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Abstract
Let G be a graph in which each vertex has been coloured using one
of k colours, say ci,co,...,c;. If a 3-dimensional cube @ in G has n;
vertices coloured ¢;, ¢ = 1,2,...,k, and |n; —n;| < 1 for any ¢;,¢; €

{c1,¢a,...,cr}, then @ is said to be equitably k-coloured. A cube de-
composition Q of a graph G is equitably k-colourable if the vertices of
G can be coloured so that every cube in Q is equitably k-coloured. For
k = 2 and 3, we completely settle the existence problem for equitably
k-colourable cube decompositions of K,, K, — F and Kp, ,.

1 Introduction

Let G and H be graphs. A G-decomposition of H is a set G = {G1,G,...,G,}
such that G; is isomorphic to G for 1 < ¢ < p and G partitions the edge set of H.
If, for each G; € G, the vertex set of G; has been coloured using & colours such that
n; vertices receive colour ¢;, for 1 <14 < k, then G is said to be equitably k-coloured
if |n; — n;| < 1 for any ¢;,¢; € {c1,¢,...,c4}. A G-decomposition is said to be
equitably k-coloured if G; is k-coloured for 1 < i < p.

Most commonly, H = K,, the complete graph on v vertices. Other common
choices for H are K, — F, the complete graph on v vertices with the edges of a 1-
factor removed, and K, ,, the complete bipartite graph with m vertices in one part
and n in the other. In this paper we consider each of these graphs with G being a
3-dimensional cube, denoted @, and £ equal to 2 and 3. When k = 2, each cube in
the decomposition has four vertices of each of the two colours. Similarly, when k =
3, each cube in an equitably 3-coloured cube decomposition has three vertices of one
colour, three vertices of a second colour and two vertices of a third colour.

Previous work on equitably k-coloured G-decompositions has focused on having
G isomorphic to an m-cycle. In [3], the existence question for equitably 2-coloured
m-cycle decompositions of K, and K, — F is completely settled for m € {4,5,6}.
The same problem, but with & = 3, is completely settled in [2]. The necessary
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and sufficient conditions for the existence of an equitably 2-coloured 3 or 5-cycle
decomposition of the complete multipartite graph with all parts of the same size are
presented in [7]. Also presented in [7] are the necessary and sufficient conditions for
the existence of an equitably 2-coloured 4 or 6-cycle decomposition of the complete
multipartite graph with p parts and n; vertices in part ¢, for 1 < ¢ < p. Of course,
a 4-cycle is a 2-dimensional cube. Thus, [2] and [3] completely settle the existence
problem for equitable 2 and 3-coloured 2-cube decompositions.

Kotzig began work on @)-decompositions when he gave such a decomposition
of Ky in [5]. In 1981, he went on to show in [6] that a -decomposition of K,
is possible only if v = 1,16 (mod24). In the same paper, he proved sufficiency
for the case v = 1(mod 24). It was not until 1994 that sufficiency was proven for
v = 16 (mod 24) in [4]. Furthermore, in [1], Adams, Bryant and El-Zanati completely
settle the existence question for a ()-decomposition of A\K,, the lambda-fold complete
graph. In this paper, for £ = 2 and 3, we completely settle the existence question for
equitably k-colourable Q)-decompositions of K, K, — F and K, . Our main result
is given below.

Main Theorem

e There exist equitably 2-colourable @-decompositions of K, or K, — F if and
only if v = 16 (mod 24) or v = 2 (mod 6) respectively.

e There exist equitably 3-colourable @-decompositions of K, or K, — F if and
only if v = 1,16 (mod 24) or v = 2 (mod 6) respectively.

e There exist equitably 2- or 3-colourable ()-decompositions of K, ,, where m <
n, if and only if 3|m, 3|n, 12|mn and 4 < m < n.

We now introduce some nototation to be used throughout this paper. The cube
with vertex set {a,b,¢,d, e, f,g,h} and edge set {{a, b}, {b,c}, {c,d}, {d,a}, {e, f},
{f,9}, {g9,h}, {h,e}, {a,e}, {b, f}, {c,g}, {d,h}} is denoted (a,b,c,d,e, f,g,h).
K, is used to denote the complete bipartite graph with m vertices in one part
and n in the other. K, \ K, denotes the complete graph on m vertices with a hole
of size n, while K; \ (K, + K,,) is used to denote the complete graph on [ vertices
with two disjoint holes of sizes m and n. Finally, we use the colours black and white
when looking at equitable 2-colourings and black, white and grey when considering
equitable 3-colourings.

