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Abstract

The problem of contracting an arbitrary graph to a square is known to be
NP-complete. This paper proves the problem is tractable for the class of
graphs whose complements have radius unequal to 2. As an application,
the results are used to aid in computing the cyclicity of graphs.

1 Introduction

A simple graph G = (V(G), E(G)) is contractible to a graph H = (V(H), E(H)) if
there is a partition {V,|y € V(H)} of V(G) for which the subgraph of G induced by
V, is connected for each y € V(H), and an edge of G joins V, to V, if and only if
yz € E(H).

This article examines the problem of contracting an arbitrary graph to Cj, the
cycle on 4 vertices, also called the square. Brouwer and Veldman [4] state that
this problem is NP-complete, and they provide an outline of a proof. We show the
problem is tractable for a large class of graphs, namely those whose complements
have radii unequal to 2.

The article is organized as follows. Section 2 contains some simple results relating
the C4-contractibility of a graph to the radius of its complement. Section 3 presents
an algorithm that contracts an arbitrary graph to a square, and the algorithm is
proved to be polynomial for graphs G with rad(G) ¢ {2,3}, and exponential oth-
erwise. Section 4 addresses the case of graphs G with rad(G) > 3, and presents a
second polynomial algorithm for finding C}; contractions of such graphs. Finally, Sec-
tion 5 applies these ideas to the problem of computing the cyclicity of a graph. The
author is indebted to the referee for suggesting many improvements, and especially
for suggesting a strategy that simplified the algorithm for the case rad(G) > 3.

The remainder of this section recalls some standard definitions. Given a graph
G, its complement, G, is the graph with V(G) = V(G) and with zy € E(G) if and
only if zy ¢ E(G). If X and Y are disjoint subsets of V(G), then Eg(X,Y) =
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{zy € E(G)|z € X,y € Y}. The neighborhood of a vertex z € V(G) is the set N(z)
= {y € V(G)|zy € E(G)}. The distance dg(z, y) between two vertices z and y of G
is the length of the shortest path from z to y in G, or oo if no such path exists. The
radius of G is rad(G) = mingev(g){ maxyev(g){de(z,y)}}. If X C V(G), then the
subgraph of G induced on X is denoted G[X].

We regard the vertex set of the cycle Cj, as being the elements {0,1,2,---,k—1}
of the cyclic group 7, with E(Cy) = {ijli —j = *£1}. A contraction of G to
Cy is denoted by a k-tuple (Vp, Vi, -+, Vi_1) of pairwise disjoint nonempty subsets
of V(G), where V(G) = U,cz, Vi, and each G[V;] is connected, and for all distinct
i,j € Zn, Eg(V;,V;) # 0 if and only if i — j = £1.

2 A Complement Criterion for Contraction

This section presents two results linking contractibility of a graph to Cj to the
radius of its complement. We first show that G can be contracted to a square only
if rad(G) € {2,3, 00}. This will allow our contraction algorithm to reject any graph
G for which rad(G) ¢ {2, 3, 00}.

Lemma 1: If a graph G can be contracted to a square, then rad(G) € {2, 3, c0}.

Proof. Suppose (Vy, V1, Va, V3) is a contraction of G to Cy. Since Eg(Vo, V2) =
0 = Eg(V1,V3), it follows that G has as subgraphs the disjoint complete bipartite
graphs with partite sets Vg, Vs, and Vi, Vs, respectively. If G is disconnected, then
rad(G) = oo. Otherwise there must be some edge zy of G joining these two complete
bipartite graphs, and this means one of z or ¥ is in some V; and the other is in V;,;.
Without loss of generality, we may say = € Vp, and y € V;. Now let z be any vertex
of V(G). Figures 1A-1D show that whether z is in Vj, V4, V; or Vs, there is always
a path in G from = to z having length at most 3. (Note that the edges in Figure 2

are edges in G, not G.) Thus dg(z,2) < 3 for all z € V(G), so rad(G) < 3.

