Hexagon biquadrangle systems

Lucia Gionfriddo

Dipartimento di Matematica Università di Catania Città Universitaria, Viale A. Doria, 6 95125 Catania ITALY lucia.gionfriddo@dmi.unict.it

Abstract

A hexagon biquadrangle is the graph consisting of two 4-cycles (x_1, x_2, x_3, x_4) , (x_1, x_4, x_5, x_6) where $x_1, x_2, x_3, x_4, x_5, x_6$ are distinct vertices such that $(x_1, x_2, x_3, x_4, x_5, x_6)$ is a hexagon. A hexagon biquadrangle system of order n and index ρ [HBQS] is a pair (X, H), where X is a finite set of n vertices and H is a collection of edge disjoint hexagon biquadrangles (called blocks) which partitions the edge set of ρK_n , with vertex set X. A hexagon biquadrangle system is said to be a 4-nesting [N(4) or also (4)-HBQS] if the collection of all the 4-cycles contained in the hexagon biquadrangles form a μ -fold 4-cycle system. It is said to be a 6-nesting [N(6) or also (6)-HBQS] if the collection of 6-cycles contained in the hexagon biquadrangles is a λ -fold 6-cycle system. It is said to be a (4,6)-nesting, briefly a [N(4,6) or also (4,6)-HBQS], if it is both 4-nesting and a 6-nesting. It is said to be a $(4^2,6)$ -nesting if it is (4,6)-nesting and the μ -fold 4-cycle system, nested in it, is decomposable into two $\frac{\mu}{2}$ -fold 4-cycle systems.

In this paper we determine completely the spectrum of $(4^2, 6)$ -HBQS for $\rho = 7h$, $\lambda = 6h$ and $\mu = 8h$, h a positive integer.

1 Introduction

A λ -fold m-cycle system of order n is a pair (X,C), where X is a finite set of n elements, called vertices, and C is a collection of edge disjoint m-cycles which partitions the edge set of λK_n , the complete graph with vertex set X and where every pair of vertices is joined by λ edges. In this case, $|C| = \lambda n(n-1)/2m$. When $\lambda = 1$, we will simply say m-cycle system. A 3-cycle is also called a triple and so a λ -fold 3-cycle system will also be called a λ -fold 3-triple system. When $\lambda = 1$, we have the well known definition of $Steiner\ triple\ system$ (or, simply, $triple\ system$).

Fairly recently the spectrum (i.e., the set of all n such that an m-cycle systems of order n exists) has been determined to be [1, 14]:

- (1) $n \ge m$, if n > 1;
- (2) n is odd; and
- (3) $\frac{n(n-1)}{2m}$ is an integer.

The spectrum for λ -fold m-cycle systems for $\lambda \geq 2$ is still an open problem.

The graph given below is called a hexagon biquadrangle and will be also denoted by $[(x_1), x_2, x_3, (x_4), x_5, x_6]$.

Figure 1:

A hexagon biquadrangle system of order n and index ρ [HBQS] is a pair (X, H), where X is a finite set of n vertices and H is a collection of edge disjoint hexagon biquadrangles (called blocks) which partitions the edge set of ρK_n , with vertex set X.

A hexagon biquadrangle system (X, H) of order n and index ρ is said to be a 4-nesting [(4)-HBQS] if the collection of all the 4-cycles contained in the hexagon biquadrangles form two distinct $\frac{8}{7}\rho$ -fold 4-cycle systems. We will say that this $(\mu = \frac{8}{7}\rho)$ -fold 4-cycle system is nested in the HBQS (X, H).

A hexagon biquadrangle system (X, H) of order n and index ρ is said to be a 6-nesting [N(6) or also (6)-HBQS] if the collection of 6-cycles contained in the hexagon biquadrangles is a $(\lambda = \frac{6}{7}\rho)$ -fold 6-cycle system. This 6-cycle system is said to be nested in (X, H).