2 Equitably 2-colourable ()-decompositions of K,

From [6] and [4] we have the following existence result for uncoloured Q-decomposi-
tions.

Lemma 2.1 ([6], [4]) There exists a Q-decomposition of K, if and only if v = 1,16
(mod 24).
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An equitably 2-coloured cube must have four vertices coloured black and four
coloured white. Each vertex also has degree three. These observations are used to
prove Lemma 2.2.

Lemma 2.2 An equitably 2-coloured Q-decomposition of K, can exist only if v is
even.

Proof. Assume that v is odd and that an equitably 2-coloured @-decomposition
of K, exists. We now seek a contradiction. Colour b vertices of K, black. The
degree sum of the black vertices in K, is b(v — 1). A @-decomposition of K, has
v(v—1)/24 cubes each containing four black vertices, each with degree three. Hence,
we may express the degree sum of the black vertices as v(v — 1)/2. Equating these
two expressions, we find that b =v/2 ¢ Z.

We now present some existence results necessary for the proof of Theorem 2.9. All
existence results were found by hand but have been checked using a distinct method.

Lemma 2.3 There exists an equitably 2-coloured @QQ-decomposition of Kgg.

Proof. Let the vertex set of Kgg be Ui—12{0;,1;,...,5;}. For i = 1,2, colour
the vertices 0;, 1; and 2; black and the vertices 3;, 4; and 5; white. A suitable
decomposition of Kgg is given by: (01,02,11,42,32,31,12,41), (11,22,21,32,52,41,02,51),
(22,01, 12, 51,31, 59, 21,43).

Lemma 2.4 If m,n = 0(mod6), there exists an equitably 2-colourable Q-decom-
position of K .

Proof. Let z and y be positive integers. Take a copy of K, , and replace each
vertex by six new vertices, colouring three black and three white. By Lemma 2.3,
we can place an equitably 2-coloured @)-decomposition of Kg¢ on each set of vertices
arising from an edge of K, ,. The result is an equitably 2-coloured @-decomposition
of Kﬁz,ﬁy-

Lemma 2.5 There exists an equitably 2-coloured @Q-decomposition of Kig.

Proof. Let the vertex set of K5 be Z6. Colour the vertices 0,1,...,7 black and
8,9,...,15 white. A suitable decomposition of K4 is given by:

(0,2,12,4,3,10,8,11),  (1,0,8,6,5,13,9,14),  (6,0,9,7,13,15,1,8),
(0,10,6,12,14,1,11,7), (4,15,2,13,8,5,9,3), (0,5,4,7,11,12,14,15),
(1,7,5,2,13,10,11,14), (1,3,6,4,12,15,9,10), (6,2,3,5,15,8,14,10),
(7,2,4,3,13,11,9,12).

Lemmas 2.6 and 2.7 are needed for the construction of a @-decomposition of K4\ K,
given in Lemma 2.8.

Lemma 2.6 There exists an equitably 2-coloured Q-decomposition of K \ (K4
+Ki).
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Proof. Let the vertex set of Kog\ (K4 + Ki6) be {01,11,...,71} U {02,15,25,32} U
{03,13,...,153}. Vertices with the subscript 2 are in the hole of size four while those
with subscript 3 are in the hole of size sixteen. Colour the vertices 0y, 11, 21, 31, 09,
15, 03, 13,...,73 black and the remaining vertices white. A suitable decomposition
of Ky \ (K4 + Ki) is given by:

01,71,41,31,61,11,21,51),
01,11,41,51,21,31,61,71), 01,41,12,93,02,83,61,21), 51,11,32,13,22,03,31,71),
01,03,51,83,13,41,93,11), 21,03,71,83,13,61,93,31), 02,93, 32,03, 13, 23,83, 12),

( (01732751712722741702711)7 (
( ( (
( ( (
(01,43,61,23,33,51,103,41),  (11,35,61,63,23,71,135,22), (21,33, 32,63, 73, 22,155, T1),
( ( (
( ( (
( ( (

21,32,71,12,22,61,02,31),

31,43,29,53,73,32,123,57), 02,43, 71,53, 75,41, 145, 61), 15,23,32, 53, 63,51, 113,41),
53,21,113,01,11,143,25,103), (63,09,133,01,31,153,41,123), (73,11,153,01,12,133,51, 143),
23,21,133,31,09,103,32,143), (33,02,113,31,12,123,71,103), (43,11,113,12,2;,123,6;,153).

