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Abstract
Jacket matrices are matrices L = ({;;) with inverse L™! = L ({;;!), where
the inverse is over a group GG. They have previously been constructed only
from (1, —1) Hadamard matrices. In this note, we give constructions for
jacket matrices based on generalized Hadamard matrices.
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1 Introduction

Let H be a matrix. We define H' to be the Hermitian conjugate, or the transpose of
the matrix with elements the complex conjugate of the corresponding elements of H.
When the entries of H are from a group G, we define H™ to be the transpose of the
matrix whose elements are the group inverse of the corresponding elements of H.

An Hadamard matrix H of order n is square, with entries £1 and satisfies HHT =
HTH = nl. Seberry and Yamada [10] have surveyed Hadamard matrices and the
reader is referred there for more details.

In this paper, if HH' = HH = nI then H is a generalized Hadamard matrix.
More generally, generalized Hadamard matrices of two types are of interest. The
first (see [1,4]) have entries which are roots of unity; the second (see [2,3,8,9]) have
elements from a finite group.

Let p be an odd prime. Let 1,,a?,...,aP! be the pth roots of unity. A Butson
generalized Hadamard matrix [1] B = (b;;) of order p is defined as

1 t=land 1<j<p
bij =<1 j=land 1<i<p
QG- 2 < j<p

Then the core C of B is the (p — 1) x (p — 1) matrix (bs), 2 < s,t < p. We observe
that C,Ct and CM are symmetric, and that CT = C™ is a permutation of C.

A jacket matrix (sometimes called a reverse jacket matrix) L = ({;;) is a matrix

of order n with entries from a group G, with inverse L™ = % (Z;jl)

We can use a jacket matrix L in a jacket transform (also called a reverse jacket
transform) as follows. For a vector a of length n, its transform A is given by A = aL.
The inverse transform is a = AL™' = LALM,

2 Our constructions

Jacket matrices in their original formulation were constructed from (1, —1) Hadamard
matrices (see [5-7]). However, it is possible to construct jacket matrices from gen-
eralized Hadamard matrices. We present three such constructions. We also give a
method of combining such jacket matrices to form larger jacket matrices.

Let A, B, D be symmetric matrices of order ”T_Z, whose elements are in an Abelian
group (including 1). Let e be a column vector whose elements are all 1. Put

1 e e 1
e A B e
X = e B —-D —e
1 e —et —1
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If X satisfies

XXM =XMX =n]

then X is a jacket matrix.

2.1 Casel: A=B=D

w o w?
A== 5 ),

where w is the cube root of unity. Then

Let

1 1 1 1 1 1
1 w W w w? 1
1 w? w W w 1
X= 1 w w? —w —w? -1
1 w2 w —w? —w -1
1 1 1 -1 -1 -1

is a 6 x 6 jacket matrix.

2.2 Case 2: Butson Generalized Hadamard matrices

Let B be a Butson generalized Hadamard matrix of order p, p an odd prime. Let C'
be the core of B, as defined earlier. Let A= C, B=C™ D = —C. Then

1 e et 1
e c cM e
X = e CM —C —e
1 e —et —1

is a 2p x 2p jacket matrix. We observe that the p = 3 case is a permutation of the
jacket matrix in part 2.1.

Theorem 1 Let p be an odd prime. Then for every order 2p, there is a jacket matrix
whose entries are the pth roots of unity.

Taking the Kronecker product of X with ¢ copies of Hy = < 1 _1 >, t>1,

gives the following:

Theorem 2 Let p be an odd prime. Then there are jacket matrices of order 21+1p,
t>0.

Where the matrix X has a border of £1, the jacket matrices constructed by the
Kronecker product will have a t-deep border of £H,. We call such a matrix a jacket
matrix with ¢-size border.
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2.3 Case 3: Other generalized Hadamard matrices

Theorem 3 Given a symmetric generalised Hadamard matriz
G = (gij) = G]{(TL7 G)

of order n over the group G, there exists a jacket matriz of order 2/in,t > 1.

For example, consider the matrix GH(6;Z3)

1 1 1 1 1 1
1 1 w w W ow
G 1 w2 wi wr w1
1l w* w w 1 w
1 w? w 1 w w?
1 w 1 w w? w?

Then the core C of G can be used to construct a jacket matrix of order 12, using the
construction in part 2.2.

2.4 A general result

Theorem 4 Let Dy, D,,...,D; be jacket matrices, where D; has order 2t+in,,
t; > 0. Then the Kronecker product

D1®...®Dk®H2...®H2
N————
C times

s a jacket matriz with (-size border, of order 2™ Hle n;, wherem = k+{+ Zle t;.
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