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Abstract

A group divisible k-cycle system (GDECS) of type g™ is an edge-disjiont
decomposition of a complete multipartite graph K,(g) into k-cycles. Let
C be the set of k-cycles of a GDECS and C(2) be the graph formed
by joining vertices that are distance 2 apart in a k-cycle C. If the set
C(2) = {C(2) : C € C} also forms an edge-disjoint decomposition of
K,(g), then the GDECS is said to be 2-perfect. The elementary necessary
conditions for the existence of a 2-perfect GD6CS of type ¢g" are shown
to be sufficient with two exceptions.

1 Introduction

Let Ky, 4,...9, be the complete multipartite graph with vertex set V = U Vi,
1<i<n
where vertex classes V; are disjoint sets with |V;| = ¢;, 4 =1,2,...,n, and where two

vertices x € V; and y € V; (1 <4, j < n) are joined by exactly one edge if and only
if ¢ # j. We simply denote a complete n-partite multigraph K ..., by Kn(g).

A group divisible k-cycle system (GDECS) is a triple (X, G, C), where X is a set
(of vertices), G = {G1,Gs,...,G,} is a partition of X into subsets (called groups)
G of size g; = |Gi], 1 < i < n, and C is a collection of edge-disjoint k-cycles which
partition edges of Ky, g4, 4. with vertex classes G1,Gy,...,G,. The group-type (or
type) of the GDECS is the multiset {g; : 1 < ¢ < n} which is usually denoted
by an “exponential” notation: a group-type 1°273*--. means i occurrences of 1, j
occurrences of 2, etc. A GDkECS of type T will be denoted by GDECS(T).

The distance 2 graph of a cycle C, denoted by C(2), is the graph formed by joining
vertices that are distance 2 apart in C. Let (X, G, C) be a GDkCS with group set
G = {G1,Gs,...,Gy}, where |Gi| = g; for 1 < i < n, and set C(2) = {C(2) : C €
C}. If C(2) forms an edge-disjoint decomposition of Ky, g, .. with vertex classes
G1,Gs,...,G,, then the GDECS is said to be 2-perfect.
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A GDECS(1") is referred to as a k-cycle system of order n, denoted by kCS(n).
It is well known that a 2-perfect kCS(n) is equivalent to a quasigroup of order n (see
[13]). Much work has been done for the spectrum for 2-perfect £CSs. Vital papers in
this area include [3, 11, 12, 14, 15]. GDACSs are one of the basic ingredients in the
construction of other types of designs such as k-cycle systems and k-cycle covering
designs (see, for example, [2], [10]), as well as being of interest in their own right. It is
trivial to see that every GD3CS is 2-perfect, which is also known as a group divisible
design (GDD) with block size three (see [9]). When k = 5, 2-perfect GDkCSs are
also called holey Steiner pentagon systems. The existence of 2-perfect GD5CSs(g")
was shown in [1] with some possible exceptions. Since no GDACS is 2-perfect, k = 6
is the smallest even number for which a 2-perfect GDECS possibly exists.

We denote a k-cycle by (zo,21,...,25-1), so that {z;, z;41} is an edge for 0 <
i < k — 1, reducing subscripts modulo k. Note that C(2) is the union of two 3-
cycles when C is a cycle of length 6. If (zo, 21,29, %3, 24, 25) is & 6-cycle, then two
3-cycles (zo,z2,24) and (z1,23,25) arise from this 6-cycle by joining all vertices
which are distance 2 apart. Therefore, a 2-perfect GD6CS will give a GD3CS (or
a GDD with block size 3) which contains an even number of triples. However, the
converse is not necessarily true. Lindner et al. [11] have found the spectrum for 2-
perfect GD6CSs(1"), i.e. 2-perfect 6CSs(n), with two possible exceptions which were
removed by Billington and Lindner [5].

Theorem 1.1 There exists a 2-perfect 6CS(n) if and only if n = 1 or 9 (mod 12)
except forn =9.

The following known result on 2-perfect GD6CSs is contained in [5].
Theorem 1.2 There exists a 2-perfect GD6CS ((2m)?) for every integer m > 2.

