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Abstract

A tree is defined to be even if every pair of its leaves (= vertices of degree
one) are an even distance apart. Teresa Haynes has asked if there is a
polynomial-time algorithm to determine if a given bipartite graph G has
an even spanning tree. We give such an algorithm here, as well as Hall-
type necessary and sufficient conditions on G for the existence of such a
tree.

1 Even trees and A-pairings

The vertices of degree one in a tree are called leaves. We declare a tree to be even
if the distance between any two of its leaves is even. Teresa Haynes, in [3], queried
about the computational status of the following problem: given a bipartite graph G,
does it have an even spanning tree?

We will give a polynomial-time algorithm here, and also prove that a Hall-type
condition is both necessary and sufficient for the existence of such a tree.

Note that trees, like all connected bipartite graphs, are uniquely two-colorable. And
it’s easy to check if a given tree is even: in the unique two-coloring, all leaves must
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receive the same color. In particular, an even spanning tree in a connected bipartite
graph G with unique bipartition {A, B} must either have all its leaves in A, or all
its leaves in B. For definiteness, we will seek a spanning tree with all its leaves in B.

A spanning forest F in G is defined to be an A-pairing if each vertex in A is incident
with exactly two edges of F. We omit the simple proof of the following lemma.

Lemma 1 The connected bipartite graph G with bipartition {A, B} has a spanning
tree with all its leaves in B if and only if it has an A-pairing. d

The following lemma gives necessary conditions for the existence of an A-pairing,
which are similar to the well known Hall conditions for G to have a matching satu-
rating A [2]. And, as we shall prove in the sequel, they are also sufficient!

Lemma 2 If the bipartite graph G with bipartition {A, B} has an A-pairing F', then
for every non-empty S C A, |S| < |[N(S)|. (Here N(S) denotes the set of vertices of
B having at least one neighbor in S.)

Proof. Let F' be the sub-forest of F induced by SUN(S). Then F' has 2|S| edges,
and at most |S| 4 |N(S)| vertices. But the number of edges of any forest is less than
the number of its vertices, so

2|5 < IS+ IN(S)I-
O

As a consequence of Lemma 2, |A| < |B| if G has an A-pairing. Thus our seemingly
arbitrary decision to search for a spanning tree with all of its leaves in B, rather
than A, was not so arbitrary. If the two color classes of G have the same cardinality,
there is no even spanning tree; if not, then all the leaves of any such tree must be in
the larger color class.

As a further consequence, we may assume each vertex v € A has degree at least two

in G, since 1 = |{v}| < N({v}) = d(v).

2 Matroids to the rescue

For everything you ever wanted to know about matroids (but were afraid to ask),
see [4].

We will define two matroids on the set £ of edges of G. Our goal in so doing is to
characterize the A-pairings of GG as precisely those sets of edges which are independent
in both matroids. We can then invoke a well-known result — the Matroid Intersection
Theorem — to provide an algorithmic answer to our existence question.

The matroid M; = (E,J;) is the forest matroid of G. That is, a subset I C E is
declared to be independent in the matroid M, i.e. I € Jy, if and only if I is the set
of edges of a forest in G.
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The matroid My = (E,Jy) is defined as follows: a subset I C E is declared to be
independent in the matroid M, i.e. I € J,, if and only if every vertex of A is incident
with at most two edges of I.

It is well known (and easy to prove) that M; and M, are indeed matroids. Equally
transparent is the following lemma:

Lemma 3 I C E is the set of edges of an A-pairing if and only if I € 3, NIy, and
21A] < |1.

We can now settle the computational issue. J. Edmonds [1] has given a polynomial-
time algorithm for finding a largest cardinality set independent in each of two given
matroids based on the same edge set, provided of course that independence in each
matroid can be decided efficiently. This proviso certainly holds for our matroids M;
and M,, so we may apply this algorithm to find I C J; NI, of largest cardinality in
polynomial time. If |I| = 2|A| (it can’t be bigger!), then there is an A-pairing. If
|I] < 2|A[, then clearly there isn’t.

3 A max-min formula

Also from [1], we obtain the following important equation:

Theorem 1 Let My = (E,J;) and My = (E,Js) be matroids on the same edge set
E, with rank functions ry and ro respectively. Then

max{|I| : I € I3 NTy} =min{r (T)+r(E\T): T C E}
We can now prove our main theorem:

Theorem 2 Let G be a bipartite graph with bipartition (A, B). Then G has an A-
pairing (which, for a connected G with |A| < |B|, is equivalent to the existence of an
even spanning tree in G ) if and only if,

(1) for all non-empty S C A, |S| < |N(S)|.

Proof. We’ve settled all the easier bits in the statement of Theorem 2, and gathered
our tools for the last bit. It comes to this: assuming (1), we need to show, for all
K C E, that 2|A| < ri(K) +r(E \ K), where r; and 7, are the rank functions of
the matroids M; and M, respectively defined in the previous section.

In aid of this, we define, for each a € A, E, to be the set of edges of G incident with
a. Then

ro(E\ K) =Y min{2,|E, \ K|}.

acA
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So we need to show, for all K C E, that

2A] < ry(K) + ) min{2,|E, \ K|}, (*)

acA

Before proving this for some specific K C E, we are free to adjust K, provided that
we do not increase the right-hand side of (*). We will avail ourselves of two such
adjustments.

Accordingly, let a € A.

Case 1 E,\ K = {e} In this case, we may transfer e from E'\ K to K. This might
increase r1(K), but if so, only by 1. But the sum representing ro(E \ K) definitely
decreases by 1. So the net effect is that the right hand side of (*) either maintains
its value, or drops by 1.

Case 2 |E,\ K| > 2 In this case, we may transfer all of E, N K from K to F'\ K.
This certainly won’t increase 71 (K), and the sum representing 72 ( E'\ K) is unaffected.

Having made all these adjustments, we can now assume that for some S C A,
K =,cs Ea- Thus ry( E\K) = 2|A|-2|S|, and further, 7, (K) = |S|+|N(S)|—w(S),
where w(S) denotes the number of components of the subgraph of G induced by
SUN(S).

Plugging these formulae into (*) shows that G has an A-pairing if and only if
(2) |S] 4+ w(S) < |N(S)| for all S C A.

This is beginning to resemble condition (1) in the statement of Theorem 2. In fact,
(2) obviously implies (1), but it’s the reverse implication we need to prove.

So assume (1) holds, and let S C A. Denote the components of the subgraph of G
induced by S U N(S) by C;, 1 < i < w(S). Then by (1), |S;| + 1 < |N(S;)|, where
Si = ANV(C;). Summing these inequalities over all 1 < i < w(S) yields (2). O
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