1% Vi % Vi 1% Vi W Vi
W S v N RN C) A v,
Figure 1A Figure 1B Figure 1C Figure 1D

On the other hand, it is impossible for rad(G) = 0 or rad(G) = 1, for then
G is _either trivial or disconnected, and cannot be contracted to a square. Thus
rad(G) € {2, 3, oo} [
To see that there are graphs G, contractible to a square, with rad(g) = 2,3, 00,
consider the Cartesian product graphs G = K,, X K,. For n = 2, rad(G) = oo, and

for n > 2, rad(G) = 3. Also, if G = C4 x K>, then rad(G) = 2.
Lemma 2: If G can be contracted to C, with k > 4, then rad(G) = 2.
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Proof. Suppose (Vo, V1, Va, -+, Vi_1) is a contraction of G to Cg. Let z and y be
arbitrary vertices of G. We first show that dz(z,y) < 2, which implies rad(G) < 2.
Say x € V;. If y € V; UV;_1, choose z € V;,» and note zzy is a path of length 2 in
G, so dg(z,y) < 2. Likewise, if y € V;;1, choose z € V;;3 and note zzy is a path
of length 2 in G. If y ¢ V; ; UV; U Viyy, then zy € E(G), and dg(z,y) = 1. Thus

rad(G) < 2. Also, since G can be contracted to Cy, it has no isolated vertices, so for

any z € V(G) there is a y € V(G) with dg(z,y) > 1, hence rad(G) > 2. [

3 First Contraction Algorithm

This section introduces a simple algorithm that contracts any graph G to a square, or
reports if such a contraction is not possible. Although its complexity is polynomial

provided rad(G) ¢ {2,3}, it is not sufficiently sophisticated to efficiently handle the
case rad(a) = 3. However, it has the advantage of simplicity, and it introduces
some ideas employed in our second, more complex, algorithm. It also illuminates a
structural property possessed by graphs with rad(G) = 2 that makes finding their
C} contractions problematic.

The algorithm searches for a contraction of a graph to C4 by examining the
graph’s 2-colorings. A 2-coloring of a graph is an assignment of two colors (say black
and white) to its vertices. A proper 2-coloring is one with the property that no
two adjacent vertices have the same color. We say that a 2-coloring of G induces
a contraction of G to Cy if there is a contraction (Vg, Vi, Vs, V3) of G to Cy where
Vo U V, are the black vertices of the 2-coloring and V; U V3 are the white vertices.
Figure 1 is an example of a 2-coloring which induces a contraction of a graph to Cj.
Obviously, any graph that is contractible to C4 has a 2-coloring that induces that

contraction.

Figure 2

Now comes a construction that plays a key role in this article. If G is a graph,
then G is the spanning subgraph of G whose edge set is {zy € E(G)| dg(z,y) > 3}.
Notice that if the radius of G is at least 3 then no component of G is trivial, but if
G has a radius 2, then every vertex in the center of G is a trivial component of G.

Examples 1: If G is the Cartesian product K, x K,, with n > 2, theng has_n
components, namely the n edges (a,z)(b, z) over K,,. Also, K, = K,,, and C5 = K,
and 04 = C4.

The following remarks are used extensively in this article.

Remark 1: If 2y € E(G), then zy € E(G) if and only if N(z) U N(y) = V(G).
This is true because N(z) U N(y) = V(G) <= G has no path of form zzy <
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dg(z,y) > 2 <= zy € E(é) (Because of this, an edge of G is middle edge of a
spanning double star of G [3].)

Remark 2: The importance of G is this: Given any contraction of G to Cy, each
edge zy of G must necessarily join some V; to V;y;. The reason is that zy € E(G)
= dg(z,y) > 2 = z,y ¢ V;U V4, for all i € Zy = zy € Eg(V;, Vi41) for some
i € Zy. It follows that if some 2-coloring of G induces a contraction of G to Cy, then
this 2-coloring must be a proper 2-coloring of the subgraph G. The next result uses
this idea.

Lemma 3: A graph G is contractible to Cy if and only if G is bipartite and has a
proper two-coloring that induces a contraction of G to Cj.

Proof. The necessity clear. Conversely, suppose G is contractible to Cy, and let
(Vo, V1, Va2, V3) be such a contraction. Color the vertices Vo U V5 black and color the
vertices Vi U V3 white. By Remark 2, the vertices of any edge of G have opposite
colors. Thus G is properly 2-colored, and is therefore bipartite. By construction,
this 2-coloring induces a contraction of G to Cj. [

Lemma 3 implies that we can find a C4 contraction of G by constructing G, con-
firming that it is bipartite, and then examining all its proper 2-colorings and selecting
any one that induces a Cy contraction. (Or conclude that no such contraction exists,
if none is found.) Suppose G is bipartite and its components are Gl, Gz, SN GC,
and for each 1 < ¢ < ¢ we select an z; € V(Gl). Then any proper 2-coloring of G
is determined by an assignment of a color black or white to each z;. Thus G has
potentially 2¢ proper 2-colorings to be examined. Algorithm 1 works by examining
these two-colorings.