A hexagon biquadrangle system of order n and index ϱ is said to be a $(4^2, 6)$ -nesting, briefly a $N(4^2, 6)$ or also $(4^2, 6)$ -HBQS, if it is both a 4-nesting and a 6-nesting with the additional condition that the 4-cycle system of index μ , nested in the HBQS (X, H), is decomposable into two systems of index $\frac{\mu}{2}$. In these cases, we say that the hexagon quadrangle system has indices (ρ, λ, μ) .

In the following examples the vertex set is Z_7 .

Example 1 The following HBQS(7) is neither a 4-nesting nor a 6-nesting.

Base blocks: [(0), 1, 2, (3), 5, 4], [(0), 2, 4, (3), 1, 6], [(0), 3, 6, (4), 5, 2].

Example 2 The following HBQS(7) is a 6-nesting but not a 4-nesting.

Base blocks: [(5), 0, 1, (3), 6, 2], [(6), 0, 1, (3), 2, 5], [(3), 1, 6, (2), 0, 4].

Example 3 The following HBQS(7) is a 4-nesting but not a 6-nesting.

Base blocks: [(0), 6, 4, (1), 2, 5], [(0), 2, 4, (1), 3, 6], [(0), 3, 6, (1), 2, 5)].

Example 4 The following HBQS(7) is both a 4² and 6 nesting.

Base blocks: [(0), 3, 2, (1), 6, 5], [(0), 6, 4, (2), 5, 1], [(0), 2, 6, (3), 5, 4].

In this paper we determine completely the spectrum of $(4^2, 6)$ -HBQS(n) for $\lambda = 6h$, $\mu = 8h$ and $\rho = 7h$; h a positive integer.

2 Necessary existence conditions

In this section we prove some necessary existence conditions for HBQSs having indices (ρ, λ, μ) and order n.

Theorem 2.1 Let (X, H) be a $(4^2, 6)$ -HBQS. Then:

- (1) $6\rho = 7\lambda$, $4\lambda = 3\mu$, $8\rho = 7\mu$;
- (2) $\rho \equiv 0 \ mod \ 7, \ \mu \equiv 0 \ mod \ 8, \ \lambda \equiv 0 \ mod \ 6; \ and$
- (3) $\rho = 7h$, $\lambda = 6h$, $\mu = 8h$, h is a positive integer.

Proof. Let (X, H) be a $(4^2, 6)$ -HBQS and let (X, C') be the 6-cycle system of index λ and (X, C'') the 4-cycle system of index μ , nested in it.

(1) It is immediate that:

$$\begin{split} |H| &= |C'| = \tfrac{1}{2} |C''|, \\ |H| &= \tfrac{\binom{n}{2}}{7} \rho, \ |C'| = \tfrac{\binom{n}{2}}{6} \lambda \ , \ |C''| = \tfrac{\binom{n}{2}}{8} \mu \ . \end{split}$$
 It follows that $6\rho = 7\lambda, \ 8\rho = 7\mu$ and $4\lambda = 3\mu$.

- (2) From (1), the index $\mu = \frac{8}{7}\rho$ must be congruent to 0 (mod 8). So, since $\rho = \frac{7}{6}\lambda$ and $\lambda = \frac{6}{7}\rho$, it follows that $\rho \equiv 0 \pmod{7}$ and $\lambda \equiv 0 \pmod{6}$.
- (3) From (2), directly.

Theorem 2.2 Let (X, H) be a $(4^2, 6)$ -HBQS. Then $n \equiv 0, 1 \pmod{2}$.

Proof. This follows from Theorem 2.1.

3 Existence for p a prime and consequences.

In this section we will examine the existence of $(4^2, 6)$ -HBQS of indices (ρ, λ, μ) and order n for $(\rho, \lambda, \mu) = (7, 6, 8)$ and n a prime number or an odd number not divisible by 3 or 5.

Theorem 3.1 For every prime number $p, p \ge 7$, there exist a $(4^2, 6)$ -HBQS with indices $(\rho, \lambda, \mu) = (7, 6, 8)$ and order p.