The main purpose of this paper is to investigate the existence spectrum for 2-
perfect GD6CSs(¢"). For a complete n-partite graph K,(g) to be decomposable into
edge-disjoint 6-cycles, it is clear that n > 3, the degree of each vertex, g(n — 1), must
be even, and the number of edges, g’n(n — 1)/2, should be a multiple of 6. Thus we
obtain the following basic conditions for the existence of a GD6CS(g"):

n >3, g(n—1)=0 (mod 2), and g*n(n — 1) =0 (mod 12) (1.1)

In what follows, we employ both direct and recursive methods of construction
to show that the conditions (1.1) are also sufficient for the existence of a 2-perfect
GD6CS(g"), except for (g, n) € {(1,9), (2, 3)}.

2 Recursive constructions

To describe our recursive constructions we require several types of auxiliary designs.
We use [4] as our standard design theory reference.
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A group divisible design (or GDD) is a triple (X, G, B) where X is a set (of points),
G is a partition of X into subsets (called groups), and B is a set of subsets of X (called
blocks) such that no block contains two distinct points of any group, but any other
pairset of X occurs in exactly one block of 5.

The type of the GDD is the multiset {|G|: G € G}. The notation K-GDD stands
for a GDD having block-sizes from a set of positive integers K. When K = {k}, we
simply write k for K. We wish to remark that a £-GDD of type 1" is essentially a
pairwise balanced design (PBD) of index unity, denoted by B(K, 1;v).

For all practical purposes, we list some existence results concerning GDDs as
follows.

Lemma 2.1 [9] There exists a 3-GDD of type g™ if and only ifn >3, (n—1)g=0
(mod 2) and n(n — 1)g*> = 0 (mod 6).

Lemma 2.2 [7] Let g, w and t > 3 be positive integers. There exists a 3-GDD of
type glw' if and only if w < g(t—1), gt =w—g =0 (mod 2) and gt(g(t—1)—w) =0
(mod 3).

Lemma 2.3 [8] Let v be an integer and B(K) = {v : a B(K, 1;v) exists}. Then
(1) v € B({3,4,5}) ifv >3 and v ¢ {6,8}; (2) v € B({4,6,7,9}) if v =0 or1
(mod 3), v >4 and v ¢ {10,12,15,18,19,24,27,75}.

The significance of GDDs to our constructions for 2-perfect GD6CSs is seen in
the following constructions. The first one is a modification of Wilson’s fundamental
construction for GDDs (see [16]).

Construction 2.4 (Weighting) Suppose that there exist a K-GDD of type m™ and a
2-perfect GDECS(g") for each h € K. Then there exists a 2-perfect GDECS((mg)™).

The following PBD construction is a special case of Construction 2.4 .

Construction 2.5 (PBD) Suppose that there exist o B(K,1;v) and a 2-perfect
GDECS (g") for each h € K. Then there exists a 2-perfect GDECS(g?).

We also have the following product construction for 2-perfect GD6CSs.

Construction 2.6 (Inflation) Let m > 2 be an integer. If there exists a 2-perfect
GD6CS(g"), then there exists a 2-perfect GD6CS((mng)™).

Proof. Let (X,G,C) be the given 2-perfect GD6CS(g"). Give weight m to every
vertex of X, that is, replace every vertex x € X by {z} x I,,, where the set I, =
{1,2,...,m}. By Lemma 2.1, there exists a 3-GDD of type m? based on set I3 X I,
with {7} x I,, i = 1,2, 3, as its groups. Let B be the set of blocks of the GDD. For
any 6-cycle C' = (zg,z1, s, T3, T4, 25) of C and any block B = {(1,a),(2,b),(3,c)}
of B, construct a 6-cycle Cg = ((z9,a),(z1,b), (z2,¢), (23, a), (z4,b), (z5,c)). Write
X*=Xx1I,, G ={Gx1I,:GeG} and C*={Cs:C €C,B € B}. Then
(X*,G*,C*) is a 2-perfect GD6CS((mg)™). 0
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We can “fill in the groups” of an existing 2-perfect GDECS to obtain ones with
more groups.

