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Abstract

A hezxagon biquadrangle is the graph consisting of two 4-cycles (z1, T2, T3,
x4), (@1, T4,2s5,2L6) Where xy,To, T3, T4, Ts, L are distinct vertices such
that (21,2, 3, T4, s, Tg) is a hexagon. A hezagon biquadrangle system
of order n and index p [HBQS] is a pair (X, H), where X is a finite set
of n vertices and H is a collection of edge disjoint hexagon biquadrangles
(called blocks) which partitions the edge set of pK,,, with vertex set X.
A hezagon biquadrangle system is said to be a 4-nesting [N(4) or also
(4)-HBQS] if the collection of all the 4-cycles contained in the hexagon
biquadrangles form a u-fold 4-cycle system. It is said to be a 6-nesting
[N(6) or also (6)-HBQS] if the collection of 6-cycles contained in the
hexagon biquadrangles is a A-fold 6-cycle system. It is said to be a (4, 6)-
nesting, briefly a [N (4, 6) or also (4, 6)-HBQS], if it is both 4-nesting and
a 6-nesting. It is said to be a (4%, 6)-nesting if it is (4,6)-nesting and
the u-fold 4-cycle system, nested in it, is decomposable into two £-fold
4-cycle systems.

In this paper we determine completely the spectrum of (42, 6)-HBQS
for p = 7h, A = 6h and p = 8h, h a positive integer.

1 Introduction

A Mfold m-cycle system of order n is a pair (X,C), where X is a finite set of
n elements, called vertices, and C is a collection of edge disjoint m-cycles which
partitions the edge set of AK,, the complete graph with vertex set X and where
every pair of vertices is joined by A edges. In this case, |C| = An(n — 1)/2m. When
A = 1, we will simply say m-cycle system. A 3-cycle is also called a triple and so a
A-fold 3-cycle system will also be called a A-fold 3-triple system. When A\ = 1, we
have the well known definition of Steiner triple system (or, simply, triple system).
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Fairly recently the spectrum (i.e., the set of all n such that an m-cycle systems of
order n exists) has been determined to be [1, 14]:

(1) n>m,ifn>1;
(2) n is odd; and

(3) % is an integer.

The spectrum for A-fold m-cycle systems for A > 2 is still an open problem.

The graph given below is called a hexagon biquadrangle and will be also denoted by
[(Il)a T2, T3, (CL’4), Ty, xﬁ]'

T2 Z3

T T4

Zg Ty

Figure 1:

A hezagon biquadrangle system of order n and index p [HBQS] is a pair (X, H),
where X is a finite set of n vertices and H is a collection of edge disjoint hexagon
biquadrangles (called blocks) which partitions the edge set of pK,, with vertex set
X.

A hezagon biquadrangle system (X, H) of order n and index p is said to be a 4-nesting
[(4)-HBQS] if the collection of all the 4-cycles contained in the hexagon biquadrangles
form two distinct %p—fold 4-cycle systems. We will say that this (u = %p)—fold 4-cycle
system is nested in the HBQS (X, H).

A hezagon biquadrangle system (X, H) of order n and index p is said to be a 6-
nesting [N (6) or also (6)-HBQS] if the collection of 6-cycles contained in the hexagon
biquadrangles is a (A = gp)—fold 6-cycle system. This 6-cycle system is said to be
nested in (X, H).

A hezagon biquadrangle system of order n and index g is said to be a (42, 6)-nesting,
briefly a N(42,6) or also (42,6)-HBQS, if it is both a 4-nesting and a 6-nesting with
the additional condition that the 4-cycle system of index u, nested in the HBQS
(X, H), is decomposable into two systems of index £. In these cases, we say that the
hexagon quadrangle system has indices (p, A, p1).

In the following examples the vertex set is Z7.
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Example 1 The following HBQS(7) is neither a 4-nesting nor a 6-nesting.
Base blocks: [(0),1,2,(3),5,4], [(0),2,4,(3),1,6], [(0),3,6,(4), 5, 2].