Algorithm 1:
Input: A simple graph G
Output: A contraction (Vp, Vi, Vs, V3), of G to Cj if such is possible, or ) otherwise

1. Compute rad(G).

2. Ifrad(G) ¢ {2,3, 00}, then return(() and stop. (By Lemma 1, no contraction
is possible.)

3. Construct G.

4. Find the components of G and list them as él, 62, SRR G..

5. Check that G is bipartite. If it is not, then return(()) and stop.
(By Lemma 3, G can’t be contracted to Cy.)

6. For each 1 < i < ¢, choose a vertex z; € V(él)

7. For each c-digit binary number b;b9bs - - - b, do the following:

7.1 For each 1 <7 < ¢, give G the proper 2-coloring in which z; is white if
b; = 1 or black if b; = 0. (If G; is trivial, only one color is needed.)

7.2 Let the subgraph of G induced on black vertices have components Cy, Cs,
e O
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7.3 Let the subgraph of G induced on white vertices have components C, Cs,

-, Cowy1. Now we check if this coloring induces a contraction of G to

Cy by checking that the subgraphs induced on black and white vertices,

respectively, each have 2 components, and some edge of G joins any two
components of different colors.

7.4 Ifb=w =1, and Eg(C;,C;) # 0 whenever ¢ and j have opposite parity,
Then return(V (Cy), V(C4), V(C2),V(C3)), and stop. (This is a Cy con-
traction.)

8. Return(d), and stop. (If this step is reached, all proper 2-colorings ofa have
been exhausted, and none induced a contraction.) |

Proposition 1: Suppose G is a graph with n vertices, and for which G has ¢ compo-
nents. If rad(G) ¢ {2, 3}, then the complexity of Algorithm 1 is O(n*). Otherwise,
if rad(G) € {2, 3}, the complexity is O(n?* + 2°n?).

Proof. Computing rad(G) in Line 1 is O(n*), using Algorithm 8.8 of [8]. If, in Line
2, rad(G) ¢ {2,3, 00}, the algorithm terminates with total complexity O(n?). Thus,
for the remainder of the proof, assume that rad( ) € {2,3,00}. In Line 3, G may
be constructed by setting V(G) = V(G) and E(G) = {zy € E(G) | N(z) UN(y) =
V(G)}. (See Remark 1.) Since in forming E(G), there are O(n?) edges zy € E(G)
to test, and forming N(z) and N(y) is O(n), it follows that the complexity of Line 3
is O(n?). Line 4 is O(n?) by Algorithm 8.3 of [8]. In Line 5, testing for bipartiteness
can be done with a standard O(n?) depth-first search. If the algorithm terminates
in Line 5, the total complexity is O(n?). The complexity of Line 6 is O(n), and lines
1 through 6 have a total complexity of O(n?).

Step 7 executes at most 2¢ iterations. In Line 7.1, the 2-coloring can be attained
by an O(n?) depth-first traversal of each component of G, alternatively coloring
vertices black or white, starting with x;. Steps 7.2 and 7.3 are each O(n?), by
Algorithm 8.3 of [8]. Line 7.4 is O(n?). Therefore the total complexity of Step 7 is
thus O(2°n?).

Thus, if rad(G) € {2,3,00} and lines 1-7 are executed, their net complexity is
O(n* + 2°n?).

However, if rad(G) = oo, we claim that ¢ = 1, making the complexity O(n?).
Choose z,y € V(G) for which dg(z,y) = o0, so zy € E(G). Suppose for the sake
of contradiction that there is a vertex w that is in a component of éNthat does not
contain the edge zy. Then, since w is adjacent to neither z nor y in G, it follows by
definition of G that dg(z,w) < 3 and dg(w,y) < 3. This means G has a path from
z to y — routed through w — of length no greater than 4, contradicting the fact
that dg(z,y) = co. [

4 Graphs with Complement Radius 3 or Greater

This section treats the problem of contracting G to Cy in the case rad(G) > 3.
According to Proposition 1, Algorithm 1 is not guaranteed to do this in polynomial
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time. The problem is that when rad(G) = 3, the subgraph G can have as many as
O(n) components, thus O(2") proper 2-colorings, potentially forcing the algorithm
to execute exponentially many steps.!

To overcome this problem, we create a special algorithm for the case rad(@) > 3.
The basic idea is the same as that of Algorithm 1, namely to examine 2-colorings
of G. However, some additional structure is introduced to accelerate the coloring of
vertices. The algorithm operates by examining 4-tuples (vo, v1, v2, v3) of vertices of
G, and searching for a Cy contraction (Vp, Vi, Va2, V3) of G with v; € V; for i € Z,. In
order to efficiently extend the 4-tuple to a contraction, it will be necessary that each

component of G be nontrivial, and this is guaranteed by the condition rad(G) > 3.

