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Abstract

Rees and Stinson (On combinatorial designs with subdesigns, Discrete
Math. 77(1989), 259-279) proved that the necessary conditions for the
existence of a pandecomposable (v,4,2)-BIBD with as a subsystem a
pandecomposable (u,4,2)-BIBD are also sufficient, leaving finite open
pairs of (v,u) with v — u < 822 and v,u =1 (mod 6). In this note, we
give a complete solution to the spectrum of pandecomposable (v,4,2)-
BIBDs with subsystems.

1 Introduction

Let v,n, A be positive integers. A balanced incomplete block design of order v with
block size n and index A, denoted (v,n,A)-BIBD, is an ordered pair (X, B) where
X is a w-set of points, and B is a collection of n-subsets of X called blocks, such
that each pair of distinct points of X occurs together in exactly A blocks of B. A
(v,m, A)-BIBD (X, B) can be represented graphically as follows. Each point in X
is represented by a vertex, and each block B = {b1,bs,--,b,} is represented by a
complete graph K, joining the vertices by, by, - - - , by,. Since each pair of distinct points
occurs in exactly A blocks in B, each edge belongs to exactly A K, ’s. Therefore a
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(v,m, A)-BIBD is equivalent to a complete multigraph AK, in which the edges have
been partitioned into copies of K, (corresponding to the blocks in B), i.e., a (v,n, \)-
BIBD is equivalent to a decomposition of AK, into K,’s.

Let G = {G1,Gs,---,G\} be a decomposition of K,,. A complementary decom-
position MK, — G is a decomposition D of the complete multigraph AK, into
K,’s (i.e. a (v,m,\)-BIBD) with the property that for each j = 1,2,--- A the set
{G; C K, : K, € D} is a decomposition of K, ( we will refer to D as the root); note
that this necessarily means that each G; € G contains the same number (namely
n(n —1)/2X) of edges. It is obvious that the case A = 1 corresponds to constructing
(v,n,1)-BIBDs.

When A > 1 the best-known examples of these designs are the so-called nested
Steiner triple systems. A Steiner triple system STS(v) is said to be nested if one
can add a point to each triple in the system and so obtain a (v,4,2)-BIBD. It is
easy to see that a nested STS(v) is equivalent to a complementary decomposition
2K, — {Ki3,K{3}. The spectrum of these designs was determined by Stinson [5].

Theorem 1.1 (Stinson [5]). There exists a nested STS(v) if and only if v = 1(mod
6).

Two decompositions G; = {G1,G3,---,G3} and Gy = {G3,G%,---,G3} of K,, are
said to be distinct if for no permutation o on {1,2,---, A} is it true that G} ~ Gg(i)
foralli=1,2,---,A. Then a (v,n, A\)-BIBD (viewed as a decomposition D of \K,, —
K,) is pandecomposable if, for every decomposition G of K,, (with A graphs, each with
the same number of edges), there exists a complementary decomposition AK, — G
with D as its root. Therefore a pandecomposable (v, 4,2)-BIBD is a (v, 4, 2)-BIBD
(viewed as a decomposition D of 2K, — Kj) such that for ¢ = 1,2, there exists a
complementary decomposition 2K, — G; with D as its root, where G; = { K, 3, K{ 3}
and Gy = { Py, Pf}. For example the following design is a pandecomposable (7, 4, 2)-
BIBD [4].

Points: 0,1,2,3,4,5,6.
BIOCkS: {0747 27 1}7{13 53 33 2},{2’6’ 4’ 3}’{37 07 574}7{47 1767 5}7{53 23 03 6}3{6’ 3’1’0}'

Here each block {a, b, c,d} associates the graphs K3 and K7, where K, 3 has a on
one side and b, ¢, d on the other, and also the graphs P, and P; where Py is the path
abcd with three edges ab, be, cd.

The spectrum of these designs was also determined by Granville et al. [2].

