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Abstract

For a hypergraph H(V, E), let S = {S1, Sy, ..., S,} be a family of sub-
sets of V such that each S; is a subset of some hyperedge of E. A
S-transversal problem is to find a minimum subfamily 3’ of & such
that a hyperedge of H contains a member of 3’ whenever it contains a
member of &. This problem reduces to the transversal problem when
S = V and each S; is a singleton set consisting of a vertex of V. The
Kj-clique transversal problem becomes a particular case of S-transversal
problem when hyperedges are the maximal cliques and J is the family
of all cliques of size [. We give an N(C-algorithm to solve 3-transversal
problem on totally balanced hypergraphs. The main result of this paper
is that the Kj-clique transversal on strongly chordal graphs is solvable in
polylogarithmic time with polynomial number of processors.

1 Introduction

A 0 — 1 matrix is balanced if it does not contain as a submatrix, an edge-vertex
incidence matrix of an odd cycle. A 0 — 1 matrix is totally balanced if it does not
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contain as a submatrix, an edge-vertex incidence matrix of any cycle.

A 0 — 1 matrix is called I'-free if it does not contain the submatrix

11
= (14)
It is known that a matrix is totally balanced if and only if it can be permuted to a
I-free matrix [13].

A hypergraph H is an ordered pair (V, E) where V' is a set of vertices and
E is a family of subsets of V. The members of £ are called hyperedges of H. Let
V = {v1,v2,...,v,} and E = {E}, By, ..., E,, }. Let A(H) denote the hyperedge-vertex
incidence matrix of a hypergraph H. A hypergraph H is balanced (respectively
totally balanced) if A(H) is balanced (respectively totally balanced). A clique
hypergraph H(V, E) of a graph G(V, E) is a hypergraph whose hyperedges are the
maximal cliques of G. A graph is said to be balanced if its clique hypergraph is
balanced. A graph is said to be chordal if it contains no induced cycle of length
4 or greater. A chordal graph is said to be strongly chordal if every cycle on six
or more vertices contains a chord joining two vertices with an odd distance between
them. It is known that a chordal graph is strongly chordal if its clique hypergraph
is totally balanced [6, 9].

A k-fold clique transversal of a graph G is a set S of vertices such that every
maximal clique of G has at least k vertices of S. This problem has been shown to
be in the polynomial class for balanced graphs [9]. Corneil and Fonlupt [5] have
introduced the Cjj-cover problem which is to find a minimum family of cliques of
size j such that every clique of size ¢ of G contains at least one member of the family.
The Cjj-cover problem has been studied in [3, 4, 5, 14] . We study a similar concept
called the Kj-clique transversal problem. It is usual to denote a clique of size r by
K,. A Kj-clique transversal of a graph G is a collection of cliques of size [ such
that every maximal clique of size greater than or equal to [ in G contains at least
one member of the collection. A Kj-clique transversal problem is to locate a
K;-clique transversal with the minimum cardinality. A problem similar to this is the
k-fold clique transversal problem which is to determine the minimum cardinality of
a subset D of V' such that D N C; has at least [ vertices for every maximal clique C;
of G. This problem has been shown to be polynomial for balanced graphs [9]. Chang
et al [2] call this "generalized clique transversal problem” and have given complexity
results for strongly chordal graphs, k-trees, split graphs and path graphs. A clique
transversal is a Kj-clique transversal and it has been widely studied [1, 6, 17, 18].

Note that the Kj-clique transversal problem is different from the [-fold clique
transversal problem. In Figure 1, K3 = {1,2}, K = {4,5} is a minimum K,-clique
transversal of the graph. But {1,2,4,5} is not a minimum 2-fold clique transversal
whereas {1,3,4} is a minimum 2-fold clique transversal of the graph. It is interesting
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Figure 1: A minimum K,-clique transversal does not necessarily give a minimum
2-fold clique transversal

to explore whether a minimum Kj-clique transversal can be efficiently extracted from
a minimum [-fold clique transversal of a graph.