Construction 2.7 (1) Suppose that there exist a 2-perfect GDECS((mg)™) and a
2-perfect GDECS(g™). Then there exists a 2-perfect GDECS(g™").

(2) Suppose that there exist a 2-perfect GDECS((mg)") and a 2-perfect GDECS(g™ ).
Then there exists a 2-perfect GDECS(g™"+?).

(3) Suppose that there exist a 2-perfect GDECS (g"(mg)') and a 2-perfect GDECS(g™).
Then there exists a 2-perfect GDECS(g™™).

Before stating the next recursive constructions, we first generalize the concept
of a GDkCS(¢"). Let G = {G1,Ga,...,G,} be the vertex class set of K,(g), where
|Gi| = g for 1 <i<n.Let H={H, H,,...,H;}, where H; (1 <i <t)is a set of
nh; vertices of K,(g) such that |[H; N G;| = h; for 1 < j < n, and H; N H; = for
1 < i < j < n. The notation K,(g)\ Ui<i<: K, (h;) stands for the graph obtained
by removing K,(h;), 1 = 1,2,...,t, from K,(g), that is, the graph has vertex set
X = Ui<i<nG; and edge set {{z, y} : 2 € Gj,y € G;,1 < i < j < n, and
{z, y} N H;j| <1for1<i<n}. A holey group divisible k-cycle system having hole
set H and group set G is a quadruple (X, #H,G,C), where C is a collection of edge-
disjoint k-cycles which partition the edges of K, (g)\Ui<i<t Kn(hs). If (X, H,G,C(2))
is also an edge-disjoint decomposition of K,(g)\ Ui<i<; K, (h;), then (X, H,G,C) is
said to be 2-perfect.

When H = {Hy, Hs,...,H;} is a partition of X, we simply denote the system
by HGDACS(n,T), where T is the multiset {h; : 1 < i < t}. As with GDECSs,
we use an “exponential” notation to describe T. If H = {H;}, the system is called
incomplete GDECS, denoted by IGDECS((g,h1)"). An IGDECS((g,0)") is just a
GDECS(g™).

The following construction is an extension of Construction 2.7.

Construction 2.8 Suppose that there exist a 2-perfect IGDkCS((mg + h, h)") and
a 2-perfect GDECS(g™h'). Then there exists a 2-perfect GDECS(g™"(nh)").

The technique of “filling in holes” is simple but useful.

Construction 2.9 Suppose that there exist a 2-perfect HGDECS(n, g™w), a 2-
perfect IGDECS((g9+1,1)"), a 2-perfect IGDECS((w+1,1)"), and a 2-perfect GDECS
((g +1)"). Then there exists a 2-perfect GDECS((mg + w + 1)").

In order to apply Construction 2.9, we need to build more families of 2-perfect
HGDKCSs later. The following construction for 2-perfect HGDECSs is a modification
of the PBD construction for mutually orthogonal Latin squares (see [6]).

Construction 2.10 Suppose that there exist a K-GDD of type T and a 2-perfect
HGDECS(n, 1) for each t € K. Then there exists a 2-perfect HGDkCS(n, T).
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3 Direct constructions

In our direct constructions of some systems, we shall adopt the standard approach
of using a finite abelian group G to generate the set of cycles for a given system.
That is, instead of listing all of the cycles of the system, we shall list a set of base (or
starter) cycles and generate the others by an additive subgroup of G. The notation
“+d mod ¢” written behind the base cycles denotes that all elements of the base
cycles should be taken cyclically by adding d (mod g) to them, while the infinite
point, if it occurs in the base block, is always fixed. Moreover, we assume that the
reader is familiar with Bose’s mixed difference method. If not, the reader is referred
to [4].

Lemma 3.1 There exists a 2-perfect GD6CS(2") for any n € {4,6,7,9}.