Proof. Let $X = \{0, 1, 2, p-1\} = Z_p$. Observe that, if $x, y \in H$, x < y, then: $y - x = \Delta = \{1, 2, ..., \frac{p-1}{2}\}$.

Consider the following families of hexagon biquadrangles, 6-cycles and 4-cycles, respectively:

$$\begin{split} H &= \{b_{j,i} = [(j), j+n-i, j+n-2i, (i+j), j+2i, j+3i] : i \in \Delta, j \in Z_p\}; \\ C' &= \{c_{j,i} = (j, j+n-i, j+n-2i, i+j, j+2i, j+3i) : i \in \Delta, j \in Z_p\}; \\ C'' &= \{q_{j,i,1} = (j, j+n-i, j+n-2i, j+i), q_{j,i,2} = (j, j+i, j+2i, j+3i) : i \in \Delta, j \in Z_p\}. \\ \text{Observe that } n-i \equiv -i \; (\text{mod } n) \; \text{and } n-2i \equiv -2i \; (\text{mod } n). \end{split}$$

We prove that (Z_p, C'') is a 4-cycle system of index $\mu = 8$. In fact, for every pair $x, y \in Z_p$, x < y, if y - x = i, then $i \in \Delta$ and the following blocks of C" contain the edge $\{x, y\}$:

$$\begin{aligned} q_{x,i,1} &= (x, x-i, x-2i, y=x+i), \\ q_{x,i,2} &= (x, y=x+i, x+2i, x+3i), \\ q_{y,i,1} &= (y=x+i, x, x-i, y+i), \\ q_{x-i,i,2} &= (x-i, x, y=x+i, x+2i), \\ q_{x+2i,i,1} &= (x+2i, x+i=y, x, x+3i), \\ q_{x-2i,i,2} &= (x-2i, x-i, x, y=x+i). \end{aligned}$$

Further, since p is a prime number

$${3i: i \in \Delta} = {3, 6, \dots, \frac{3(p-1)}{3}} = \Delta.$$

This implies that there exists an $u \in \Delta$ such that 3u = i and

$$q_{x+2u,u,1} = (x+2u, x+u, x, x+3u = y) \in C''$$

$$q_{x,u,2} = (x, x+u, x+2u, x+3u = y) \in C''.$$

Since:
$$|C''| = 2 \frac{p(p-1)}{2} = \frac{\binom{p}{2}}{4} 8$$
,

the pair (Z_p, C'') is a 4-cycle system of index $\mu = 8$.

Observe that (Z_p, C'') can be decomposed in two 4-cycle systems, both of index 4, having for blocks $q_{j,i,1}$ and $q_{j,i,2}$ respectively.

We prove that (Z_p, C') is a 6-cycle system of index $\lambda = 6$. In fact, for every pair $x, y \in Z_p, x < y$, if y - x = i, then $i \in \Delta$. Further, there are six blocks of C' containing the edge $\{x, y\}$: precisely, the cycles $c_{x-i,i}, c_{x-2i,i}, c_{x+i,i}, c_{x+2i,i}$, and, since p is a prime number, the two cycles $(x_1, x_2, x_3, x_4, x_5, x_6)$ such that $\{x_1, x_6\} = \{x, y\}$ and $\{x_3, x_4\} = \{x, y\}$, respectively.

Since: $|C'| = \frac{p(p-1)}{2} = (\frac{\binom{p}{2}}{6})6$, the pair (Z_p, C') is a 6-cycle system of index $\lambda = 6$. It follows that (Z_p, H) is a $(4^2, 6)$ -HBQS of indices (7, 6, 8) and order p.

Further, if we delete, in every $b_{j,i} \in H$, the edge $\{j, i+j\}$, we obtain the 6-cycle system (Z_p, C') of index $\lambda = 6$. If we separate, in every $b_{j,i} \in H$, the two 4-cycles (j, j-i, j-2i, i) and (j, j+i, j+2i, j+3i), we obtain respectively two 4-cycle systems of index $\mu = 4$, which together give the 4-cycle system (Z_p, C'') of index $\mu = 8$. This completes the proof.