Lemma 2.7 Let H be a graph with six parts, labelled Hy, H, ..., Hg, each contain-
ing four vertices. Let there be an edge connecting each vertex of part H; to each
vertex in parts Hy, Hs and Hg, for 1 < i < 3. Furthermore, let there be a copy of
K4 placed on the vertices in Hz and also on the vertices in Hg. Then there exists an
equitably 2-coloured Q)-decomposition of H.

Proof. Let the vertex set of H be U;j—1,..6{0;, 1;,2;,3;}, with 0; and 1; coloured
black and 2; and 3; coloured white, for 1 <7 < 6. A suitable decomposition of H is
given by:

(01,26,33,04, 15, 32,35,03), (01,36,23, 14,25,22,05,13), (01,06, 13,24, 35, 22, 15,23),
(01,16,03,34,05,32,25,33), (03,05,11,14,24,21,26,22), (13,35,11,04,34,31,16,22),
(23,25,02,04,34,11,06,32), (33,15,12,14,24,11,36,32), (21,34,12,04,14,02,24,31),
(21,35,02,15,25,12,05,31), (21,16, 12,06, 36,02,26,31), (03,23, 13,33,36, L, 26, 06),
(03, 13, 36, 26, 06, 16, 33, 23).

Lemma 2.8 There exists an equitably 2-coloured Q-decomposition of Kag \ Ki.

Proof. Take a copy of K; with vertex set {a,b,c,d,e, f,g9}. Replace each vertex
except g with four new vertices, in each case colouring two new vertices black and two
white. Replace g with sixteen new vertices, colouring eight black and eight white.

By Lemma 2.6, we can place an equitably 2-coloured @Q-decomposition of Kag\
(K4 + Ki6) on the set of vertices arising from the edges {a, b}, {a,c}, {a, g}, {b, ¢},
{b,g} and {c, g} in K7, with the hole of size four on the vertices that replaced ¢ and
the hole of size sixteen on the vertices that replaced g. Apply the same decomposition
to the vertices arising from the edges {d, e}, {d, f}, {d, g}, {e, f}, {e, g} and {f, g}.
The hole of size four is on the vertices that replaced f, while the hole of size sixteen
remains on the vertices that replaced g.

Finally, we place the equitably 2-coloured @-decomposition of the graph H given
in Lemma 2.7 on the remaining edges. We let the vertices replacing a correspond to
H,, those replacing b correspond to Hy and so on, where H; is described in Lemma
2.7.

Theorem 2.9 There exists an equitably 2-colourable Q)-decomposition of K, if and
only if v = 16 (mod 24).
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Proof. The necessary condition results from the combination of Lemmas 2.2 and
2.1. We now prove sufficiency.

Let v = 24z + 16, where z is a non-negative integer. Arrange the vertices of K,
into x groups of twenty-four vertices and one group of sixteen vertices. Within each
group, colour half the vertices black and half white. Let the i** group of twenty-four
vertices be denoted by the set V;, 1 < i < z. Label the remaining sixteen vertices
Q1,002,...,0016-

By Lemma 2.5, we can place an equitably 2-coloured @-decomposition of Kig
on the vertices oo, 002, ...,0016. Furthermore, by Lemma 2.4, we can place an
equitably 2-coloured Q)-decomposition of Ky 24 on V;UVj, for 1 <i < j < z. Finally,
by Lemma 2.8, we can place an equitably 2-coloured @)-decomposition of Ky \ Kig
on V; U {001,009,...,0016}, for 1 < i < x, where the hole of size sixteen is on the
vertices 0oy, 00, . .., 0016. The result is an equitably 2-coloured ()-decomposition of
K,, where v = 16 (mod 24).