The notion of a Kj-clique transversal can be extended to hypergraphs as follows:
For a hypergraph H(V, E), let 3 = {S1, S5, ..., S;} be a family of subsets of V' such
that each S; is a subset of some hyperedge of E. A J-transversal problem is to
find a minimum subfamily S’ of & such that a hyperedge of H contains a member
of &' whenever it contains a member of . This problem reduces to the transversal
problem when & = V and each §; is a singleton set consisting of a vertex of V. The
Kj-clique transversal problem becomes a particular case of S-transversal problem
when hyperedges are the maximal cliques and < is the family of all cliques of size [.

We will later use the following result, due to Dahlhaus and Damaschke [7]:

Theorem 1 The transversalproblem can be solved on totally balanced hyoergraphs
in O(log®n) time with O(n + m) processors where n is the number of vertices and
hyperedges and m is the sum of the sizes of the hyperedges.

This result can be stated as
Theorem 2 Consider the integer programming problem

minimize PR

(1)

subject to Mz > 1

where M is a totally balanced matriz and T = (v1, T, . .., &,) is such that x; = 0 or
1. Here 1 stands for the all-one vector and vectors will be considered columnuwise.
The integer programming problem (1) can be solved in O(log®n) time with O(n +m)
processors. [

In this paper, we study the Kj-clique transversal and S-transversal problems.
We give an NC-algorithm to solve 3-transversal problem on totally balanced hy-
pergraphs using Theorem 2. The main result of this paper is that the Kj-clique
transversal on strongly chordal graphs is solvable in polylogarithmic time with poly-
nomial number of processors.
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Figure 2: Figure 2(a) is matrix A(H). Figure 2(b) is matrix B(H,<S). If A(H) is
[-free, then B(H,<S) is I-free
2 $— transversal problems

Given H(V, E) and a family § = {S},S,,...,S,} of subsets of V, consider the inci-
dence matrix B(H,S) = (b(4, j)) with m rows representing the edges Ey, Es, ..., Ep,

of E and r columns representing the sets Sy, Ss, ..., S, with
1 af S CE;
bi.3) _{ 0 if S ¢E;

The - transversal problem can be formulated as:

minimize PRMIEY
(2)

subject to BT >1

where B = B(H,S) is the incidence matrix and T = (21,2, ...,2,) is such that
x; = 0 or 1. Here again, 1 stands for the all-one vector and vectors will be considered
columnwise.

In this section, we show that the S—transversal problem is in NC-class for to-
tally balanced hypergraphs. It is enough to prove that B(H, <) is totally balanced
whenever H(V, E) is totally balanced.

Let H(V,E) be a hypergraph with the vertex set V = {vi,vs,...,v,}. Let
S ={51,5,...,5,} be afamily of ordered subsets of V' such that the vertices of S;,
i=1,2,...,r, are sorted by its indices. For example, (vs, vs,v7,vs) is sorted, whereas
(v2,v7,v5,v8) is not. The ordered sets S; are sorted by lexicographic ordering ¢ < ‘.
The lexicographic ordering on S; can be defined as follows: Let (vay, Vags ---) Va,) and
(vg,>V8,, -, Ug,) be such that a1 < ap < ... < oy and 5, < fy < ... < f,. We
5y (Vays Vagy s Va,) < (Vg,,V8,, ..., vg,) if and only if (o, ovg, ..., ) < (B1, B9, By)
under the standard dictionary ordering. For example, let S; = (vs, vs, vg, v19), Sa =
(U3,U5,U107U11) and Sg = (U3,U5,U10). Then Sl < 527 Sl < Sg and Sg < Sz by
lexicographic ordering.
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(a) (b)

Figure 3: Submatrices of (a) matrix B(H,S) and (b) matrix A(H)

Lemma 1 Let A(H) = (a(i,j)) be the hyperedge-vertex incidence matriz of a hyper-
graph H(V, E) with n columns representing the vertices in the order vy, vy, .. .., Uy.
See Figure 2. If A(H) is T-free, then B(H,S) = (b(i, 7)) is T-free where the r
columns of B(H,<SY) are represented by the sets S1,Ss,...,S, sorted lexicographically
so that S; < Sy < ... < S,.