Theorem 3.2 For every prime number $p, p \ge 7$, there exist $(4^2, 6)$ -HBQS having order p + 1 and indices $(\rho, \lambda, \mu) = (7, 6, 8)$.

Proof. Let $X = \{0, 1, 2, \dots, p-1\} = Z_p, X^* = X \cup \{\infty\}, \Delta = \{1, 2, \dots, \frac{p-1}{2}\}, (X, H)$, where:

$$H = \{b_{j,i} = [(j), j+n-i, j+n-2i, (j+i), j+2i, j+3i] : i \in \Delta, j \in Z_p\}.$$

From Theorem 3.1, (X, H) is a $(4^2, 6)$ -HBQS of indices (7, 6, 8) and order p, p a prime, which defines a 6-cycle system (X, C') and a 4-cycle system (X, C''), where:

$$C' = \{c_{j,i} = (j, j+n-i, j+n-2i, j+i, j+2i, j+3i) : i \in \Delta, j \in Z_p\};$$

$$C'' = \{q_{j,i,1} = (j, j+n-i, j+n-2i, j+i), q_{j,i,2} = (j, j+i, j+2i, j+3i) : i \in \Delta, j \in Z_p\}.$$

Consider $b_{j,1}, b_{j,2} \in H$, for $j \in \mathbb{Z}_p$, and define the following blocks:

$$b_{j,\infty,1} = [(j), \infty, j+p-2, (j+1), j+2, j+3], \text{ for } j \in \mathbb{Z}_p;$$

$$b_{j,\infty,2} = [(j), j+p-2, j+p-4, (j+2), j+4, \infty], \text{ for } j \in Z_p;$$

$$b_{j,\infty} = [(j), j+p-1, j+p-2, (\infty), j+4, j+6]$$
 for $j \in \mathbb{Z}_p$.

Observe that, if we indicate by $b = [(x_1), x_2, x_3, (x_4), x_5, x_6]$ the blocks of H, then the blocks $b_{j,\infty,1}, b_{j,\infty,2}, b_{j,\infty}$ are constructed starting from the blocks $b_{j,1}, b_{j,2}$ of H, by the same edges, with the same multiplicity and such that the edges $\{\infty, j\}$, for $j \in \mathbb{Z}_p$, are repeated 6 times in the cycles $(x_1, x_2, x_3, x_4, x_5, x_6)$ of $b_{j,\infty,1}, b_{j,\infty,2}, b_{j,\infty}$, 4 times in the cycles (x_1, x_2, x_3, x_4) , 4 times in the cycles (x_1, x_4, x_5, x_6) and 7 times in the blocks $b_{j,\infty,1}, b_{j,\infty,2}, b_{j,\infty}$. So, if $H^* = H \setminus \{b_{j,1}, b_{j,2}\} \cup \{b_{j,\infty,1}, b_{j,\infty,2}, b_{j,\infty}\}$, it is possible to verify that (X^*, H^*) is a $(4^2, 6)$ -HBQS of order p+1, completing the proof.

The results of Theorem 3.1 and Theorem 3.2 can be extended to $(4^2, 6)$ -HBQS of indices (7h, 6h, 8h) and order n, by repetition of blocks.

Theorem 3.3 For every odd number d, not divisible by 3 or 5, there exist $(4^2, 6)$ -HBQS having order d and indices $(\rho, \lambda, \mu) = (7, 6, 8)$.

Proof.

Consider the same families of hexagon biquadrangles defined in Theorem 3.1, where $\Delta=\{1,2,\ldots,\frac{d-1}{2}\}$:

$$\begin{split} H &= \{b_{j,i} = [(j), j+n-i, j+n-2i, (i+j), j+2i, j+3i] : i \in \Delta, j \in Z_p\}; \\ C' &= \{c_{j,i} = (j, j+n-i, j+n-2i, i+j, j+2i, j+3i) : i \in \Delta, j \in Z_p\}; \\ C'' &= \{q_{i,i} = (j, j+n-i, j+n-2i, j+i), q_{i,i,2} = (j, j+i, j+2i, j+3i) : i \in \Delta, j \in Z_p\}. \end{split}$$