Example 2 The following HBQS(7) is a 6-nesting but not a 4-nesting.
Base blocks: [(5),0,1,(3),6,2], [(6),0,1,(3),2,5],[(3),1,6,(2),0,4].
Example 3 The following HBQS(7) is a 4-nesting but not a 6-nesting.
Base blocks: [(0),6,4,(1),2,5], [(0),2,4,(1),3,6], [(0),3,6,(1),2,5)].
Example 4 The following HBQS(7) is both a 4* and 6 nesting.

Base blocks: [(0),3,2,(1),6,5], [(0),6,4,(2),5,1], [(0),2,6,(3),5,4].

In this paper we determine completely the spectrum of (42,6)-HBQS(n) for A = 6h,
= 8h and p = Th; h a positive integer.

2 Necessary existence conditions

In this section we prove some necessary existence conditions for HBQSs having indices
(p, A, 1) and order n.

Theorem 2.1 Let (X, H) be a (4%,6)-HBQS. Then:
(1) 6p="TX\, 4\ =3u ,8p="Tu ;
(2) p=0mod 7, p =0 mod 8, A\ =0 mod 6; and
(8) p="Th, A =06h, = 8h, h is a positive integer.

Proof. Let (X, H) be a (42,6)-HBQS and let (X, C’) be the 6-cycle system of index
A and (X, C") the 4-cycle system of index p, nested in it.

(1) It is immediate that:
|H| =]C" = 3]C",
1=, 0= @ jem = By
It follows that 6p = 7\, 8p = 7 and 4\ = 3u .

(2) From (1), the index p = £p must be congruent to 0 (mod 8). So, since p = £X
and X = £p, it follows that p = 0 (mod 7) and A = 0 (mod 6).

(3) From (2), directly.

Theorem 2.2 Let (X, H) be a (4%,6)-HBQS. Thenn=0,1 (mod 2).

Proof. This follows from Theorem 2.1. O
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3 Existence for p a prime and consequences.

In this section we will examine the existence of (42, 6)-HBQS of indices (p, A, ) and
order n for (p, A\, u) = (7,6,8) and n a prime number or an odd number not divisible
by 3 or 5.

Theorem 3.1 For every prime number p, p > 7, there exist a (42,6)-HBQS with
indices (p, \, u) = (7,6,8) and order p.

Proof. Let X = {0,1,2,,p — 1} = Z,. Observe that, if z,y € H, z < y, then:

y—z=A= {1,2,...,p;1}.

Consider the following families of hexagon biquadrangles, 6-cycles and 4-cycles, re-
spectively:

H={b;=()j+n—ij+n—2i(i+j),j+2ij+3i]:i€Aje 2}
C'={cjs=(j,j+n—ij+n—2ii+jj+2j+30):icAjeZ}:

C" ={qji1 = (J,j+n—i,j+n—2i, j+1),qji2 = (4,7+10,7+2i,j+31) 1 i € A, j € Z,}.
Observe that n —i = —i (mod n) and n — 2i = —2i (mod n).

We prove that (Z,,C") is a 4-cycle system of index p = 8. In fact, for every pair
z,y € Z,,x <y, if y —x =1, then 7 € A and the following blocks of C” contain the

edge {z,y}:

Qoin = (T, 0 — i, — 21,y =z + 1),

Qoo = (z,y =2z +1,z+ 2i,x + 37),
Qyin=y=z+i,z,0—1,y+1),

Qooiio = (r—i,z,y =z + i,z + 27),

Qotoiin = (T + 20,z +i=y,z,z+ 3i),

Qo—2ii2 = (T — 2,0 —i,z,y =z +1).

Further, since p is a prime number

{3i:i€ A} ={3,6,..., 22N} = A,

This implies that there exists an v € A such that 3u =i and
Qotouu1 = (T +2u,z+u,z,0+3u=1y) € C"

Qoue = (T, 2 +u,z+ 2u,z+ 3u =y) € C".

