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Abstract

We show how to use Simple Genetic Algorithm to produce Hadamard
matrices of large orders, from the full orthogonal design or order 16 with
9 variables, OD(16;1,1,2,2,2,2,2,2,2). The objective function that we
use in our implementation of Simple Genetic Algorithm, comes from a
Computational Algebra formalism of the full orthogonal design equations.
In particular, we constructed Hadamard matrices of orders 144, 176, 208,
240, 272, 304 and 336, from the aforementioned orthogonal design. By
varying three genetic operator parameters, we computed 62 inequivalent
Hadamard matrices of order 304 and 4 inequivalent Hadamard matrices
of order 336. Therefore we established two new constructive lower bounds
for the numbers of Hadamard matrices of orders 304 and 336.

1 Introduction

Definition Let xy, ..., ; be commuting indeterminates. An orthogonal design X of
order n and type (sy,...,s:) denoted OD(n; sy, ..., st), where si, ..., s; are positive
integers, is a matrix of order n with entries from {0, £z1,...,=£2;:}, such that

t
XXt = (Z st) I,
i=1
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where X! denoted the transpose of X and I, denotes the identity matrix of order n.
Orthogonal designs are used in Combinatorics, Statistics, Coding Theory, Telecom-
munications and other areas. For more details on orthogonal designs see the book
[3] and the survey paper [9].

This paper is organized as follows. First we give a brief account of the construction of
the full orthogonal design of order 16 with 9 variables, OD(16;1,1,2,2,2,2,2,2,2)
as well as the computational results obtained from it, in [8]. Then we describe
Simple Genetic Algorithm and its application to the problem of computing Hadamard
matrices of large order, using this orthogonal design.

Our implementation of SGA, using the objective functions that arise from the
0D(16;1,1,2,2,2,2,2,2,2) orthogonal design, was developed in the C programming
language. The programs were executed on a Canadian supercomputer at SHARCnet,
www.sharcnet.ca on Itanium2 900MHz and AMD Opteron 2.4GHz processors.

2 The full orthogonal design OD(16;1,1,2,2,2,2,2,2,2)

In [8], the authors use the algebra of sedenions and Grébner bases to construct the
full orthogonal design of order 16 with 9 variables OD(16;1,1,2,2,2,2,2,2,2)

A B C D E F G H I B C D E F G
—-B A -D c —-F E -G -B I D -C F -E -H G
-C D -B -G -H E F -C -D I B G H -E -F
-D -C B A —-H G -F -D C -B H -G F -E
—-E F G A —B -C —D —E —-F -G —H I B C
—-F —E H -G B A D -C —F E —H G —-B I —D c
-G —-H -FE F C -D -G E -F -C D -B
—-H G -F -E D C —-B A -H -G F E -D -C B I
OD;yg = (1)
-1 B c D E F G A -B -¢C -D —-E -F -G -H
—B -1 D -C F —-E —H G B A -C F —E —H G
-C —-D -1 B G H —E —F C —-D A B G H —-E —-F
—-D C —B -1 H -G F —-E D c —-B A H -G F —-E
-E -F -G -H I B C E -F -G -H A B
-F E —-H G -B -1 -D C F E —-H G -B A -D C
-G -F -C D -1 -B G H -F -C D -B
—H -G F E —D -C B -1 H -G F E —D -C A

This design is one of the full orthogonal designs of order 16 with 9 variables and
appears in [3]. In [8], the authors discovered this design with Computational Algebra
methods, see [2]. The complete list of such designs is given in [3].

Some new orthogonal designs for of orders 32 and 40, have recently been constructed
using exhaustive computer searches in [7].

If we think of the 9 variables A, B, C, D, E, F, G, H, I, as numbers, then we have
the relation

ODy;0ODYg = (A% + 2B* 4+ 2C* + 2D* + 2F* + 2F% 4+ 2G* + 2H? + I*) I,

where the superscript ¢ denotes matrix transposition and I;g stands for the unit
matrix of order 16.
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The array OD16 can be used to produce structured Hadamard matrices of orders
16 x n, where n is the order of the block matrices A, B, C, D, E, F, G, H, I. In
the classical Williamson construction, the four matrices A, B, C, D are taken to be
symmetric and circulant, see [5]. Imitating the classical Williamson construction, we
take the nine matrices A, B, C, D, E, F, G, H, I to be symmetric circulant matrices
of order n each, defined via the matrix U:

010 0
001 0
U=+ .
000 ... 1
100 ...0

which has the property U™ = I,,. Take the nine matrices A, B, C, D, E, F, G, H,
I to be polynomials in U, so that they commute with each other:

A = al, + U + + a, U" !
B = b, + bU + + b U™
C = C()In + ClU + + Cn_lUn !
D = dyI, + U + + dp U™
E = el, + eaU + + e U"?
F = fl, + AU + + faaU
G = gOIn + glU + + gnflUn !
H = h, + hU + + R, U
I = Z()In + ZlU + + 1p 1Un !