3 Equitably 2-colourable ()-decompositions of K, — F

Finding equitably 2-colourable ()-decompositions of K, — F' is considerably easier
than the problem considered in the previous section. In fact, we require only one
additional existence result.

Lemma 3.1 There exists an equitably 2-coloured @QQ-decomposition of Kg — F'.

Proof. Let the vertex set of Kg — F be Zg. Colour vertices 0, 1, 2 and 3 black and
vertices 4, 5, 6 and 7 white. Let the edges of F be {0,4}, {1,5}, {2,6} and {3,7}. A
suitable decomposition of Kg — F is given by: (0,1,2,7,5,4,3,6), (2,0,3,5,4,6,1,7).

Theorem 3.2 There exists an equitably 2-colourable Q-decomposition of K, — F if
and only if v=2(mod6), v > 8.

Proof. Obviously, v > 8 as a cube has eight vertices. Furthermore, only when
v = 2 (mod 6) is the number of edges in K, — F divisible by twelve and the degree of
each vertex divisible by three. We now prove that these conditions are also sufficient.

Let v = 6x + 2, where z is a positive integer. Arrange the vertices of K, — F into
x groups of six vertices and one group of two vertices. Within each group, colour
half the vertices black and half white. Let the i** group of six vertices be denoted
by the set V;, for 1 < ¢ < z. Label the vertices in V; 0;,1;,...,5;, where 0;, 1; and
2; are the black vertices. Let the edges {0;,4;}, {1;,5;} and {2;,6;} be contained
in F. Furthermore, label the remaining two vertices oo; and oo, and let the edge
{001,002} be contained in F also.

By Lemma 2.3, we can place an equitably 2-coloured Q-decomposition of Kgg
on V;UVj, for 1 <4 < j < z. Furthermore, by Lemma 3.1, we can place an
equitably 2-coloured @-decomposition of Kg — F on the vertices V; U {001, 005}, for
1 <4 < 2. The result is an equitably 2-coloured @-decomposition of K, — F', where
v =2 (mod6).
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4 Equitably 3-colourable ()-decompositions of K,

An equitably 3-coloured cube must have three vertices each of two colours and two
vertices of the remaining colour. In this case, we are no longer restricted to consid-
ering decompositions of graphs with a vertex set of even size. Once again, we begin
by establishing some existence results. It should be noted that the decomposition in
Lemma 4.5 was found using a computational search.

Lemma 4.1 There exists an equitably 3-coloured @QQ-decomposition of Kgg.

Proof. Let the vertex set of K¢g be Uj=12{0;,1;,...,5;}. For i =1, 2, colour the
vertices 0; and 1; black, vertices 2; and 3; white and vertices 4; and 5; grey. A suitable
decomposition of Kgg is given by: (01,02,11,32,22,21,42,41), (31,32,21,52,42,51,12,01),
(41,52751702,12,11722731).

Lemma 4.2 If m,n = 0(mod6), there exists an equitably 3-colourable Q-decom-
position of K .

Proof. The proof mirrors that in Lemma 2.4.
Lemma 4.3 There exists an equitably 3-coloured QQ-decomposition of Kg 2.

Proof. Let the vertex set of Kg1o be {01,11,...,8;} U{0s,15,...,115}. Colour
the vertices 01, 11, 21, 02, 15, 2, and 3, black. Colour the vertices 31, 41, 51, 42, ba,
6, and 7, white. Finally, colour the vertices 61, 71, 81, 82, 92, 105 and 11, grey. A
suitable decomposition of Ky 2 is given by:

(02,01,12,31,41,42,61,82),  (12,11,22,51,41,52,81,102), (32,01,22,41,51,62,71,112),
(52,31,62,61,71,92,11,02),  (42,51,72,71,81,82,21,12),  (72,41,62,81,61,92,21,32),
(112,81,92,01,21,02,51,52), (82,71,102,01,11,32,31,72), (102,61,113,11,21,25,31,42).

Lemma 4.4 There exists an equitably 3-coloured @QQ-decomposition of Kig.