Algorithm 2: B
Input: A connected simple graph G with n vertices and with rad(G) > 3
Output: A contraction (Vj, Vi, Vs, V3), of G to Cj if such is possible, or () otherwise

1. Construct G.
In what follows, suppose there is a contraction (Vy, Vi, V2, Vi), of G to Cy, with
Vo and Vy colored black and Vi and V3 colored white. This assumption forces
certain vertices to be in the sets V;, as follows.

2. Select an edge vou; € E(G).

Such an edge ezists because because rad(G) > 3, so all components of G are
nontrivial. By Remark 1, one endpoint of this edge is in some V; and the other
is in Vip1. Without loss of generality, it may be assumed that vy € Vo (and is
colored black) and v € Vi (and is colored white). Now notice G must have some
edge vavs with vo € Va and vs € V3. Moreover, since vov, € E(é), Remark 1
implies that {va,v3} C N(vo) UN(vy). As Eg(Vy, Vo) = 0 = Eg(V4, V3), it then
follows that vovs, v1v2 € E(G), and vovi1vevsvy is a square in G. (See Figure
3.) The next step searches for a contraction by examining all such squares.

Figure 3

3. For each vu3 € E(G), with v, € N(v1) — N(vp) and v3 € N(vp) — N(vy), do
the following:

3.1 For i € Zy, set V; := {v;}.
This initializes the sets V; as containing vertices that are thus far known to

For an example of a graph for which G has O(n) components, recall Example 1, in which
G = K, X Ko, with n > 2, and G has n components. Perhaps this is not a particularly interesting
example, since all but two proper 2-colorings of G will induce a contraction of G to C4. For a less
trivial example, consider the graph H obtained from G as follows. Let £ be any set of pairwise
nonadjacent edges of K,,, and for each zy € £, replace each pair of edges (z,0)(y,0), (z,1)(y,1) in
G with (z,0)(y,1), (z,1)(y,0). Then H consists of the || squares (z,0)(y,1)(y,0)(z,1)(z,0).
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be in them. Assuming the current V; can be extended to a Cy contraction,
other vertices must be appended to these sets as follows.

Repeat the following step until no further changes in the V; are produced.

3.2.1 Search for an z € V(G) — (Vo U V3 U V3 U V3) that, for some i € Zy,
is adjacent to vertices of each of V;_;, V; and V;,, but is not adjacent
to any vertex of Vj,o;

If such a vertex z is found, put V; := V; U {z}.

Reason: Inserting x in any other V; would force Eg(Vo,Va) # 0 or
Ec(V1,V3) £ 0, which is forbidden if (Vy, Vi, Va, V3) is to be extended
to a Cy contraction. The complexity of step 3.2 is O(n®) because 3.2.1
s executed no more than n — 4 times, and each iteration involves ex-
amining no more than n—4 vertices and their their O(n) adjacencies.

Search for z € V(G) — (Vo U V3 U V2 U V3) that is adjacent to vertices of
Vi, for all i € Z4. If such an x is found, exit this iteration of Step 3; Else
continue in Step 3.

Reason: If such a vertex « is found, it cannot be inserted in any V; without
forcing Eg(Vo, Va) # 0 or Eg(V1, V) # 0, so a new choice of the edge vavs
must be made. The complezity of step 3.3 is O(n?) because it ezamines
no more than n — 4 vertices and their their O(n) adjacencies.

If the iteration of Loop 3 was not exited in Line 3.3, it is now the case that
the 4-tuple (Vo, V1, Va, Vs) formed by the current V;’s is a Cy contraction
of the subgraph G[V, UV; UV, U V3] of G. However, there may be vertices
of G that have not yet been inserted in any V;. By steps 3.2 and 3.3, any
such z € V(G) — (Vo U V1 U V2 U V3) is adjacent to fewer than three of
the sets V;. We claim that such an z is adjacent to exactly two of the
Vi: Consider an edge zy € E(G), which exists, since G has no trivial
components. If z were adjacent to none of the V;, then Remark 1 would
make y adjacent to each element of {vo, v1, v2,v3}, an impossibility since
that would have terminated the current iteration of Loop 3 in Line 3.3.
Thus z is adjacent to V4, for some k € Zy. If z is also adjacent to one of
the vertices {vgi1, Ugy2, ki3 }, then certainly it’s adjacent to two of the V;;
If it’s adjacent to none of them, then y is adjacent to all of them, hence
y € Viya (by Step 3.2), making z adjacent to both Vj and Vi, . Thus
any = that has not yet been inserted into any of the sets {Vq, V1, V2, V3}
is adjacent to exactly two of these sets.