Since U? = U™, the nine matrices A, B, C, D, E, F, G, H, I will be symmetric if
Ani = iy bpi = by, Cpi = ¢, dp i = dj,

€n—i = €, faci = fis Gn—i = i Pn—i = hi, Ini = 15
fort=1,...,n— 1.
When n takes specific values, the requirement

ODODYy = (A’ +B*+C*+ D*+ B>+ F°+ G*+ H*+ I') © s

boils down into systems of polynomial equations. Note that now we are using the
Kronecker product ®, because A, B, C, D, E, F, G, H, I are matrices of order n.
Using these polynomial equations the authors in [8] conducted:

e exhaustive searches for n = 3,5, 7 using automatically generated serial C pro-
grams;

e partial searches for n = 9,11 using the WestGrid supercomputer Lattice, based
at the University of Calgary.
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Subsequently, in [8], the results of the searches for n = 7, 9 and 11 were used to
locate sets of new inequivalent Hadamard matrices of orders 112, 144 and 176, re-
spectively. These results establish new constructive lower bounds for the numbers of
inequivalent Hadamard matrices of orders 112, 144 and 176.

The case n = 13, which corresponds to Hadamard matrices of order 16 - 13 = 208,
proved to be a relatively hard computational challenge for the current state of the
methods of [8]. In the following sections we show how to use Simple Genetic Algo-
rithm to find solutions for n = 13, n = 15, n = 17, n = 19 and n = 21. We also find
solutions for two smaller values of the parameter, namely for n = 9 and n = 11.

3 Simple Genetic Algorithm

In this section we summarize the concepts necessary to describe the Simple Genetic
Algorithm (SGA) following the description in [4].

Genetic Algorithms were introduced in 1970 by John Holland [6] aiming to design
an artificial system having properties similar to natural systems. Genetic algorithms
can be applied to a variety of optimization and searching problems and work based
on the concept of “survival of the fittest”.

The three main ingredients of a general Genetic Algorithm are:

e a coding of the parameter set, usually in the form of a collection (or population
in Biology) of binary vectors (individuals or chromosomes in Biology);

e an objective function, (or fitness function in Biology) that is to be minimized
of maximized. In the sequel, the term objective function will be abbreviated
as OF.

e a set of genetic operators, which are algorithmic analogs of biological processes
in the Theory of Evolution.

It is customary to use the algorithmic and the biological terminologies interchange-
ably.

A Genetic Algorithm works by starting with a population of individuals chosen ran-
domly. This population of individuals (or chromosomes) is initially generated at
random. Each individual is a sequence of alleles. In our case the alleles are simply
—1 and +1, which are coded as — and + respectively.

The value of the objective function is computed for each individual in the pop-
ulation. A fitness value is thus assigned to each individual in the population. The
choice of the OF is crucial for the successful application of a Genetic Algorithm to
a particular problem. Strings will then be selected to enter a mating pool. The
probability of any string entering the pool is proportional to its fitness value. Many
copies of strings with high fitness values may enter the pool, while relatively few
strings with low fitness values will be selected. According to their fitness values,
the most highly fit individuals are paired and genetic operators are applied to them.
This gives rise to a new generation of individuals, the offspring. The value of the
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objective function is again computed for each individual in the new generation. The
values of the objective function in the new generation are expected to be better than
the values of the objective function in the previous generation. The word “better”
is interpreted as smaller or bigger, according to whether our aim is to minimize or
maximize the objective function.

The Simple Genetic Algorithm (SGA), see [4], is a Genetic Algorithm in which we
apply the three genetic operators of reproduction, crossover and mutation. We give
a description of these three operators.

e reproduction stipulates that individuals in the population with higher ob-
jective function values (in the case where we maximize the objective function)
must be attributed a higher probability of contributing offspring in the next
generation. This genetic operator is an algorithmic analog of natural selection
in the theory of evolution. The reproduction operator is often implemented
in a computer program by a biased roulette. The result of the reproduction
operator is a mating pool, which contains the individuals of the new generation.

e crossover acts on the individuals in the mating pool (the new generation) in
two steps. First, these individuals are mated randomly into pairs. Second, each
pair undergoes crossover by selecting a crossover site & randomly. This means
that elements before and after the crossover site k are mutually exchanged. For
instance if the two individuals 1,1,1,1 and —1,—1,—1,—1 have been mated
and they will undergo crossover at the site k = 3, then the resulting individuals
will be 1,1,1,—1 and —1,—1,—1,1. This genetic operator has many other
variations, for example we can have two crossover sites. Crossover is generally
not performed on every string, but instead occurs with a certain probability
that is specified according to the particular problem.

e mutation changes randomly a bit from —1 to 1 or from 1 to —1, according
to a certain probability. The mutation probability is often determined experi-
mentally. The effects of this genetic operator are not entirely understood.