Proof. Let the vertex set of K6 be Ujz123{0:,1;,...,4:} U{oo}. Colour vertices
with subscript 1 black, vertices with subscript 2 white and vertices with subscript 3
grey. Finally, colour the vertex oo black. A suitable decomposition of K can be
found by developing the following two starter cycles modulo 5, leaving the subscripts
and the point oo fixed: (00,01, 11, 12,03, 33, 02,42), (01,21,43,03, 15, 13,25, 44).

Lemma 4.5 There exists an equitably 3-coloured @QQ-decomposition of Kss.

Proof. Let the vertex set of Kys be Zss. Colour the vertices 0, 1, 3, 8, 11, 17, 18,
20 and 21 black. Colour the vertices 2, 5, 9, 12, 13, 15, 19 and 22 white. Finally,
colour the remaining eight vertices grey. A suitable decomposition of Kss is given
by:
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(14,17,24,18,22,0,23,12), (10,18,20,19,23,1,24,13), (11,19,21,15,24,2,20,14),
(12,15,22,16,20,3,21,10), (13,16,23,17,21,4,22,11), (12,17,22,19,24,8,3,6),
(13,18,23,15,20,9,4, 7) (14,19,24,16,21,5,0 8) (10,15,20,17,22,6,1,9),
(11,16,21,18,23,7,2,5), (0717377 10,12,9 14) (1,2,4,8,11,13,5,10),
(2,3,0,9, 12,14,6, 11) (3,4,1,5,13,10,7,12), (4,0,2,6,14,11,8,13),
(0,12,8,14, 19, 4,20, 23),  (1,13,9,10,15,0,21,24),  (2,14,5,11,16,1,22,20),
(3,10,6,12,17,2,23,21),  (4,11,7,13,18,3,24,22),  (0,16,19,18,20,5,9,6),
(1,17,15,19,21,6,5,7), (2, 18,16, 15, 22,7, 6, 8), (3,19,17,16,23,8,7,9),
(4,15,18,17,24,9,8,5).

Theorem 4.6 There exists an equitably 3-colourable Q)-decomposition of K, if and
only if v = 1,16 (mod 24).

Proof. The necessary conditions follow from Lemma 2.1. We prove sufficiency by
considering two cases.

Case 1. v =1(mod24)

Let v = 24x + 1, where z is a non-negative integer. Arrange the vertices into
x groups of twenty-four vertices and one “left-over” vertex. Within each group of
twenty-four vertices, colour eight black, eight white and eight grey. The remaining
vertex, labelled oo, is coloured black. Let the i** group of twenty-four vertices be
denoted by the set V;, for 1 <1¢ < z.

By Lemma 4.5, we can place an equitably 3-coloured @Q-decomposition of Kss on
the vertex set V; U {oc}, for 1 < i < x. By Lemma 4.2, we can place an equitably
3-coloured @)-decomposition of K94 on V;UVj, for 1 <7 < j < z. The result is an
equitably 3-coloured Q-decomposition of K, where v = 1 (mod 24).

Case 2. v =16 (mod 24)

Let v = 24z + 16, where x is a non-negative integer. Arrange the vertices as
for Theorem 2.9. Colour and label each group of twenty-four vertices as in Case 1.
Furthermore, partition the 24 vertices in the set V; into 4 groups of six vertices such
that each group contains 2 vertices of each colour. For each set V;, denote these
“subgroups” by Vi1, Vi2, Vis and Vj4. Label the vertices within the group of size
sixteen 001, 00s,...,0015. Colour these new vertices such that ooy, 009, . ..,006 are
black, ooz, 00g, . ..,0011 are white and 00;9, 0013, ..., 001 are grey.