Proof. It is given that the vertices of S;, i = 1,2,...,r, are sorted by its indices
and the sets S1, S, ...,S, are sorted by lexicographic ordering such that S; < Sy <
... < Sy. We will prove that B(H,S) is I-free with r columns representing the sets
in the order Sy, Sa, ..., S, If b(p,¢) = b(p,n) = b(o,¢) = 1, it is enough to prove
that b(c,n) = 1. See Figure 3(a).

Let S¢ = (Vfy,Vfys o Vpy)s Sy = (Vhy, Vhys o5 Up,) such that fi < fo < ... < fi
and hy < hy < ... < hy. It is enough to prove that S, C E,. Suppose S, ,Z E,.
Then there exists vy, such that vy, € S and v, ¢ E,. Now fi and he must be
distinct because vy, € E, and vy, ¢ E,. Since S; < Sy, fi < he. Now we con-
sider the columns f; and he, and rows p and o in A(H). The vertex vy, € E, since
S¢ C E,. The vertex v, € E, since S, C E, and vy, € E, since S; C E,. Therefore,
a(p, f1) = alp, he) = a(o, f1) = 1. See Figure 3(b). Now since vy, & Ey, a(o, he) = 0.
This shows that A(H) is not I'-free which is a contradiction. m

It is known [13] that a 0-1 matrix is totally balanced if and only if it can be
permuted to a I'-free matrix. Thus, it follows from Lemma 1

Theorem 3 If H(V,E) is a totally balanced hypergraph, then B(H,S) is totally
balanced where § = {S1, 52, ...,S:} is a family of subsets of V. O

Using Theorem 2 and Theorem 3, we conclude from (2) that

Theorem 4 The S—transversal problem is in NC-class for totally balanced hyper-
graphs. O

It would be worthwhile to investigate whether the same method can be extended
to balanced hypergraphs.
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3 Kj-clique transversal problem

The Kj-clique transversal problem becomes a particular case of S—transversal prob-
lem when S is the family of all cliques of size [. Since the number of maximal cliques
of a chordal graph is O(n), the number of cliques size [ of a chordal graph is O(n'*?).
Thus the Kj-clique transversal problem is polynomially solvable for strongly chordal
graphs by Theorem 4 if [ is fixed. The running time of this algorithm is exponential
in [. In this section, we give a simple sequential algorithm and an NC-algorithm to
solve the Kj-clique transversal problem on strongly chordal graphs.

3.1 A sequential top-down scan

Let G(V, E) be a strongly chordal graph and D(G) = (d(3,j)) its clique matrix
with p rows representing the maximal cliques Ci,Cs,...,C, of G and n columns
representing the vertices vy, vs, ..., v, of G with

.o 1 if UiECj
d(l7'])_{ 0 Zf Ui¢cj

Let us recall the result of [13] that a 0-1 matrix is totally balanced if and only
if it can be permuted to a I'-free matrix. Therefore D(G) admits a I-free matrix.
Hence without loss generality we assume that D(G) is I-free. Here onwards, D(G)
is denoted by D. To compute a minimum K;-clique transversal of a strongly chordal
graph, the algorithm scans the clique matrix row by row from the top row to the
bottom row. That is, the algorithm scans rows in increasing order and in each row
it scans the nonzero entries from right to left. Let Y; denote the [ rightmost columns
which have nonzero entries in row ¢ of D. Note that Y; is clique of size [ in C;.
Say R denotes the minimum Kj-clique transversal of G computed by the following
algorithm and ®; denotes the partial answer set constructed by the algorithm at row
t. Here is the algorithm:

Algorithm 1

1. Let §R0 = (b
2. Add Y to R;. Thus now R; = {¥1}.

3. For i = 2 to p, do the following: If C; contains a member of R; 1, let ®; = R;_1;
otherwise let #; = R;,_; U {Y;}.

4. Let R =R,.

Now we show that R, the set constructed by the algorithm, is a minimum K-
clique transversal of G. We need the following observations to prove the correctness
of the algorithm.
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Figure 4: Matrix D in I'-free form

Observation 1 Suppose that D is I'-free. Let vy, vg € C, where o < B. If vy € Cy
for any o > p, then vg € C,.