Theorem 1.2 (Granville, Moisiadis and Rees [2]). There ezists a pandecomposable
(v,4,2)-BIBD if and only if v = 1(mod 6).

A subsystem in a complementary decomposition AK, — G is just a complemen-
tary decomposition AK,, — G for some complete multisubgraph AK, C AK,. In
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particular, the root of the subsystem ( a (u, k, A\)-BIBD) is a sub-BIBD of the root
of the master system (a (v, k, A)-BIBD). In this note, we are interested in determin-
ing the spectrum of pandecomposable (v,4,2)-BIBDs with subsystems. Since the
root of a pandecomposable (v, 4,2)-BIBD is a (v, 4,2)-BIBD, we have the following
necessary conditions for the existence of a pandecomposable (v,4,2)-BIBD with a
subsystem.

Lemma 1.3 The necessary conditions for the existence of a pandecomposable(v,4,2)-
BIBD with as a subsystem a pandecomposable (u,4,2)-BIBD are v > 3u + 4 and
u,v = 1(mod 6).

Proof. A subsystem in a pandecomposable (v,4,2)-BIBD is a pandecomposable
(u,4,2)-BIBD for some complete multi-subgraph 2K, C 2K,. Since this yields a
(v,4,2)-BIBD with as a subsystem a (u,4,2)-BIBD a necessary condition for exis-
tence is that v > 3u + 1 [3]. By Lemma 1.2, v,u = 1(mod 6) is also necessary. So
this implies that v > 3u + 4. The proof is completed. a

Rees and Stinson [4] discussed the existence of these designs and obtained the
following result.

Lemma 1.4 (Rees and Stinson [4]). Let u,v = 1(mod 6), v > 3u + 4 and v —
u > 822. Then there exists a pandecomposable (v,4,2)-BIBD with as a subsystem a
pandecomposable (u,4,2)-BIBD.

Note that as a corollary to Lemma 1.4 a partial solution to the spectrum of
subsystems in nested Steiner triple systems was also obtained (see Corollary 6.3 in
[4]). Recently, Wang and Shen [6] solved completely the spectrum of subsystems in
nested Steiner triple systems.

Theorem 1.5 (Wang and Shen [6]). There ezists a nested STS(v) with as a subsys-
tem a nested STS(u) if and only if v > 3u + 4 and u,v = 1(mod 6).

However, the spectrum of subsystems in pandecomposable (v,4,2)-BIBDs has
not been determined completely. The purpose of the present note is to give a com-
plete solution to the existence problem for pandecomposable (v,4,2)-BIBDs with
subsystems.

2 Related pandecomposable (4,2)-GDDs

In order to solve the existence problem for pandecomposable (v,4,2)-BIBDs with
subsystems, we need the auxiliary design of pandecomposable group divisible designs.

Let K be a positive integer set. A group divisible design (GDD) with index A
is a triple (X, H,B) where X is a set of points, H is a partition of X into subsets
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called groups or holes, and B is a collection of subsets of X called blocks such that
any pair of distinct points from X occur together either in some group or in exactly
A blocks, but not both. A (K, A)-GDD of type hi*h3?---h¥ is a GDD with index
A in which every block has size from the set K and in which there are w; groups of
size h;,i = 1,2,-+-,5s. When A\ = 1, we will write K-GDD instead of (K,1)-GDD
for brevity. A (v, K)-PBD is just a K-GDD of type 1”. As with a BIBD, a ({n}, \)-
GDD of type hihs - - - hy is equivalent to a decomposition of the complete multigraph
)‘Kh1,h2,---,h into Kn’S.

A pandecomposable (n,)-GDD of type hihs---hs is a ({n}, A)-GDD of type
hihg - - - hs (viewed as a decomposition D of AKy, p,...n, — Ky) such that, for every
decomposition G of K, (with A graphs, each with the same number of edges), there
exists a complementary decomposition AKp, 4, ..., — G with D as its root.