Proof. For each stated n, we take the vertex set X = Z,, and the group set G =
{{s.j+n}:j€ Z,}. Forn € {4,6,7}, all of the cycles of the system are listed
below. For n =9, we only list the required base cycles.

n=4: (1,2,4,56,0), (1,3,2,57,6), (1,4,3,5,0,7),
(2,7, 4,6,3,0).

n=6: (1,2,0,7,8,11), (1,4,6,7,5,0), (1,5,9,7,4,3),
(1,6,2,7,10,8), (1,9,11,7,3,10), (2, 3,6,8,9,4),
(2,5,3,8,0,9), (2 10,5,8,4,11), (3,11,6,9, 10, 0),
(4,5, 6, 10, 11, 0).

n="T7: (1,2, 3,4,5,6), (1,3,6,2,11,12), (1,4,7,3,9,0),
(1,5,10,4,2,13), (1,7,13,3,0,11), (1,9,4, 13,12, 10),
(2,5, 11, 10, 13, 8), (2,7,5,13,0,12), (2, 10,7, 11, 8, 0),
(3,5,8,9,13,11), (3,8,6,11,9,12), (4,6,9, 10, 8, 12),
(4,8,7,6,10,0), (59,7, 12,6,0)

n=9: (1,2,3,4,7,9), (1,59 15 12, 17), (1,6,8, 11,16, 12),
(1,7, 14, 8, 0, 11), +3 mod 18.

Lemma 3.2 There exists a 2-perfect GD6CS(2341).

Proof. (X,G,C) is such a system, where X = Zy5, G = {{0,5},{1,6},{2,7},
{3,4,8,9}} and C contains six 6-cycles:

(7777774)7 (7
2

2,3, 5 6, 0,3, 1,5, 4),
(777 87 07 79)7 (071

3, 1,5
78757679)7
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Lemma 3.3 There exists a 2-perfect GD6CS(3™) for n € {5,9}.

Proof. Take X = Z3,, G ={{j,j+n,j+2n}:j € Z,}. We list all of the cycles of
the system for n = 5 and the base cycles for n = 9 below.

n=5: (1,2, 3,4,5,8), (1,3,7,6, 4, 12), (1, 4,13, 6, 12, 5),
(1,7, 10, 6, 8, 0), (1,9, 2,6, 14, 13), (1,10, 9, 3,0, 14),
(2, 4, 10, 3, 6, 0), (2,5,3,14,11,13), (2, 8,9 6,5, 14),
(2,10,13,9,0,11),  (3,11,7,5,09, 12) (4,7, 13, 5, 11, 8),
(4,11, 10, 8,12, 0), (7,8, 1412, 11, 9), (7,14, 10 12, 13, 0).

n=9: (1,2 4,8,3,13), (1,4, 18, 24, 5, 12), +1 mod 27.

a

Lemma 3.4 There exists a 2-perfect GD6CS(5°).

Proof. We take the vertex set X = Z,5 and the group set G ={{j, j +9, j + 18,
Jj+ 27,5436} :j € Zy}. The required base cycles are listed below.

0, 40, 15, 37, 26, 3), (0, 6, 35, 23, 40, 8), (1, 23, 25, 11, 24, 34),
1, 4, 33, 0, 20, 39), (0, 28, 44, 42, 21, 11), (2, 32, 31, 7, 6, 40),
0, 13, 5, 26, 29, 19), (0, 38, 19, 34, 3, 44) (0, 15, 7, 13, 38, 43)
1, 5, 44, 30, 2, 42), +3 mod 45.

Lemma 3.5 There exists a 2-perfect GD6CS(6™) for any n € {5, 8}.

Proof. For each stated n, we take the vertex set X = Zg, and the group set G ={{7,
j+n,j+2n,j+3n,j+4n, j+5n}:j € Z,}. Then the required base cycles are
listed below.

n=5: (1,2, 4,10,22 8), (1, 4, 8, 21, 12, 20), +1 mod 30.
n=8: (0,13,34,1,3,30), (1,8,31,12,24,35), (1,4,14,3,23,5),

(1,18,4,39,6,11), (1,2, 5,14, 15, 20), (1, 7, 43, 18, 38, 40),
(1, 23, 16, 42, 36, 32), +2 mod 48.