We claim further that such an z cannot be adjacent to both V5 and V3,
nor can it be adjacent to both V5 and V3. Suppose z is adjacent to both
Vo and Vi, and let y be as in the previous paragraph, so y is adjacent to
ve and vs. Since vov; € E(G), Remark 1 implies that y is also adjacent
to either v or v;. Hence y has been inserted into either V5 or V3 (in Step
3.2), a contradiction, for now z is adjacent to three of the V;. If z were

adjacent to both V, and V3, then since vov; € E(G), one of vy or v; would
be adjacent to z, making = adjacent to three of the V;.



20

3.4

3.5

3.6

3.7

3.8

3.9

RICHARD HAMMACK

Now it is clear that any uninserted z is adjacent to both elements of one of
the pairs {Vo, Va}, {Vo, Va}, {V1, Va}, {V1, V3}, so these uninserted vertices
can be partitioned into sets £, R, B and W, as follows. (See Figure 4.)

L={zecV(G)— (VLuWuluW) | N@)NVy#0#N(@)NVs}
This is the set of “left” vertices, adjacent to Vo and V3 but to neither V;
nor V. If (Vi, Vi, Va, V3) is to be extended into a Cy contraction of G, then
any vertex of L must be inserted either in Vy or V3 to prevent a diagonal.
Since Vo and V3 are of different colors, no vertex in L can yet be assigned
a color. Ezecution of this line is O(n?) because forming the set L involves
examining no more than n — 4 vertices and their adjacencies.

R:={zeV(G) - (VLuViuVaUV;) | N(@)NV, #0# N(z)NVz}
This is the set of “right” vertices, adjacent to Vi and Va but to neither Vy
nor V. If (Vi, Vi, Va, V3) is to be extended into a Cy contraction of G, then
any vertex of R must be inserted either in Vi or V; to prevent a diagonal.
Since Vi and Va are of different colors, no vertex in R can yet be assigned
a color. Ezecution of this line is O(n?).

B:={zeV(G)— (VouWV UV, UVWs) | N(z)NV; #0+#N(z)NVs}

This is the set of “black” vertices adjacent to Vi and V3 but to neither V,
nor Va. If (Voy, Vi, Vo, V3) is to be extended into a Cy contraction of G,
then any vertex of B must be inserted in one of the black sets Vy or Vs to

prevent a diagonal, and hence these vertices must be colored black. This
line is O(n?).

W:={zeV(G) - (VoUViuVaUVWV) | N(z)NVy#0# N(z)NVz}
This is the set of “white” vertices adjacent to Vo and Vs, but to neither
Vi nor V. If (Vi, Vi, Va, V3) is to be extended into a Cy contraction of G,
then any vertex of W must be inserted in one of the white sets Vy or V3 to

prevent a diagonal, and hence these vertices must be colored white. This
line is O(n?).

EBUW=0,set Vo :=VoULand V; =V, UR;
Return(V;, V4, Vo, V3) and stop.
Reason: This is a Cy contraction of G. This step is O(n).

If LUR =0, then exit this iteration of Step 3.

Reason: If this line is reached, then BUW # (0, for otherwise the algo-
rithm would have terminated in the previous step. If (Vo, Vi, Va, V3) were
extended to a Cy contraction, then any vertex of B would be connected
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to vg or vy by a path in G whose vertices were colored black. Similarly,
any vertex of W would be connected to v or vs by a path in G whose
vertices were colored white. Such paths would necessarily contain vertices
from LUR (see figure 4), but no such vertices exist. Thus (Vy, Vi, Va, V3)
cannot be extended to a Cy contraction, so a new choice of edge vovs must
be made.

At this point, BUW # 0 # LU R. The following observation is needed
in the remainder of the algorithm. Observe that if ¢r € E(G), and £ € L,
then r € R. The reason is that, as £ is adjacent to neither v; nor vs,
Remark 1 implies that r is adjacent to both v; and v,. (See Figure 5.)
Now r can’t be in V; or V5 because then ¢ would be adjacent to three of
the V;. Also, r is in neither V; or V3 because that would force Eg(Vj, Va)
# 0 or Eg(V1,V3) # 0. Thus, r has not been inserted into any V; and it

is is adjacent to V; and Vi, so r € R. Similarly, if ¢r € E(G) and r € R,
then ¢ € L.

In particular, by the previous paragraph, ¢ € £ implies fvy, lvs € E(G),
and r € R implies rvy, rve € E(G).

