# Jacket matrices constructed from Hadamard matrices and generalized Hadamard matrices \*

# KEN FINLAYSON

Centre for Computer Security Research
University of Wollongong
N.S.W. 2522
Australia

## Moon Ho Lee

Institute of Information and Communications Chonbuk National University, Jeonju Korea

## Jennifer Seberry

Centre for Computer Security Research
University of Wollongong
N.S.W. 2522
Australia

#### MIEKO YAMADA

Department of Computational Science Kanazawa University Kakuma-machi, Kanazawa Japan

#### Abstract

Jacket matrices are matrices  $L=(\ell_{ij})$  with inverse  $L^{-1}=\frac{1}{n}\left(\ell_{ij}^{-1}\right)$ , where the inverse is over a group G. They have previously been constructed only from (1,-1) Hadamard matrices. In this note, we give constructions for jacket matrices based on generalized Hadamard matrices.

<sup>\*</sup> This work was partially supported by the Institute of Information Technology Assessment, Korea, the Korea Science and Engineering Foundation (KOSEF), Korea and the Australian Academy of Science.

## 1 Introduction

Let H be a matrix. We define  $H^{\dagger}$  to be the Hermitian conjugate, or the transpose of the matrix with elements the complex conjugate of the corresponding elements of H. When the entries of H are from a group G, we define  $H^M$  to be the transpose of the matrix whose elements are the group inverse of the corresponding elements of H.

An Hadamard matrix H of order n is square, with entries  $\pm 1$  and satisfies  $HH^T = H^TH = nI$ . Seberry and Yamada [10] have surveyed Hadamard matrices and the reader is referred there for more details.

In this paper, if  $HH^{\dagger}=H^{\dagger}H=nI$  then H is a generalized Hadamard matrix. More generally, generalized Hadamard matrices of two types are of interest. The first (see [1,4]) have entries which are roots of unity; the second (see [2,3,8,9]) have elements from a finite group.

Let p be an odd prime. Let  $1, \alpha, \alpha^2, \ldots, \alpha^{p-1}$  be the pth roots of unity. A Butson generalized Hadamard matrix [1]  $B = (b_{ij})$  of order p is defined as

$$b_{ij} = \begin{cases} 1 & i = 1 \text{ and } 1 \le j \le p \\ 1 & j = 1 \text{ and } 1 \le i \le p \\ \alpha^{(i-1)(j-1)} & 2 \le i, j \le p \end{cases}$$

Then the core C of B is the  $(p-1) \times (p-1)$  matrix  $(b_{st})$ ,  $2 \le s, t \le p$ . We observe that  $C, C^{\dagger}$  and  $C^{M}$  are symmetric, and that  $C^{\dagger} = C^{M}$  is a permutation of C.

A jacket matrix (sometimes called a reverse jacket matrix)  $L = (\ell_{ij})$  is a matrix of order n with entries from a group G, with inverse  $L^{-1} = \frac{1}{n} \left( \ell_{ij}^{-1} \right)$ .

We can use a jacket matrix L in a jacket transform (also called a reverse jacket transform) as follows. For a vector  $\mathbf{a}$  of length n, its transform  $\mathbf{A}$  is given by  $\mathbf{A} = \mathbf{a}L$ . The inverse transform is  $\mathbf{a} = \mathbf{A}L^{-1} = \frac{1}{n}\mathbf{A}L^{M}$ .

# 2 Our constructions

Jacket matrices in their original formulation were constructed from (1, -1) Hadamard matrices (see [5–7]). However, it is possible to construct jacket matrices from generalized Hadamard matrices. We present three such constructions. We also give a method of combining such jacket matrices to form larger jacket matrices.

Let A, B, D be symmetric matrices of order  $\frac{n-2}{2}$ , whose elements are in an Abelian group (including 1). Let e be a column vector whose elements are all 1. Put

$$X = \begin{pmatrix} 1 & e^t & e^t & 1\\ e & A & B & e\\ e & B & -D & -e\\ 1 & e^t & -e^t & -1 \end{pmatrix}.$$

If X satisfies

$$XX^M = X^MX = nI$$

then X is a jacket matrix.

#### **2.1** Case 1: A = B = D

Let

$$A = B = D = \begin{pmatrix} \omega & \omega^2 \\ \omega^2 & \omega \end{pmatrix},$$

where  $\omega$  is the cube root of unity. Then

$$X = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega & \omega^2 & 1 \\ 1 & \omega^2 & \omega & \omega^2 & \omega & 1 \\ 1 & \omega & \omega^2 & -\omega & -\omega^2 & -1 \\ 1 & \omega^2 & \omega & -\omega^2 & -\omega & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 \end{pmatrix}$$

is a  $6 \times 6$  jacket matrix.