Lemma 3.6 There exists a 2-perfect IGD6CS ((g + w, w)™) where (g,w,n) €
{(2,1,9), (4,1,9), (6,4,3)}.
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and n > 3.

0 (mod 6)

In this section, we shall establish our main results concerning 2-perfect GD6CSs(g™).

Lemma 4.1 Let g and n be positive integers satisfying g

Then there exists a 2-perfect GD6CS(g™).

4 Existence results
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Proof. We first consider the case ¢ = 6. The result for n € {3,5,8} was provided
in Theorem 1.2 and Lemma 3.5. For n € {4,6}, take a 2-perfect GD6CS(2") from
Lemma 3.1; the result then follows from Construction 2.6 with weight 3. For any
other value of n, we have n € B({3,4,5}) by Lemma 2.3; then apply Construction
2.5 to obtain the desired system.

For the case g > 12, we write g = 6x where z > 2, give weight x to each vertex
of a 2-perfect GD6CS(6™), and apply Construction 2.6 to get the result. 0

Lemma 4.2 Let g and n be positive integers satisfying g = 3 (mod 6), n = 1 (mod
4) and n > 5. Then there exists a 2-perfect GD6CS(g™).

Proof. When g > 9, write ¢ = 3z where z is odd and > 3. Since a 2-perfect
GD6CS(3™) can be inflated to form a 2-perfect GD6CS((3x)™) by Construction 2.6,
we need only handle the case g = 3 as follows.

For n € {5,9}, the result was given in Lemma 3.3. For n = 1, 9 (mod 12)
and n > 13, give weight 3 to each vertex of a 2-perfect GD6CS(1™) which exists by
Theorem 1.1, then apply Construction 2.6 to get the result. For n = 5 (mod 12) and
n > 17, write n = 4(3z+1)+1 where > 1, and take a 2-perfect GD6CS(12%*+!) from
Lemma 4.1. Since there exists a 2-perfect GD6CS(3%), we can apply Construction
2.7 (2) to obtain the desired system. 0

Lemma 4.3 Let g and n be positive integers satisfying g = 2,4 (mod 6), n =0, 1
(mod 3), n >3 and (g,n) # (2, 3) . Then there exists a 2-perfect GD6CS(g").

Proof. We first deal with the case g = 2. The result for n € {4,6,7,9} was provided
in Lemma 3.1. For any other value of n ¢ {10,12,15,18,19,24,27,75}, since n €
B({4,6,7,9}) by Lemma 2.3, we can apply Construction 2.5 to obtain the desired
system. The result for n € {10, 19} follows from applying Construction 2.7 (2) with 2-
perfect GD6CSs (2%) and (6!) from Lemma 4.1, where ¢ € {3,6}. Since there exist 2-
perfect GD6CSs (2°) and (12*) from Lemma 4.1, we can apply Construction 2.7 (1) to
get a 2-perfect GD6CS(2%*). For n € {12,18,27,75}, take a 2-perfect GD6CS((2z)*)
from Theorem 1.2, where z = n/3, and fill the groups of this system with 2-perfect
GD6CSs (2%) to get the result. The only remaining case is n = 15. For this case,
take a 2-perfect GD6CS(234!) from Lemma 3.2 and a 2-perfect IGD6CS((10,4)%)
from Lemma 3.6, then apply Construction 2.8 to get a 2-perfect GD6CS(2°12!). The
conclusion comes from filling the long group with a 2-perfect GD6CS(29).

When g > 4, the result for n = 3 is contained in Theorem 1.2. For n > 4, we can
inflate a 2-perfect GD6CS(2") to establish the result. O

Lemma 4.4 Let g and n be positive integers satisfying g =1, 5 (mod 6), n=1, 9
(mod 12), g > 1 and n > 9. Then there exists a 2-perfect GD6CS(g™).
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Proof. For the stated value of n except for n = 9, we take a 2-perfect GD6CS(1")
from Theorem 1.1, then apply Construction 2.6 to obtain the desired 2-perfect
GD6CS(g™).