Next, a certain digraph D is constructed, with V(D) = LUR U B U W.
The meaning of an arc (z,y) of D (which we interpret as an arrow from
x to y) is as follows. If (Vo, Vi, Vs, V3) is extended to a Cy contraction
of G, then (z,y) € E(D) means that that if  has been inserted up (i.e.
either in Vj or V1), then y must be inserted up also; and that if y has been
inserted down (i.e. either in V5 or V3), then & must be inserted down too.
The arcs of D are created in the following steps.

3.10 For any two vertices b,b' € B with bb’ € E(G), add arcs (b,V') and (b',b)
to D.
Reason: If one of b and b' were inserted up, and the other down, then they
would be in the black sets Vy and Vy. Edge bb' would force Eg(Vo, Va) # 0.
So b and V' must be inserted both up, or both down, and that is encoded
by the arcs (b,V') and (b',b). This step can be done by considering each
b € B and adding arc (b,b") for every b € N(b)NB, hence is of complexity
O(n?).

3.11 For any pair w,w' € W with ww' € E(G), add arcs (w,w’) and (w', w)
to D.
Reason: If one of w and w' were inserted up, and the other down, then they
would be in the white sets Vi and Va. Edge ww' would force Eg(Vi, V3) # 0.
As above, the complezity of this step is O(n?).

3.12 For any pair £ € £ and r € R with ¢r € E(G), add arcs (¢,7) and (r, /)
to D.
Reason: If one of £ and r were inserted up, and the other down, then they
would be in Vo and Vo or Vi and V3. Either way, edge ¢r of G would be a
diagonal. The complezity of this step is O(n?).
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3.13 For any two vertices £ € £ and b € B with ¢b € E(G), add arc (¢,b) to
D.
Reason: Suppose £ is inserted up, so it is in V. If b were inserted down,
it would be in Vy, forcing Eq(Vo, Va) # 0, so b must be inserted up. This
is O(n?).

3.14 For any two vertices £ € £ and w € W with ¢w € E(G), add arc (w, )
to D.
Reason: Suppose w is inserted up, so it is in Vi. If £ were inserted down,
it would be in Vs, forcing Eg(Vi,V3) # 0, so £ must be inserted up. This
is O(n?).

3.15 For any two vertices 7 € R and b € B with rb € E(G), add arc (b, ) to
D.
Reason: Suppose b is inserted up, so it is in Vy. If r were inserted down,
it would be in Vy, forcing Eq(Vo, V) # 0, so r must be inserted up. This
is O(n?).

3.16 For any two vertices r € R and w € W with rw € E(G), add arc (r, w)
to D.
Reason: Suppose r is inserted up, so it is in V1. If w were inserted down,
it would be in Vs, forcing Eg(Vi, V) # 0, so w must be inserted up. This
is O(n?).

3.17 Enlarge D by replacing it with its transitive closure.
Justification: If (z,y),(y,z) € E(D), then if x© is inserted up, so is y,
hence also z. Therefore it is meaningful to add the arc (z,z) to D, etc.
Forming the transitive closure is O(n*), as it can be attained by no more
than n iterations of the following procedure: Ezamine eachy € V (D), and
for each pair (z,y), (y,z) € E(D), add to D the arc (z, z).
If there is a pair of vertices in £ that is not joined by an arc of D, then a
C4 contraction exists and is obtained in the following step.

3.18 Search for a pair £y, ¢3 € £ with neither arc (¢, ¢3) nor (¢3,4) in E(D);
If such a pair is found, a Cy contraction of G is obtained as follows.
3.18.1 Vo := VWU {l}. (Insert £y up.)

3.18.2 Vi3 := V3 U {ls3}. (Insert {5 down.)
Next, vertices ¢ € V(D) are forced to be inserted up or down, ac-
cording to whether (¢y,z) € E(D) or (z,¢3) € E(D).

3.18.3 Vo :=VaU{z € BUL| ({o,z) € E(D)}. (Such x must be
inserted up, in Vy.)

3.184 Vi :=ViU{z e WUR| (b,z) € E(D)}. (Such z must be
inserted up, in V;.)

3.18.5 Vo :=VoU{z € BUR | (z,43) € E(D)}. (Such x must be
inserted down, in Vs.)

3.18.6 V3:=VaU{z e WUL| (2,45) € E(D)}. (Such z must be

inserted down, in Vs.)
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The extended sets V; are still pairwise disjoint, because for any z,
transitivity of D together with (£, ¢3) ¢ E(D) means that (¢, z) and
(z,43) are not both in E(D), so no z € V(D) is inserted both up and
down.

Note that there are vertices ry,72 € R for which ¢yr1, b3y € E(G).
Vertex r; is in V; (Step 3.18.4), and 75 is in V, (Step 3.18.5).