For pandecomposable (4,2)-GDDs, we have the following construction, which is
a modification of Wilson’s Fundamental Construction for GDD [1].

Lemma 2.1 (Weighting). Let (X,H,B) be a GDD, and let w : X — Z* U {0} be
a weight function on X. Suppose that for every block B € B there exists a pande-

composable (4,2)-GDD of type {w(x) : x € B}. Then there exists a pandecomposable
(4,2)-GDD of type {3 pen w(z) : H € H}.

As an immediate corollary to Lemma 2.1, we have

Lemma 2.2 Suppose there exists a (v, K)-PBD, and for each k € K there exists a
pandecomposable (4,2)-GDD of type h*. Then there exists a pandecomposable (4,2)-
GDD of type h*.

Proof. Give a weight h to each point of K-GDD of type 1Y ( which is just a
(v, K)-PBD) and apply Lemma 2.1, using pandecomposable (4,2)-GDDs of type h*
as input designs. This gives the desired designs. a

To apply the above constructions, we need to find several essential pandecompos-
able GDDs. Let D = (X,H,B) be a pandecomposable (4,2)-GDD. Let Sx| be the
symmetric group on X and o € S)x| be a permutation. For each B = {by, by, b3, b4} €
B, let o(B) = {o(b1),0(b2),c(b3),c(bs)} and o(B) = {o(B) : B € B}. A permuta-
tion ¢ is called an automorphism of the design D if o(B) = B. It is obvious that all
automorphisms of D form a group (called an automorphism group of D). Let A be
an automorphism group of D. We say that two blocks Bj,B; of D are in the same
orbit if there an automorphism o of A such that o(B;) = Bs. So the automorphism
group A divides the blocks of D in disjoint orbits. If we choose one block from each
orbit, the entire design D is determined and such a choice is called a base. In the
following direct constructions, for each design, we only list the automorphism group
and base blocks of the desired design.

Lemma 2.3 ([2]). There exists a pandecomposable (4,2)-GDD of type 2*.
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Proof.
Points: X ={0,1,---,7}.
Groups: {{24,2i +1}:0 << 3}.
Automorphism group:{(0)).
Base blocks:

{072777 4}’ {1737675}’ {27 ]‘7 57 7}7 {3707476}7
{4727671}’ {573777 0}’ {67 07 57 2}7 {77]‘7473}'

O
Lemma 2.4 There exists a pandecomposable (4,2)-GDD of type 27.
Proof.
Points: X ={0,1,---,13}.
Groups: {{24,2i +1}:0 < i <6}
Automorphism group: ((0 1)(2 12 3 13)(4 9 5 8)(6 10 7 11)).
Base blocks:
{0,2,4,6}, {2,1,4,12}, {2,10,5,8}, {4,7,13,9},
{4,10,1,6}, {6,2,9,1}, {6,11,12,3}.
O

Lemma 2.5 There exists a pandecomposable (4,2)-GDD of type 2'°.

Proof.
Points: X ={0,1,---,19}.
Groups: {{i,7+ 10} :0 <7 <9}.
Automorphism group: ((04 8 12 16)(1 59 13 17)(2 6 10 14 18)(3 7 11 15 19)).
Base blocks:
{0,1,2,3}, {0,4,6,8}, {0,5,9,18}, {1,3,4,19},

{1,14,9,6}, {1,15,17,8}, {2,8,5,13}, {2,10,6,3},
{2,15,7,1}, {3,12,15,6}, {3,16,4,17}, {3,19,14,8}.

Lemma 2.6 There erists a pandecomposable (4,2)-GDD of type 2'°.
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Proof.
Points: X ={0,1,---,37}.
Groups: {{i,7+ 19} :0 <1 < 18}.
Automorphism group: ((02---36)(13 --- 37)).
Base blocks:

{0,1,2,4},  {0,3,5,9},  {0,6,11,23}, {0,7,25,30},
{0,10,37,16}, {0,12,20,24}, {1,4,18,11}, {1,7,23,37},
{1,9,19,8},  {1,10,26,13}, {1,22,35,12}, {1,24,6,15}.