4 Results from Simple Genetic Algorithm

In using the Genetic Algorithm to find Hadamard matrices, we need to find strings
of +1 values that give solutions to certain large systems of polynomial equations.
These systems encode the Hadamard property HH! = hI for some particular order
h. Two nice references for recent results concerning Hadamard matrices are [1] and
[10].

In our C implementation of SGA, these strings are simply arrays of integers such
that each element is either a +1 or a —1. A string’s fitness is based on how many of
the polynomials it solves. More specifically, the objective function is chosen as the
sum of the absolute values of the equations of the polynomial system. Here are two
examples of objective functions, for the OD16 array:
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on =23
| apay + 2bgby + 2cocy + 2dody + 2e9ey + 2 fo f1 + 2g0g1 + 2hohy + igiy + 8 |

en=2>5
| apaz + aras + 2bgby + 2b1by + 2coca + 2c1co + 2dods + 2d1dy + 2eges + 2e1 €9
+ 2fof2 4+ 2f1f2 + 29092 + 29192 + 2hohy + 2h1hy + igia + i1iy + 8 | +
| apay + ajaz + 2bgby + 2016y + 2cocy + 2¢1¢0 + 2dod; + 2d1ds + 2epe; + 2e; €9
+2fof1 +2f1f2 + 29091 + 29192 + 2hohy + 2hiho + doiy +d1ia + 8 |
Extensive experimentations by the authors in using Genetic Algorithms in the OD16
array context, showed that a probability of crossover equal to 0.01 and a probability of
mutation equal to 0.002 produced good results when used to find Hadamard matrices
with order of approximately 200, and these values were also sufficient when searching
for smaller matrices. In all cases, the population size was kept at 500,000 creatures
so that the program would require no more RAM than the machines were equipped
with.

4.1 Results for the OD16 array

In this paragraph, we mention the results we obtained via our C implementation of
SGA, using the OD16 array to construct Hadamard matrices of order 16n, where n
is the order of the block matrices A, B, C, D, E, F, G, H, I. We used SGA for
seven different values of n, in particular n = 9, 11, 13, 15, 17, 19 and 21 to construct
Hadamard matrices of orders 144, 176, 208, 240, 272, 304 and 336 respectively.

For each odd value of n we need @ variables to define the associated polynomial
system. More specifically, we need "T“ variables to define each one of the 9 matrices
A, B,C,D,E,F,G, H, I, via the polynomials in U. As a consequence, the objective
function will be a function of 9”2+ 9 variables. The following table summarizes the
parameter values, the orders of the Hadamard matrices and the number of variables

required in each case.

n 9 11 | 13 | 15 | 17 | 19 | 21
order of Hadamard matrix | 144 | 176 | 208 | 240 | 272 | 304 | 336
number of variables 45 | 54 | 63 | 72 | 81 | 90 | 99

In the presentation of the results we obtained obtained with SGA below, the solutions

which are sequences of 2282 41 variables) are given in the format:
2 g

ao...ambg...meO...Cmdo...dmeg...emfg...fmgo...gmhg...hmio...im

where m = "T’l For each solution found, we also give the number of generations

evolved by SGA, the program execution time and the memory used by the program,
as measures of the time and space complexity of the problem.
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n=9

45 variable 0OF:

11-1---1-1111-1-111----11---1-1-1----11-11-1-

Generation is 3, 45.18 seconds of execution time, 220 MB of memory.

n =11

54 variable OF:
1-1--1-11----1---11--1-1-1---1-111--—-1--—-1--1111-1--1

Generation is 12, 126.93 seconds of execution time, 250 MB of memory.

n=13

63 variable OF:
1-11--1111---114--1-11--1-1--1--111111-11---11111-11-1-1-1-11--1
Generation is 2481, 249.95 seconds of execution time, 265 MB of memory.

n=15
72 variable OF:
1------ 111---1-111-1-1-1-1---11-11--11-11111-1---11-1--1-1111-—-1----—- 1

Generation is 541, 6016.92 seconds of execution time, 287 MB of memory.

n=17
81 variable OF:
1--114-14--14---1----1-1--1111---11-1-111-4-----———-1-1-1-1--—-1--11-11

-—-11---1-1
Generation is 4485, 58481.14 seconds of execution time, 322 MB of memory.

n=19

90 variables OF:

-1-1--111-1---1114--1--1---14---1--111--1--1--1-11---1-111111--11-1-111
---1-1---1-1-11---1

Generation is 1725, 34589.37 seconds of execution time, 455 MB of memory.

n=21

99 variables OF:

—————— 1--1111---11-111-1-1--1--1-1-1111--1----1111---1--1--111-11-111
---1--11-1---1-1-1-111111-11--

Generation is 46357, 90305.58 seconds of execution time, 406 MB of memory.