Since: |C"| = 2@ = (%)8,
the pair (Z,,C") is a 4-cycle system of index p = 8.

Observe that (Z,, C") can be decomposed in two 4-cycle systems, both of index 4,
having for blocks g;;1 and g;;» respectively.
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We prove that (Z,,C") is a 6-cycle system of index A = 6. In fact, for every pair
z,y € Zy, x <y, if y—x =14, then ¢ € A. Further, there are six blocks of C’
containing the edge {z,y}: precisely, the cycles c,—i;, Co—2ii, Cotiis Co2ii, and, since
p is a prime number, the two cycles (1, z2, T3, T4, Ts, T¢) such that {z1, 26} = {z,y}
and {x3, z4} = {z,y}, respectively.

Since: |C'| = @ = ((g;))ﬁ, the pair (Z,,C") is a 6-cycle system of index A = 6. It
follows that (Z,, H) is a (4?,6)-HBQS of indices (7,6,8) and order p.

Further, if we delete, in every b;; € H, the edge {j,i + j} , we obtain the 6-cycle
system (Z,, C') of index A\ = 6. If we separate, in every b;; € H, the two 4-cycles
(4,7—1,7—2i,%) and (j,j+1, 7424, j+3i), we obtain respectively two 4-cycle systems
of index p = 4, which together give the 4-cycle system (Z,, C") of index p = 8. This
completes the proof. a

Theorem 3.2 For cvery prime number p, p > 7, there exist (4%2,6)-HBQS having
order p+ 1 and indices (p, A\, u) = (7,6,8).

Proof. Let X = {0,1,2,...,p—1} = Z,, X* = X U{o0}, A = {1,2,...,1’%1},
(X, H), where:

H={bj;=1[0),j+n—4,7+n—2i,(j+14),j+2i,j+3i]: i € A,j € Z,}.

From Theorem 3.1, (X, H) is a (42,6)-HBQS of indices (7,6,8) and order p, p a
prime, which defines a 6-cycle system (X, C") and a 4-cycle system (X, C"), where:
C'={ci=0Uj+n—i4,j+n—2i,j+1i,j+2i,j+3i):i€A,,j€ 2}

C" ={gjin = (4,5 +n—i, j+n—2i,5+1), gji2 = (4, J+4,5+2i,j+3i) 1 i € A, j € Z,}.
Consider bj1,b;» € H, for j € Z,, and define the following blocks:

bj,oo,l = [(])7007.] +p - 27 (.] + 1)7] + 27.] + 3]7 fOI'j S Zp7

bj,00,2 = [(])).7 +p_ 27.] +p - 47 (.] + 2)).7 + 4700]5 fOI' .] € ZP7

biso =[(1),7+P—1,j+p—2,(00),j +4,j+6] for j € Z,.

Observe that, if we indicate by b = [(21), 2, 3, (%4), T5, 26] the blocks of H, then
the blocks b1, bjoo,2; bjco are constructed starting from the blocks b; 1, b;» of H,
by the same edges, with the same multiplicity and such that the edges {o0, j}, for
J € Z,, are repeated 6 times in the cycles (z1, 2, €3, T4, 5, Ts) Of bj 00,1, bj 00,2, bjoos
4 times in the cycles (z1, s, 3, 74), 4 times in the cycles (z1, x4, s, 76) and 7 times
in the blocks bj,oo,la bj,oo,27 bj,oo- SO, lf H* = H\ {b',lybj,Z} U {bj,oo,h bj,oo,%bj,oo}v it
is possible to verify that (X*, H*) is a (42,6)-HBQS of order p + 1, completing the
proof. a

The results of Theorem 3.1 and Theorem 3.2 can be extended to (4%,6)-HBQS of
indices (7h, 6h,8h) and order n, by repetition of blocks.

Theorem 3.3 For every odd number d, not divisible by 3 or 5, there exist (4%,6)-
HBQS having order d and indices (p, A\, u) = (7,6,8).
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Proof.