These families define a $(4^2, 6)$ -HBQS of indices (7, 6, 8) and order n, (Z_d, C) , nesting both the 6-cycle system (Z_d, C') and the 4-cycle system (Z_d, C'') . Observe that all the edges of the hexagon biquadrangles are obtained by difference methods, starting from the following base blocks:

$$\begin{split} b_{0,1}, b_{0,2}, \dots, b_{0,\frac{d-1}{2}} \\ c_{0,1}, c_{0,2}, \dots, c_{0,\frac{d-1}{2}} \\ q_{0,1,1}, q_{0,2,1}, \dots, q_{0,\frac{d-1}{2},1} \\ q_{0,1,2}, q_{0,2,2}, \dots, q_{0,\frac{d-1}{2},2} \end{split}$$

Since d is not divisible by 3 or 5, there is not any repetition of vertices in all of the previous blocks.

Therefore, the conclusion follows as in Theorem 3.1.

Theorem 3.4 For every odd number d, not divisible by 3 or 5, there exist $(4^2, 6)$ -HBQS of order d+1 and (7, 6, 8).

Proof. The statement follows from Theorems 3.1, 3.2, directly. \Box

4 Construction $v \to 2v$ and Construction $v \to 2v - 1$

In this section we give two constructions for $(4^2, 6)$ -HBQS. In this case these constructions can be extended to $(4^2, 6)$ -HBQS of indices (7h, 6h, 8h) In that follows all $(4^2, 6)$ -HBQS have indices (7, 6, 8).

Theorem 4.1 $(4^2, 6)$ -HBQS of order 2n can be constructed from $(4^2, 6)$ -HBQS having both indices (7, 6, 8).

Proof. Let (Z_n, H) be a $(4^2, 6)$ -HBQS of order $n, n \geq 6$. Let $X = Z_n \times \{1, 2\}$, and let $(Z_{n,i}, H_i)$ be the HBQS, for i = 1, 2 such that $Z_{n,i} = Z_n \times \{i\}$, and $[((a,i)), (b,i), (c,i), ((\alpha,i)), (\beta,i), (\gamma,i)] \in H_i$ if and only if $[(a), b, c, (\alpha), \beta, \gamma] \in H$. Let H^* be the collection of hexagon biquadrangles defined on X by:

$$H_1 \subseteq H^*, H_2 \subseteq H^*.$$

Further, if:

$$\Phi = \{ [((i,1)), (j+1,2), (i+1,1)), ((j,2)), (i+2,1), (j+2,2)] \}$$
then: $\Phi \subset H^*$.

To begin with (X, H^*) is a $(4^2, 6)$ -HBQS of order 2n. It is easy to see that all the edges of type $\{(x, i), (y, i)\}$ are contained in H_i with the correct repetition. In fact, $(Z_{n,i}, H_i)$ is a $(4^2, 6)$ -HBQS and no edge $\{(x, i), (y, i)\}$ is contained in any of the blocks of Φ , which contains blocks with edges of type $\{(x, 1), (y, 2)\}$.

Consider an edge of type $\{(x,1),(y,2)\}.$

If $b = [((a, 1)), (b, 2), (c, 1), ((\alpha, 2)), (\beta, 1), (\gamma, 2)]$ indicates the blocks of Φ , then an edge $\{(x, 1), (y, 2)\}$ is contained 6-times in the cycles $((a, 1), (b, 2), (c, 1), (\alpha, 2), (\beta, 1), (\gamma, 2))$, 4-times in the cycles $((a, 1), (b, 2), (c, 1), (\alpha, 2))$ and 4-times in the cycles of $((a, 1), (\alpha, 2), (\beta, 1), (\gamma, 2))$.

Further, $\{(x,1),(y,2)\}$ is contained 7-times in the blocks of Φ .

