALGORITHM-SEC to Figure 4(a) as follows. For
node a, rule R2 is applied to neighbor b, then node a changes N_Color(a)(b) to reflect
the color of the edge af, namely {3}. Similarly if node ¢ applies R2 to neighbor
d, its N_Color(c)(d) variable is changed to {2,3,1} as shown. Assume further that
node d executes rule RS for neighbor ¢. Then it calls COLOREDGE(d, ¢), which in
turn calls GATHER(d, ¢) and T is set to {2} U {3,2,1} as a result of (Figure 1) line
20. The value of the variable x is then set to min{1,2,3,4,5} — {3,2,1} = 4. Then
node d updates its N_Color(d)(e) value as per lines 22-26. Similarly, node f updates
the color of edge c¢f to 4 and allows the neighbors b and e to see this new color by
updating N_Color(f)(b) and N_Color(f)(e).

Note that although discussed sequentially, the same result after the application
of the above moves is achieved if all the nodes were allowed to execute concurrently
provided that neighboring nodes active at the same time read the previous state.
Note further, that the system shown in Figure 4(b) is not yet in a legitimate state
since node ¢ can still execute rule R2.

6 Conclusion

In this paper, we presented the self-stabilizing algorithm, ALGORITHM-SEC, which
computes a {2A — 1}-edge-coloring of an arbitrary graph G. The algorithm does not
require initialization of the local variables kept at each node in the system. Starting
from any arbitrary state, ALGORITHM-SEC is guaranteed to produce the correct
output after O(A%m) moves. If the system is in the legitimate state and a transient
fault occurs, or a change in the network topology changes the state of the system
to an illegitimate state, the algorithm is automatically reactivated and brings the
system back to a legitimate state after a finite time.

In the algorithm, each node indexed its neighbors by their labels (IDs). We note
that this does not require the system to have globally unique IDs as in [8]. For
instance, each node could maintain an arbitrary ordering of its edges, and use this
ordering to index its neighbors instead.
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f: {1,3,2}
e:{1,1,2}
d: {3, 2,1}
b: {0}

e: {1, 2}

f: {1,3,2}
e:{1,1,2}
R2 d: {3, 2,1}
b: {2, 3, 1}

{2, 4,3}
b: {3, 1, 4}

N (b)

Figure 4: Partial execution sequence of ALGORITHM-SEC on an arbitrary graph
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In our model, we assumed the existence of a central daemon. Burns et al. [2]
shows that a solution which is correct under a central demon is also correct with a
distributed daemon provided two conditions hold. These are,

1. There are no multiwrite variables

2. There is no infinite sequence of moves involving a proper subset of nodes con-
sisting of a pair of neighbors only.

The first condition follows since only a given node can modify its own state. The
second condition holds since the number of moves the system can make is finite.
Therefore, the proposed solution also works with distributed daemons.

We note here that the presented algorithm produces an edge Grundy coloring. A
k-edge Grundy coloring f', is an edge coloring such that for every edge e € E, the
color of e, f'(e) is the smallest positive integer not used as a color on any neighboring
edge of e. It is known that Grundy colorings produce fairly good colorings on average
and use twice as many colors as necessary on random graphs with edge probability
1/2 [10].
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