Proof. The proof follows from the fact that D is [-free. See Figure 5. m

Observation 2 Suppose that D is I-free. Let M, be any clique of size | in C,. Let
Y, be a clique of size | in C, such that the vertices of Y, form the | rightmost columns
of D which have nonzero entries in row p of D. Then if M, is in C, for some o > p,
Y, s also in C,.

Proof. The proof follows from Observation 1. m
Lemma 2 Output R of algorithm 1 is a minimum K;-clique transversal of G.

Proof. It is easy to see that R is a Kj-clique transversal of G. To show that R is
minimum, we prove that R; is a subset of some minimum Kj-clique transversal of G
for every i = 1,2, ...,p. We use induction on the number of rows of D.

Initially, Ry is empty and hence a subset of any minimum Kj-clique transversal
of G. Suppose R;_; is a subset of some minimum K;-clique transversal S of G. If
C; has a member of R;_;, then R; = R;_; and hence K; is a subset of S, a minimum
K;-clique transversal of G. Suppose C; does not have any member of $;_;. Let M;
be member of S which is a subset of C;. Say S = S\ {M;}U{Y;}. By Observation 2,
if a maximal clique Cy, a > 4, contains M;, then it contains ¥;. Thus S is a K;-clique
transversal of G. Since S and S are of the same cardinality, S is a minimum K;-clique
transversal of G. Thus ®; is a subset of S, a minimum Kj-clique transversal of G.
By induction, R is a minimum Kj-clique transversal of G. =

A T'- free clique matrix for a strongly chordal graph can be achieved in time
O(Llogn) [15] and in time O(n?) [16] where L is the number of nonzero entries of
the n x n Boolean matrix. Thus we state that
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Vo 1.1’ “}}
Co | 1 1 Cq C,| 1 1 1
( 1 1 Cy C 1 1 0

(a): in D (h): in D (¢): in D
Figure 5: Submatrices of D and D

Theorem 5 The K;-clique transversal problem has a polynomial solution for strongly
chordal graphs.

3.2 A parallel top-down scan

In this section, we give an NC' algorithm to solve the Kj-clique transversal problem
for strongly chordal graphs. We shall transform the Kj-clique transversal problem on
strongly chordal graphs to the clique transversal problem on strongly chordal graphs
and solve the Kj-clique transversal problem on strongly chordal graphs. To do so,
we need to prune the clique matrix D of G.

3.2.1 Pruning matrix D

Let G(V, E) be a strongly chordal graph. As before, we assuime that the clique ma-
trix D of G is I'-free. We prune the matrix D to form D as follows:

If a row of D has less than [ — 1 nonzero entries, replace all the nonzero entries
of the row by zeroes. If a row of D has more that [ — 1 nonzero entries, replace the
I — 1 rightmost nonzero entries by zeroes. The resultant matrix of D is denoted by

D. The graph corresponding to D is denoted by G.

Observation 3 D is I'-free and G is strongly chordal.

Proof. Suppose D is not I-free. Then D has a ' submatrix which is I'-free. Say D
has the submatrix given in Figure 5(b). Since d(3,p) =0in D and d(33,p) = 1 in D,
row 3 has at most [ — 2 nonzero entries to the right of column p in matrix D. Since

d(a,p) = 1in D, row « has at least [ — 1 nonzero entries to the right of column p in
matrix D. Thus there exists > p such that d(a,n) =1 and d(8,7) = 0 in D. See
Figure 5(c). This implies that D is not I-free which is a contradiction.

Since D is T-free,G is strongly chordal [12, 13]. m

Observation 4 The cardinality of a minimum clique transversal ofﬁ s the same
as that of a minimum K;-clique transversal of G.
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Proof. Suppose a and /3 denote the cardinalities of a minimum clique transversal
of G and a minimum Kj-clique transversal of G respectively. Let .S denote a min-
imum clique transversal of G. For every column j (vertex v;) of S, let j be the
row of D which contains the uppermost nonzero entry of column j of D. Say Y;
is the [ rightmost columns of D which have nonzero entries in row ¢ of D. Define
Sy = {Y; | v; € S}. Since D is I-free, Y7 is in all those rows ¢ of D which satisfy
the conditions that ¢ > j and d(¢,j) = 1. That is, Y5 of S; covers all those maximal
cliques which are covered by v; of S. Thus S; is a K;-clique transversal of G. There-
fore, B < a.