Observe that the number of blocks of H^* is:

$$|H^*| = |H_1| + |H_2| + |\Phi| = \frac{2\binom{n}{2}}{7}7 + n^2 = n(n-1) + n^2 = 2n^2 - n$$

which is exactly the number of blocks of a $(4^2, 6)$ -HBQS of order 2n:

$$\frac{\binom{2n}{2}}{7}7 = \frac{2n(2n-1)}{2} = 2n^2 - n.$$

So, the proof is completed.

Theorem 4.2 $(4^2, 6)$ -HBQSs of order (2n-1) can be constructed from $(4^2, 6)$ -HBQS of order n.

Proof. Let (Z_n, H) be a $(4^2, 6)$ -HBQS, of order n, and let $x = n - 1 \in Z_n$. If $Z_{n-1,i} = Z_{n-1} \times \{i\}$ and $X = (Z_{n-1} \times \{1, 2\}) \cup \{x\}$, then |X| = 2n - 1. Further, let (x, 1) = (x, 2) = (x, 3) = x and let $(Z_{n-1,i} \cup \{x\}, H_i)$ be the HBQS, for i = 1, 2, such that $[((a, i)), (b, i), (c, i), ((\alpha, i)), (\beta, i), (\gamma, i)] \in H_i$ if and only if $[(a), b, c, (\alpha), \beta, \gamma] \in H$.

We define a collection H^* of hexagon bigradrangles on X, as follows:

$$H_1 \subseteq H^*, H_2 \subseteq H^*.$$

Further, let

$$\Phi = \{ [((i,1)), (j+1,2), (i+1,1), ((j,2)), (i+2,1), (j+2,2)] : i, j \in \mathbb{Z}_{n-1} \in H^* \}$$

Just as in Theorem 4.1, it is possible to verify that the pair (X, H^*) is a $(4^2, 6)$ -HBQS of order 2n - 1. The number of blocks in H^* is:

$$|H^*| = |H_1| + |H_2| + |\Phi| = \frac{2\binom{n}{2}}{7}7 + (n-1)^2 = n(n-1) + (n-1)^2 = 2n^2 - 3n + 1$$
.

This is exactly the number of blocks of a $(4^2, 6)$ -HBQS of order 2n - 1:

$$\frac{\binom{2n-1}{2}}{7}7 = (2n-1)(n-1) = 2n^2 - 3n + 1.$$

This completes the proof.

5 Existence of $(4^2, 6)$ -HBQS of orders 6,7,8,9,10.

The cases n = 6, 7, 8, 9, 10 are necessary to determine the spectrum of $(4^2, 6)$ -HBQS completely.

Theorem 5.1 There exist $(4^2, 6)$ -HBQS of order n = 6, 7, 8, 9, 10.

Proof. Case n=6. Let H be the family of hexagon biquadrangles defined on $Z_5 \cup \{\infty\}$ as follows:

H= {
$$b_{j,1} = [(j), j+4, j+3, (j+1), j+2, \infty)$$
] : $j \in Z_5$ } \cup { $b_{j,2} = [(j), \infty, j+1, (j+2), j+4, j+3)$] : $j \in Z_5$ } \cup { $b_{j,3} = [(j), j+3, j+1, (\infty), j+2, j+4)$] : $j \in Z_5$ }.

Observe that the hexagon biquadrangles of H can be obtained by difference methods, starting from the base blocks $b_{0,1}$, $b_{0,2}$, $b_{0,3}$. It is possible to verify that $(Z_5 \cup \{\infty\}, H)$ is a $(4^2, 6)$ -HBQS of order 6.

The existence for n = 7, 8 follows from Theorem 3.1 and Theorem 3.2.

Case n = 9. Let Z_9 and let

$$\begin{split} b_{j,1} &= [(j), j+3, j+8, (j+1), j+6, j+2)], j \in Z_9; \\ b_{j,2} &= [(j), j+4, j+1, (j+2), j+3, j+6], j \in Z_9; \\ b_{j,3} &= [(j), j+1, j+8, (j+3), j+5, j+4], j \in Z_9; \\ b_{j,4} &= [(j), j+2, j+1, (j+4), j+5, j+3], j \in Z_9. \end{split}$$

If

$$H = \{b_{j,1}, b_{j,2}, b_{j,3}, b_{j,4} : j \in Z_9\}$$

then it is possible to verify that (Z_9, H) is a $(4^2, 6)$ -HBQS of order 9.