Now we deal with the remaining case n = 9. The result for g = 5 was provided in
Lemma 3.4. When g =1 (mod 6), we first write g = 22 + 1 and apply Construction
2.10 with a 3-GDD of type 2* (see Lemma 2.1) and a 2-perfect HGD6CS(9, 1%)
(see Lemma 3.7) to create a 2-perfect HGD6CS(9, 27). Since there exist a 2-perfect
IGD6CS((3,1)?) from Lemma 3.6 and a 2-perfect GD6CS(3%) from Lemma 4.2, we
can get the desired result by applying Construction 2.9. When g = 5 (mod 6) and
g > 11, write ¢ = 2z + 5 and take a 3-GDD of type 294! from Lemma 2.2, then
apply Construction 2.10 to get a 2-perfect HGD6CS(9, 2741). Note that there exist
a IGD6CS((5,1)?) by Lemma 3.6. So the conclusion follows from Construction 2.9.
This completes the proof. 0

Combining the above results with Theorem 1.1, we have proved

Theorem 4.5 The necessary conditions for the existence of a 2-perfect GD6CS(g™),
that is, n > 3, g(n—1) = 0 (mod 2), and g’>n(n—1) = 0 (mod 12), are also sufficient,
except for (g, n) € {(1,9), (2,3)}.

Acknowledgements

The author would like to thank the anonymous referee for providing the solution for
a 2-perfect GD6CS(5%) and his/her helpful suggestions.

References

[1] R.J.R. Abel, F.E. Bennett and H. Zhang, Holey Steiner pentagon systems, J.
Combin. Des. 7 (1999), 41-56.

[2] R.J.R. Abel, F.E. Bennett, H. Zhang and L. Zhu, Steiner pentagon covering
designs, Discrete Math. 231 (2001), 11-26.

[3] P. Adams and E.J. Billington, The spectrum for 2-perfect 8-cycle systems, Ars
Combin. 36 (1993), 47-56.

[4] Th. Beth, D. Jungnickel and H. Lenz, Design Theory, Bibliographisches Institut,
Zurich, 1985.

[5] E.J. Billington and C.C. Lindner, The spectrum for lambda-fold 2-perfect 6-
cycle systems, Europ. J. Combin. 13 (1992), 5-14.

[6] R.C. Bose, S.S. Shrikhande and E.T. Parker, Further result on the construc-
tion of mutually orthogonal Latin squares and the falsity of Euler’s conjecture,
Canad. J. Math. 12 (1960), 189-203.



76

[7]

(8]

J. WANG
C.J. Colbourn, D.G. Hoffman and R. Rees, A new class of group divisible designs
with block size three, J. Combin. Theory Ser. A 59 (1992), 73-89.

R.C. Mullin and H.-D.O.F. Gronau, PBDs and GDDs: The Basics, in The CRC
handbook of combinatorial designs, C.J. Colbourn and J.H. Dinitz (eds.), CRC
Press, Boca Raton, 1996, pp. 185—-226.

H. Hanani, Balanced incomplete block designs and related designs, Discrete
Math. 11 (1975), 255-369.

D.G. Hoffman, C.C. Lindner and C.A. Rodger, On the construction of odd cycle
systems, J. Graph Theory 13 (1989), 417-426.

C.C. Lindner, K.T. Phelps and C.A. Rodger, The spectrum for 2-perfect 6-cycle
systems, J. Combin. Theory Ser. A 57 (1991), 76-85.

C.C. Lindner and C.A. Rodger, 2-perfect m-cycle systems, Discrete Math. 104
(1992), 83-90.

C.C. Lindner and C.A. Rodger, Decomposition into cycles II: cycle systems, in
Contemporary Design Theory, Wiley, New York, 1992, pp. 325-369.

C.C. Lindner and D.R. Stinson, Steiner pentagon systems, Discrete Math. 52
(1984), 67-74.

E. Manduchi, Steiner heptagon systems, Ars Combin. 31 (1991), 105-115.

R.M. Wilson, Constructions and uses of pairwise balanced designs, Math. Centre
Tracts 55 (1974), 18-41.

(Received 27 Nov 2003)