To prove the converse, consider a minimum K;-clique transversal S; of G. For any
Y of S, let Iy be the leftmost column of Y in D. That is, if Y = {v,,,vy,, ..., vy, }
such that y1 < y2 < ... < y,, then Iy = y;. Define S = {v;, | Y € S;}. Since S

covers all the maximal cliques of size > [, S is clique transversal of G. Therefore,
a<f =

Here we present a parallel algorithm for the Kj-clique transversal problem on
strongly chordal graphs:

Algorithm 2
1. Input clique matrix D of G in the I'-free ordering
2. Prune D to get the matrix D and G.
3. Find a minimum clique transversal S of G.

4. For every j of S, find j where j is the row of D which contains the uppermost
nonzero entry of column j of D.

5. Design S; = {Y5 | j € S} where Y; is the [ rightmost columns of D which have
nonzero entries in row ¢ of D.

6. Output S;, a minimum Kj-clique transversal of G.
Lemma 3 The output S; of Algorithm 2 is a minimum K;-clique transversal of G.

Proof. First we claim that S; is K;-clique transversal of . Suppose C, is a maximal
clique of G of size > [. That is, row « has nonzero entries in D. Since S is a clique
transversal of G, 3 a v; € S such that column j has nonzero entry in row a. By the
definition of j, we have j < a. By the construction, Y; of D is in S;. Since D is
[-free, Y5 is in row @ of D. Thus the maximal clique C, has member of S;. Hence
S; is a Kj-clique transversal of G.

The cardinality of S is the same as that of a minimum clique transversal of G.
By observation 4, the cardinality is minimum. m
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Lemma 4 Algorithm 2 runs in O(log®n) time with O(n*) processors.

Proof. Dahlhaus and Karpinski [8] have given a parallel algorithm to construct
a strong elimination ordering of a strongly chordal graph which runs in O(log?n)
time with O(n?) processors. Given a strong elimination ordering, one can achieve
a D-free clique matrix D of G by the method explained in Section 2 (one has to
sort the maximal cliques by lexicographic ordering based on the strong elimination
ordering). This sorting can be done in O(log?*n) time with O(n?) processors [10]. To
prune matrix D to get D, it is enough to find the [ — 1 rightmost nonzero entries of
row ¢ in D. This can be done by parallel prefix computation [11] in O(log n) time
with O(n?) processors. A minimum clique transversal of a strongly chordal graph
can be located in O(log®n) time with O(n+m) processors [7]. The j is the uppermost
row of D with nonzero entry at column j and it can be found using parallel prefix
computation method. The Y7 is the [ rightmost columns which have nonzero entries
in row ¢ of D and again it can be computed by parallel prefix computation method. m

Thus we conclude that

Theorem 6 Given a strong elimination ordering of a strongly chordal graph G, the
K;-clique transversal problem can be solved in O(log®n) time with O(n*) processors.

4 Conclusion

We have shown that the Kj-clique transversal problem has a polynomial time algo-
rithm on the class of strongly chordal graphs. The immediate question is:

Does this problem have a polynomial solution in balanced graphs?

Before probing this question, it may be useful to analyze possible extensions of
Theorem 3.

If H(V,E) is a balanced hypergraph, is B(H,S) balanced where § =
{S1,52,...,5,} is a family of subsets of V7

A positive answer would allow us to apply integer programming on balanced ma-
trices and to solve the Kj-clique transversal problem for balanced graphs.

A polynomial algorithm for the k-fold clique problem on balanced graphs has
been discussed in [9]. An NC algorithm for this problem in strongly chordal graphs
does not seem to be straightforward. The technique we use to solve the Kj-clique
transversal problem on strongly chordal graphs does not work for the k-fold transver-
sal problem. It would be interesting to explore the k-fold clique transversal problem
to design an NC' algorithm on strongly chordal graphs.
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