Consider the same families of hexagon biquadrangles defined in Theorem 3.1, where
A={12...,%}
H={bj;=[(j),j+n—i,j+n—2i,(i+3),j+2i,j+3i:i € A jE Z,};
C'={cji=0,j+n—4,j+n—2i,i+5,j+2i,j+3i):i€ A, jeZ,};

C" = {QJ,Z = (]7]+n_laj+n_2laj+l)7q],z,2 = (.77.7+Z7.7+227.]+3Z) NS A:] € ZP}
These families define a (42, 6)-HBQS of indices (7, 6,8) and order n, (Z4, C), nesting
both the 6-cycle system (Z4, C’) and the 4-cycle system (Zy, C"). Observe that all

the edges of the hexagon biquadrangles are obtained by difference methods, starting
from the following base blocks:

bgyl, bgyz, ey bO,d;zl
€0,1,€0,2y - - -5 Cp d=L
qo0,1,1,90,2,15 - - - 7q0,d;21,1
90,12, 902,2) - - -5 9,451 o

Since d is not divisible by 3 or 5, there is not any repetition of vertices in all of the
previous blocks.

Therefore, the conclusion follows as in Theorem 3.1. a

Theorem 3.4 For every odd number d, not divisible by 8 or 5, there exist (4%,6)-
HBQS of order d+ 1 and (7,6,8).

Proof. The statement follows from Theorems 3.1, 3.2, directly. a

4 Construction v — 2v and Construction v — 2v — 1

In this section we give two constructions for (42,6)-HBQS. In this case these con-
structions can be extended to (4%,6)-HBQS of indices (7h, 6h,8h) In that follows all
(4%,6)-HBQS have indices (7,6,8) .

Theorem 4.1 (42,6)-HBQS of order 2n can be constructed from (4%,6)-HBQS hav-
ing both indices (7,6,8).

Proof. Let (Z,,H) be a (42,6)-HBQS of order n, n > 6. Let X = Z, x {1,2},
and let (Z,;, H;) be the HBQS, for ¢ = 1,2 such that Z,; = Z, x {i}, and
[((a,1)), (b,7), (¢,1), (o, 7)), (B,7), (,7)] € H; if and only if [(a),b,c, (a),B8,7] € H.
Let H* be the collection of hexagon biquadrangles defined on X by:

H, C H*, Hy C H*.

Further, if:
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@ ={[((51)), (G +1,2),(i+1,1)),((4,2)), (i +2,1),G +2,2)]}

then: & C H*.

To begin with (X, H*) is a (42,6)-HBQS of order 2n. It is easy to see that all the
edges of type {(z,1), (y,7)} are contained in H; with the correct repetition. In fact,
(Zni, H;) is a (42,6)-HBQS and no edge {(=,%),(y,i)} is contained in any of the
blocks of ®, which contains blocks with edges of type {(z, 1), (y,2)}.

Consider an edge of type {(z, 1), (v,2)}.

If b = [((a, 1)), (,2), (¢, 1), (o, 2)), (B,1), (7,2)] indicates the blocks of @, then an
edge {(z,1), (y,2)} is contained 6-times in the cycles ((a, 1), (b,2), (¢, 1),
(,2),(8,1),(7,2)), 4-times in the cycles ((a, 1), (b,2), (c,1), (e, 2)) and 4-times in
the cycles of (@, 1), (a,2), (8, 1), (1,2)).

Further, {(z, 1), (y,2)} is contained 7-times in the blocks of ®.

Observe that the number of blocks of H* is:

Y = || + ||+ 18] = 287 4 2 = n(n - )4 n2 =202

which is exactly the number of blocks of a (42,6)-HBQS of order 2n:

(%)

T? = —2n(2;171) = 2"12 —n.

So, the proof is completed. a

Theorem 4.2 (4%,6)-HBQSs of order (2n—1) can be constructed from (42,6)-HBQS
of order n.