### 2.2 Case 2: Butson Generalized Hadamard matrices

Let B be a Butson generalized Hadamard matrix of order p, p an odd prime. Let C be the core of B, as defined earlier. Let A = C,  $B = C^M$ , D = -C. Then

$$X = \begin{pmatrix} 1 & e^t & e^t & 1\\ e & C & C^M & e\\ e & C^M & -C & -e\\ 1 & e^t & -e^t & -1 \end{pmatrix}$$

is a  $2p \times 2p$  jacket matrix. We observe that the p=3 case is a permutation of the jacket matrix in part 2.1.

**Theorem 1** Let p be an odd prime. Then for every order 2p, there is a jacket matrix whose entries are the pth roots of unity.

Taking the Kronecker product of X with t copies of  $H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ ,  $t \ge 1$ , gives the following:

**Theorem 2** Let p be an odd prime. Then there are jacket matrices of order  $2^{t+1}p$ ,  $t \ge 0$ .

Where the matrix X has a border of  $\pm 1$ , the jacket matrices constructed by the Kronecker product will have a t-deep border of  $\pm H_2$ . We call such a matrix a jacket matrix with t-size border.

## 2.3 Case 3: Other generalized Hadamard matrices

**Theorem 3** Given a symmetric generalised Hadamard matrix

$$G = (g_{ij}) = GH(n, \boldsymbol{G})$$

of order n over the group G, there exists a jacket matrix of order  $2^{t+1}n$ , t > 1.

For example, consider the matrix  $GH(6; \mathbb{Z}_3)$ 

$$G = \left( egin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 \ 1 & 1 & \omega & \omega^2 & \omega^2 & \omega \ 1 & \omega & \omega^2 & \omega^2 & \omega & 1 \ 1 & \omega^2 & \omega^2 & \omega & 1 & \omega \ 1 & \omega^2 & \omega & 1 & \omega & \omega^2 \ 1 & \omega & 1 & \omega & \omega^2 & \omega^2 \end{array} 
ight)$$

Then the core C of G can be used to construct a jacket matrix of order 12, using the construction in part 2.2.

## 2.4 A general result

**Theorem 4** Let  $D_1, D_2, \ldots, D_k$  be jacket matrices, where  $D_i$  has order  $2^{t_i+1}n_i$ ,  $t_i \geq 0$ . Then the Kronecker product

$$D_1 \otimes \cdots \otimes D_k \underbrace{\otimes H_2 \cdots \otimes H_2}_{\ell \ times}$$

is a jacket matrix with  $\ell$ -size border, of order  $2^m \prod_{i=1}^k n_i$ , where  $m = k + \ell + \sum_{i=1}^k t_i$ .

# References

- A. T. Butson, Generalized Hadamard matrices, Proceedings of the American Mathematical Society 13 (1963), 894–898.
- [2] W. de Launey, Generalised Hadamard matrices whose rows and columns form a group, in *Combinatorial Mathematics X*, volume 1036 of *Lecture Notes in Mathematics*, pp. 154–176, Berlin-Heidelberg-New York, 1983. Springer-Verlag.
- [3] W. de Launey, A survey of generalised Hadamard matrices and difference matrices  $D(k, \lambda; g)$  with large k, Utilitas Math. 30 (1986), 5–29.
- [4] D. A. Drake, Partial λ-geometries and generalized matrices over groups, Canad. J. Math. 31 (1979), 617–627.

- [5] M. H. Lee, The center weighted Hadamard transform, *IEEE Trans. Circuits Syst.* 36 (1989), 1247–1249.
- [6] M. H. Lee, Fast complex reverse jacket transform, In Proc. 22nd Symp. Information Theory and its Application (SITA99), Yuzawa, Niigata, Japan, Nov. 30— Dec. 3 1999.
- [7] M. H. Lee, B. S. Rajan and J. Y. Park, A generalized reverse jacket transform, IEEE Trans. Circuits Syst. II, 48(7) (2001), 684-690.
- [8] V. Mavron and V. D. Tonchev, On symmetric nets and generalized Hadamard matrices from affine designs, J. Geometry 67 (2000), 180–187.
- [9] J. Seberry, A construction for generalized Hadamard matrices, J. Statistical Inference and Planning 6 (1980), 365–368.
- [10] J. Seberry and M. Yamada, Hadamard matrices, sequences, and block designs, in J. H. Dinitiz and D. R. Stinson, eds., *Contemporary design theory: a collection of surveys*, pp. 431–560. John Wiley & Sons, 1992.

(Received 4 Nov 2004)