The fluctuations of the OF values and of the average OF value in each generation
during the execution of SGA are useful parameters of the problem. To illustrate
the behavior of OF values during SGA, we plotted these data for the case of the
72-variable OF for n = 15 for 541 generations. In this diagram, the upper line is the
average fitness of all the strings, and the lower line is the fitness of the best string,
which eventually becomes 0.
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Figure 1: Evolution of the 72-variable OF values for n = 15.

4.2 New constructive lower bounds for the numbers of inequivalent
Hadamard matrices of orders 304 and 336

In this paragraph, we give two new constructive lower bounds for the numbers of
inequivalent Hadamard matrices of orders 304 and 336.

Notation: Let N, denote the number of inequivalent Hadamard matrices of order
k. We establish the inequalities:

N3pq > 62, Nizg > 4.

4.2.1 A new constructive lower bound for Hadamard matrices of
order 304

In this paragraph we prove a new lower bound for Hadamard matrices of order 304,
using our implementation of Simple Genetic Algorithm and Magma. We run SGA
with the 90-variable OF for n = 19 and we computed 62 different solutions, listed
in Appendix A. Subsequently, we computed with Magma V2.11-2 the 4-profiles of
the 62 Hadamard matrices specified by these solutions, via the OD;¢g array. All 62
profiles turned out to be different and therefore these 62 matrices are inequivalent.
The Maple code to verify the 62 solutions to the OF for n = 19 and the Magma code
to compute the 62 profiles of the corresponding Hadamard matrices of order 304 are
given in the web page http://www.cargo.wlu.ca/0DGA-AJC/. This web page also
contains the explicit expression of the OF for n = 19, as well as the list of the 62
profiles.

4.2.2 A new constructive lower bound for Hadamard matrices of
order 336

In this paragraph we prove a new lower bound for Hadamard matrices of order 336,
using our implementation of Simple Genetic Algorithm and Magma. We run SGA
with the 99-variable OF for n = 21 and we computed 4 different solutions, listed
below:
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—————— 1--1111---11-111-1-1--1--1-1-1111--1----1111---1--1--111-11-111---
1--11-1---1-1-1-111111-11--

1-1-1-1111-1----1-11--11111--1--1----1-111-11-11----- 1--11-111---111--1-
-—-11--11-1-1--11-1-1-1111-

1--1--11-11-111--1-1--1----1-11-1-1--1111---11---11-1111-1---1-1---1-1--
11--1111---11111-11-11--1--

--1--1---11-1--11--111-1-1-1---11-11111--11--1--1--1-1----1111111--11-11
——--11----1-1-11--1--1---11

Subsequently, we computed with Magma V2.11-2 the 4-profiles of the 4 Hadamard
matrices specified by the above 4 solutions, via the OD;¢ array. All 4 profiles turned
out to be different and therefore these 4 matrices are inequivalent. We give below
the 4-profiles of the 4 Hadamard matrices, which shows clearly that these matrices
are inequivalent.

[ 304298064, 40886748, 70185696, 27793248, 39625110, 13071156,
156381072, 4232088, 4112892, 939120, 777588, 160440, 103278, 25368,
15792, 5040, 924, 1932, 1428, 0, 84, 12348, 84, 0, 0, 0, 0, O, O,
0, 0, 0,0,0,0,0,0,0, 0,0, 0, 0, 1680 1]

[ 104743296, 173343408, 107945712, 73945200, 32835936, 17375568,
6991152, 2837184, 1060416, 323568, 170016, 28560, 7392, 4368,
5376, 0, 0, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, O, O, O, O, O,
0, 0, 0, 0, 0, 0, O, 14028 ]

[ 304220910, 40730760, 70388682, 27858516, 39489702, 13147344,
15422358, 4254348, 4081476, 935676, 779100, 162288, 102522, 21336,
15708, 4116, 1134, 420, 378, 0, O, 12684, 42, 0, 0, 0, 0, O, O, O,
0, 0, 0, 0, 0, 0, 0, O, 0, O, 0, O, 1680 ]

[ 104530608, 173994576, 107753856, 73236240, 33260640, 17239488,
7294224, 2763600, 1035552, 311808, 147504, 27216, 12432, 4704, 3360,
672, 0, 0, 672, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O,
0, 0, 0, 0, 0, 0, 14028 ]
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Appendix A

This is available online at http://www.cargo.wlu.ca/0DGA-AJC/ .
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