By Lemma 4.4, we can place an equitably 3-coloured ()-decomposition of Kig
on the vertices 001,009, ...,0016. Furthermore, by Lemma 4.5, we can place an
equitably 3-coloured @)-decomposition of Kss on the vertex set V; U ooy, for 1 <
¢t < z. By Lemma 4.2, we can place an equitably 3-coloured @Q-decomposition of
Kgg on Vi, U {009, 003,007,008, 0019,0013} for 1 < i < z and 1 < k < 4 and
an equitably 3-coloured @-decomposition of Kys9s on V; UV}, for 1 <4 < j <
x. We complete the equitably 3-coloured @-decomposition of K, by placing an
equitably 3-coloured )-decomposition of Ky s, which exists by Lemma 4.3, on the
set of vertices Vi U Viz U {004, 005, 006, 009, 0019, 0011, 0014, 0015, 0016} and Vi3 U Vig U
{004, 005, 006, 009, 0010, 0011, 0014, X015, X016}, for 1 < i < z, with the obvious vertex
partition.
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5 Equitably 3-colourable ()-decompositions of K, — F
Lemma 5.1 There exists an equitably 3-coloured @QQ-decomposition of Kg — F'.

Proof. Let the vertex set of Kz — F be Zg. Colour the vertices 0, 1 and 2 black,
vertices 3, 4 and 5 white and vertices 6 and 7 grey. Let the edges of F be {0,4}, {1,5},
{2,6} and {3,7}. A suitable decomposition of Kg— F is given by: (0,1,2,7,5,4,3,6),
(2,0,3,5,4,6,1,7).

Theorem 5.2 There exists an equitably 3-colourable QQ-decomposition of K, — F if
and only if v =2 (mod6), v > 8.

Proof. The necessary conditions are clearly the same as for Theorem 3.2. To
prove sufficiency, let v = 6x + 2, where z is a positive integer. Arrange the vertices
of K, — F into = groups of six vertices and one group of two vertices. Let the 7**
group of six vertices be denoted by the set V;, for 1 < ¢ < x. Label the vertices in V;
0;,1;,...,5;, where 0; and 1; are coloured black, 2; and 3; are coloured white and 4;
and 5; are coloured grey. Let the edges {0;,3;}, {1;,4;} and {2;,5;} be contained in
F. Furthermore, label the remaining two vertices co; and ocos, where co; is coloured
black and oo, is coloured white, and let the edge {001, 002} be contained in F' also.

By Lemma 4.1, we can place an equitably 2-coloured @-decomposition of Kgg
on V;UVj, for 1 <4 < j < z. Furthermore, by Lemma 5.1, we can place an
equitably 2-coloured Q-decomposition of Kg — F on the vertices V; U {001, 005}, for
1 <4 < z. The result is an equitably 3-coloured @-decomposition of K, — F', where
v =2 (mod6).

6 Equitably 2 and 3-colourable ()-decompositions of K,,,

Lemma 6.1 ([4]) There exists a Q-decomposition of Ky, 5, wherem < n, if and only
if 3|m, 3|n, 12|mn and 4 <m < n.

Theorem 6.2 There exists an equitably 2-colourable Q-decomposition of Ky, , where
m < n, if and only if 3|m, 3|n, 12|mn and 4 <m < n.

Proof. This follows immediately from Lemma 6.1 by colouring the m vertices in
one part black and the n vertices in the other part white.

Theorem 6.3 There exists an equitably 3-colourable Q-decomposition of Ky, n, where
m < n, if and only if 3|m, 3|n, 12|mn and 4 <m < n.

Proof. The necessary conditions follow from Lemma 6.1. We now prove sufficiency.
Within each part colour one third of the vertices with each of the three colours. We
consider two cases.
Case 1: m=n=0(mod6).

This follows immediately from Lemma 4.2.
Case 2:  m =0(mod12) and n = 3 (mod 6) (or vice versa).
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Let m = 12z and n = 6y + 3. Arrange the vertices of the first part into z groups
of twelve vertices. Arrange the vertices of the second part into y — 1 groups of six
vertices and one group of nine vertices. Within each group, colour one third of the
vertices with each of the three colours. In the first part, let the i** group of twelve
vertices be denoted by the set U;, for 1 < i < z. In the second part, let the i** group
of six vertices be denoted by the set V;, for 1 < ¢ <y — 1, and let the group of nine
vertices be denoted by the set .

By Lemma 4.2, we can place an equitably 3-coloured )-decomposition of K
on U; UV}, for 1 <i¢<wand1l < j <y— 1. Furthermore, by Lemma 4.3, we can
place an equitably 3-coloured @-decomposition of Kip9 on U; UW, for 1 < i < 2.
Thus we have an equitably 3-coloured @-decomposition of Ky, p.
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