Proof. Let (Z,,H) be a (4%,6)-HBQS, of order n, and let + = n — 1 € Z,. If
Zy1j = Zn-1 % {i} and X = (Z,_1 x {1,2}) U {z}, then | X| = 2n — 1. Further, let
(z,1) = (z,2) = (x,3) = z and let (Z,_1; U {z}, H;) be the HBQS, for i = 1,2, such

ga‘t [((a’v Z))7 (bvi)v (C, i)v ((avi))7 (ﬁ:i)7 (’Yvi)] € H; if and only if [(a)vbv G, (a):ﬂaﬂ €

We define a collection H* of hexagon biqradrangles on X, as follows:

H, C H* Hy C H*.

Further, let

o ={[((51)), (G +1,2),(i+1,1),((5,2), (i +2,1),(G +2,2)] : 4,5 € Zn-y € H"}
Just as in Theorem 4.1, it is possible to verify that the pair (X, H*) is a (4%, 6)-HBQS
of order 2n — 1. The number of blocks in H* is:

(1] = 1]+ Hal + 18] = 287 4 (0 12 = nln = 1) + (0= 17 =207 =3+ 1.
This is exactly the number of blocks of a (42,6)-HBQS of order 2n — 1:

2n—1
( ; )7:(2n—1)(n—1):2n2—3n+1.
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This completes the proof. a

5 Existence of (4%,6)-HBQS of orders 6,7,8, 9, 10.

The cases n = 6,7,8,9, 10 are necessary to determine the spectrum of (42, 6)-HBQS
completely.

Theorem 5.1 There ezist (42,6)-HBQS of order n =6,7,8,9, 10.

Proof. Case n = 6. Let H be the family of hexagon biquadrangles defined on
Zs U {0} as follows:

H={bj1 =[(5),7 + 4,7 +3,(G+1),j +2,00)]:j € Zs} U{bj> = [(j), 00,5 +1,(j +
2),j+45+3):5 € ZsyU{bjs=1(),J +3,+1,(00),5 +2,j+4)]:j € Zs}.

Observe that the hexagon biquadrangles of H can be obtained by difference methods,
starting from the base blocks bo 1, bo 2, b 3. It is possible to verify that (Z5 U{occ}, H)
is a (42,6)-HBQS of order 6.

The existence for n = 7,8 follows from Theorem 3.1 and Theorem 3.2.

Case n =9. Let Zg and let

bjn =1[04),J+3,7+8,(j +1),j+ 6,5 +2)],j € Zy;
bjz=1[(7),7+4,5+1,(j+2),j+3,j+6],j € Zy;
=[(4),7+1,7+8,(j+3),7+57+4],j € Zy;
=[(4),7+27+1,(j+4),7+5.7+3],j € Z.
If

H = {bj1,bj,bs bja: J € Zo}

then it is possible to verify that (Zy, H) is a (4%,6)-HBQS of order 9.
Case n = 10.

Let Zg U {oo} and let

30 +3,5+8,(7+1),j+6,j+2)],j € Zo;
),i+4,7i+1,(j+2),7+3,7+6],j € Zy;

(1), +1,5+8,(j+3),7+ 5,00, ] € Zy;

bjaco = [(7)s00,5 +1,(j +4),5+5,5+3[,j € Zy;

bjco = [(7),5 2,5 +1,(00),j 45,5 +4)],j € Z;
H = {bj1,bj2,)300,0j4,00:bj.cc : ] E Zog}.

Observe that the hexagon biquadrangles of H can be obtained by difference methods,
starting from the base blocks by 1, bo,2, b0,3,00,, D0,4,00,, 0,00 1t is possible to verify that
(Zg U {oo}, H) is a (42,6)-HBQS of order 10.

b2 = =

173 00 [
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Conclusion

Collecting together the results of the previous sections, we have the following result:

Theorem 6.1 There exists a (42,6)-HBQS of order v and indices (Th,6h,8h), for
everyv € N, v > 6.

Proof. The statement follows directly from Theorem 4.1, Theorem 4.2 and Theo-

rem 5.1. O
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