Observe that every vertex of BU W has now been inserted into some
V;, and is connected to v; by a path in V;: Suppose b € B. Now, one
of 4ob or bry is in E(G), for if neither is in E(G), then (by Remark 1)
l3b,br1 € E(G), and by steps 3.13, 3.15, 3.12, D has a directed path
(£3,b)(b,m1)(r140), and hence an arc ({3, 4p), contrary to assumption.
On one hand, if {yb € E(G), then (4,b) € E(D) by Step 3.13, and
b € Vy (by Step 3.18.3), and b is connected to vy by the path blyvo.
On the other hand, if bry € E(G), then by steps 3.15 and 3.12, D has
directed path (b,72)(ra,¥43), so (b,¢3) € E(D), meaning b € V, (Step
3.18.5) and is connected to vy by the path bryve. Symmetrically, if
w € W, then w has been inserted in V; (or V3) and is connected to
v (or vs) by the path wriv; in Vi (or wizvs in V3).

Observe also that steps 3.18.1-3.18.6 have preserved the property
E¢(Vo, V2) = 0 = Eg(V4,V3). For consider z,y € V(D), where z and
y were inserted into Vj and Vs, respectively, in lines 3.18.3 and 3.18.5.
This means (4y, z), (y,43) € E(D). Now, z € LUB and y € RUB, and
(by steps 3.10, 3.12, 3.13, 3.15), if vy € E(G) then (z,y) € E(D). But
zy ¢ E(G), for otherwise D has the directed path (4o, z)(x,y)(y, £3)
contradicting (¢, 43) ¢ E(D). Thus Eg(V,,V2) = 0. On the other
hand, if z and y were inserted into V; and V3, respectively, then again
(bo, z), (y,43) € E(D), but this time x € RUW and y € LU W.
Still, by steps 3.11, 3.12, 3.14, 3.16, if zy € E(G) then (z,y) € E(D),
and we conclude zy ¢ E(G), for otherwise there is a directed path
(Lo, z)(z,y)(y, £3), contrary to assumption.

There may still be vertices of £ U R that have not yet been inserted
in any V;. Let £ € L be such a vertex. Now, £ is not adjacent
to any vertex in x € Vs, for if it were, z would be a vertex of D
that was inserted in V2 (down), meaning £ € BU R and (z,/3) €
E(D). But z € BUR means ({,z) € E(D), by steps 3.12 and 3.13,
and D has a directed path (¢, z)(x,¢3), hence an arc (¢,¢3), contrary
to the assumption that ¢ has not yet been inserted. Since ¢ is not
adjacent to Vs, it may be inserted in Vi without creating a diagonal.
Symmetrically, if 7 € R has not yet been inserted in any V;, then r is
not adjacent to V3, so r can be inserted into V;.

3.18.7 Vo := Vo U (L — (VoUVA UV, U V)).
3.188 Vi :=VU (R - (VbUVL UV, UW)).
3.18.9 Return(Vy, V1, Vs, V3) and stop. (This is a Cy contraction of G.)
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If a pair 4y, ¢3 was not found in Step 3.18, then each pair of vertices in £
is joined at least one arc of D. This property now allows for an efficient
examination of all 2-colorings of G (with V; U V2 white and V; U Vi black)
that could possibly produce a C4 contraction.

3.19 Let L be the sub-digraph of D induced on the set £. By Step 3.18, each
pair of vertices in L are joined by at least one arc. Forming L is O(n?)
because each of its O(n) vertices is incident with potentially O(n) arcs.

3.20 Let Lo, Ly, Lo, -+, L, be the vertex sets of the strongly connected
components of L.
This may be accomplished as follows. Select a verter vy € V(L), and
put Ly = {zo} U {z € V(G) | (z0,z),(z,20) € E(L)}; then select z; €
V(L) — Lo, and put Ly = {z,:}U{z € V(G) | (z1,2), (z,z1) € E(L)}, ete.
The complexity of this step is O(n?).

The significance of the strong components is that if one vertex of an L; is
inserted up (down) then every vertex of L; must be inserted up (down).

3.21 Form a digraph L with V(L) = {L; | 0 < i < m}, and (L;, L;) € E(L)
if and only if (z;,z;) € E(L) for some z; € L; and x; € L;. This step is
O(n?).

The significance of L is that if all the vertices of L; are inserted up, and
(Liy L;) € E(L), then all the vertices of L; must be inserted up also.
Further, notice that L is the (unique) transitive tournament on m + 1

vertices.