Case n = 10.

Let $Z_9 \cup \{\infty\}$ and let

$$b_{j,1} = [(j), j+3, j+8, (j+1), j+6, j+2)], j \in Z_9;$$

$$b_{j,2} = [(j), j+4, j+1, (j+2), j+3, j+6], j \in Z_9;$$

$$b_{j,3,\infty} = [(j), j+1, j+8, (j+3), j+5, \infty], j \in Z_9;$$

$$b_{j,4,\infty} = [(j), \infty, j+1, (j+4), j+5, j+3], j \in Z_9;$$

$$b_{j,\infty} = [(j), j+2, j+1, (\infty), j+5, j+4)], j \in Z_9;$$

$$H = \{b_{j,1}, b_{j,2}, b_{j,3,\infty}, b_{j,4,\infty}, b_{j,\infty} : j \in \mathbb{Z}_9\}.$$

Observe that the hexagon biquadrangles of H can be obtained by difference methods, starting from the base blocks $b_{0,1}, b_{0,2}, b_{0,3,\infty}, b_{0,4,\infty}, b_{0,\infty}$. It is possible to verify that $(Z_9 \cup \{\infty\}, H)$ is a $(4^2, 6)$ -HBQS of order 10.

6 Conclusion

Collecting together the results of the previous sections, we have the following result:

Theorem 6.1 There exists a $(4^2, 6)$ -HBQS of order v and indices (7h, 6h, 8h), for every $v \in N$, v > 6.

Proof. The statement follows directly from Theorem 4.1, Theorem 4.2 and Theorem 5.1.

References

- [1] B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin Theory, Ser. B 81 (2001), 77–99.
- [2] E.J. Billington and C.C. Lindner, The spectrum for λ -2-perfect 6-cycle systems, European J. Combinatorics 13 (1992), 5–14.
- [3] C.J. Colbourn and J.H. Dinitz (eds.), The CRC handbook of Combinatorial Designs, CRC Press, Boca Raton (1996).
- [4] L. Gionfriddo, New nesting for G-designs: case of order a prime, Congressus Numerantium 145 (2000), 167-176.
- [5] L. Gionfriddo, On the spectrum of nested G-designs, where G has four non isolated vertices or less, Australas. J. Combinatorics 24 (2001), 59–68.
- [6] S. Kucukcifci and C.C. Lindner, Perfect hexagon triple systems, *Discrete Math.* 279 (2004), 325–335.
- [7] C.C. Lindner, 2-perfect m-cycle systems and quasigroup varieties: A survey, Proc. 24th Annual Iranian Math. Conf., 1993.
- [8] C.C. Lindner, K.T. Phelps and C.A. Rodger, The spectrum for 2-perfect 6-cycle systems, J. Combin. Theory, Ser. A 57 (1991), 76–85.
- [9] C.C. Lindner and C.A. Rodger, 2-perfect m-cycle systems, Discrete Math. 104 (1992), 83–90.
- [10] C.C. Lindner and A. Rosa, Perfect dexagon triple systems, to appear.
- [11] C.C. Lindner and C.A. Rodger, Decomposition into cycles II: Cycle systems, in *Contemporary Design Theory: A collection of surveys* (J.H. Dinitz and D.R. Stinson eds.), J. Wiley, New York (1992), 325–369.
- [12] C.C. Lindner and C.A. Rodger, Design Theory, CRC Press (1997).

- [13] C.A. Rodger, Graph Decompositions, Le Matematiche 45 (1990), 119–140.
- [14] M. Sajna, Cycle decomposition III: complete graphs and fixed length cycles, J. $Combin.\ Designs\ {f 10}\ (2002),\ 27-78..$

(Received 4 June 2005)