O
Lemma 2.7 There exists a pandecomposable (4,2)-GDD of type 6°.
Proof.
Points: X = {0,1,---,35}.
Groups: {{i,i+5,-+,i+25}:0 < <4} U{{30,31,32,33,34,35}}.
Automorphism group: ((02---28)(13 ---29)(30 32 34)(31 33 35)).
Base blocks:
{0,2,6,14}, {0,7,35,26}, {0,9,33,22}, {0,13,1,29},
{0,18,32,27}, {1,10,29,23}, {1,14,8,5}, {1,17,25,32},
{1,20,13,33)}, {1,34,12,28}, {30,0,1,2}, {31,0,3,7}.
O

Now we may use Lemma 2.2 to get a certain class of pandecomposable (4,2)-
GDDs.

Lemma 2.8 There exists a pandecomposable (4,2)-GDD of type 2 for u = 1(mod
3) and u > 4.

Proof. From Lemmas 2.3-2.6, there are pandecomposable (4,2)-GDDs of types
2427210 219 For u € {m : m > 4,m = 1(mod 3)}, it is known that there is a
(u,{4,7,10,19})-PBD [1, IIL.3, Table 3.17]. Then the conclusion follows from Lemma
2.2.

3 Conclusions

In this section, we shall give a complete solution to the existence problem for pan-
decomposable (v,4, 2)-BIBDs with subsystems. Now we give our main construction.
It is a variant of the Filling in Holes Construction in [4]. So, we state the following
construction without proof.



PANDECOMPOSABLE (v,4,2)-BIBDS WITH SUBSYSTEMS 229

Lemma 3.1 (Filling in Holes). Suppose there exists a pandecomposable (4,2)-GDD
of type hihs - - - hs, and for 1 <14 < s—1 there exists a pandecomposable (h; +¢,4,2)-
BIBD with as a subsystem a pandecomposable (¢,4,2)-BIBD. Suppose there ezists a
pandecomposable (hy + €,4,2)-BIBD. Then there exists a pandecomposable (v,4,2)-
BIBD with as a subsystem a pandecomposable (u,4,2)-BIBD, where v = Yi<i<s hite
and u = hg + €.

We are now in a position to show the main result of this note.

Theorem 3.2 There exists a pandecomposable (v,4,2)-BIBD with as a subsystem a
pandecomposable (u,4,2)-BIBD if and only if v > 3u + 4 and u,v = 1(mod 6).

Proof. By Lemma 1.3, we need only to show the sufficiency. From [7], we have
a ((v+1)/2,Kys U {((u +1)/2)*})-PBD for v,u = 1(mod 6), v > 3u + 4 and
(v,u) # (37,7) where Ky3y = {m : m > 4,m = 1(mod 3)}. This PBD is equivalent
to a Ky(3)-GDD with a group of size (u — 1)/2 and the other group sizes = 0(mod
3). Give a weight 2 to each point of the GDD and apply Lemma 2.1, using pande-
composable (4,2)-GDDs of type 2™, m € Ky from Lemma 2.8 as input designs.
This gives a pandecomposable (4,2)-GDD with a group of size u — 1 and the other
group sizes = 0(mod 6). Applying Lemma 3.1 with ¢ = 1, we can get a pandecom-
posable (v, 4, 2)-BIBD with as a subsystem a pandecomposable (u, 4,2)-BIBD which
exists by Theorem 1.2. For (v,u) = (37,7), applying Lemma 3.1 with ¢ = 1 to a
pandecomposable (4,2)-GDD of type 6° from Lemma 2.7, we get a pandecomposable
(37,4,2)-BIBD with as a subsystem a pandecomposable (7,4, 2)-BIBD which exists
by Theorem 1.2. This completes the proof. a

As an immediate corollary to Theorem 3.2, we can also obtain Theorem 1.5.
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