3.22 Reindex the vertices of L so the in-degree of each L; is i. This is O(n).

Now it is the case that if the vertices in some Ly are inserted up, then the
vertices in L; are inserted up for each k < i < m. Thus if each L; has been
inserted up or down to produce a Cy contraction of GG, then it must be the
case that there is some 0 < k& < m for which Ly, Ly, -+ Ly_; are inserted
down, and Ly, Ly, - Ly, are inserted up. The following step examines
each of the m + 2 such up/down configurations. Each such configuration
forces a coloring of all vertices of G, and the algorithm checks each coloring
for an induced C} contraction.

3.23 For each k € {0,1,2,---,m + 1}, do the following:

3.23.1 Set Lp := Uj<ic,, Li- These are the vertices of L that are colored
black. o

3.23.2 Set Ly := Ug<;cp, Li- These are the vertices of L that are colored
white. _
As noted previously, for any r € R there is an £ € £ with ¢r € E(G),
and hence ({,7) € E(D), by construction of D. If £ € Lp, then ¢
is inserted up, so r must be inserted up too, in Vi, so r is white;
Otherwise, r must be adjacent to Ly, so r must be inserted in V5 and
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colored black. Thus the following sets consist of elements of R that
must be colored white or black, respectively.

3.23.3 Set Rw :={reR| N(r)NnLp # 0}.

3.23.4 Set RB =R — RW
Now every vertex of G has been assigned a color, and the next steps
check if this 2-coloring induces a contraction.

3.23.5 Let Cy,Cy, - --,Cy be the components of the subgraph of G in-
duced on the black vertices Vo UV, UBU L URp. This is O(n?) by
Algorithm 8.3 of [8].

3.23.6 Let C4,Cs, -+, Coyy1 be the components of the subgraph of G
induced on the white vertices V; UV UW U Ly URyw . This is O(n?)
by Algorithm 8.3 of [8].

3.23.7 If b=w =1, and Eg(C;,C;) # 0 whenever i and j have opposite
parity,
Then return(V(Cy), V(C1),V(Cs), V(Cs)), and stop. (This is a Cy
contraction.)

4. If this step is reached, all possibilities for a Cy contraction have been examined,
but no such contraction was found. Thus none exists. Return(()), and stop.
L]

Proposition 2: Algorithm 2 has complexity O(nf), where G has n vertices.

Proof. Step 1 is O(n?), as noted in the proof of Proposition 1. Step 2 is trivial. Step
3 is the main loop, and it examines O(n?) edges v,v3 € E(G). The complexities of
each line in the body of Loop 3 are noted in the algorithm, and none of the lines
3.1-3.23 has a complexity greater than O(n*). Thus, the total complexity of Step 3
is O(n®). Step 4 is trivial. Thus the net complexity of the algorithm is O(n®). =

The following theorem is the main complexity result of this paper.

Theorem 1: If G is a graph for which rad(G) # 2, then it is decidable in polynomial
time whether or not G can be contracted to a square.

Proof. Computing rad(G) is O(n?), as noted in the proof of Proposition 1. If

rad(G) < 2, then Lemma 1 says G can’t be contracted to Cy. If rad(G) > 2, then
Algorithm 2 decides in O(n®) time if G can be contracted to Cj. [

5 Applications to Cyclicity

We now apply the results of the previous sections to the problem of computing the
cyclicity of a graph. The cyclicity, n(G), of a connected graph G is the largest integer
k for which G is contractible to Cj,. This graph invariant was introduced in [5] as an
aid in the study of a related invariant called circularity (see [1, 2, 7]). In [6], formulas
are given for cyclicity in several classes of graphs, and a polynomial algorithm for
computing cyclicity of planar graphs is described.
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A graph has cyclicity % if and only if it can be contracted to Cy but cannot be
contracted to Cxyy. Thus, since the problem of contracting a graph to Cy is NP-
complete, it is NP-complete to determine if n(G) = k for k > 3. However, the results
of this paper allow for the tractable computation of the cyclicity of any graph whose
complement radius is not 2.

Proposition 3: If G is connected and has a cycle and 3 < rad(G) < oo, then
n(G) =3.

Proof. Note that any connected graph containing a cycle can be contracted to Cs.
Thus n(G) > 3. Lemma 1 implies G can’t be contracted to a square, so n(G) < 3. m

Proposition 4: Suppose G is connected and has a cycle and rad(G) # 2. Then
3 < n(G@) < 4. Moreover, it is decidable in polynomial time whether n(G) = 4 or
n(G) =3.

Proof. By Lemma 2, G can’t be contracted to Cs, so n(G) < 4. Also, G has a cycle,
s0 3 < n(G). By Theorem 1, it is decidable in polynomial time whether G can be
contracted to Cy, that is whether n(G) = 3 or n(G) = 4. |
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