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Abstract

By a graph-pair of order t, we mean two non-isomorphic graphs G and H
on t non-isolated vertices for which G U H = K, for some integer t > 4.
Given a graph-pair (G, H), we say (G, H) divides A\K,, if the edges of
AK,, can be partitioned into copies of G and H with at least one copy
of G and at least one copy of H. We will refer to this partition as a
(G, H)-multidecomposition.

In this paper, we consider the existence of multidecompositions of
AK,, for the graph-pairs of order 4 or 5. For those graph-pairs, we will
also look for maximum multipackings and minimum multicoverings of
AK,,. The existence problem for multidecompositions on K,, has been
solved for all graph-pairs of order 4 or 5.



126 ABUEIDA, DAVEN AND ROBLEE

1 Introduction

The M-fold complete graph MK, is the graph with m vertices in which each pair of
vertices is joined by exactly A edges. A partition of the edges of AK,, into copies
of G is called a G-decomposition. When a G-decomposition is not permissible, it is
natural to ask how close can we get to a G-decomposition. This question can be
answered either by looking at a packing of the complete graph AK,, having a leave
with as few edges as possible, or by looking at a covering of the complete graph AK,,
having a padding with as few edges as possible.

In this paper, we consider different ways of partitioning the edges of AK,,. In [1],
the authors looked at decompositions involving two different graphs (specifically, the
clique K; and the star K;,). The main restriction was that the final decomposition
have at least one copy of each of the different subgraphs. In [2], the authors define
the following: a graph-pair of order t consists of two non-isomorphic graphs G and
H on t non-isolated vertices for which GU H = K; for some integer ¢ > 4. More gen-
erally, a graph-n-tuple of order t consists of n non-isomorphic graphs G, G, ...,G,
on t non-isolated vertices for which U} ,G; = K, for some integer ¢ > 4. The only
graph-pair of order 4 is (Cy4, Ky + K,), and there are 5 graph-pairs of order 5, as

follows:
/M\/ iq (7 .

H H

Given a graph-pair (G, H), a partition of the edges of AK,, into copies of G
and H with at least one copy of G and at least one copy of H is called a (G, H)-
multidecomposition. When AK,, does not admit a (G, H)-multidecomposition, we
seek a (G, H)-multipacking and a (G, H)-multicovering. In a maximum multipack-
ing, the remaining edges form a graph, called the leave, having as few edges as
possible. In a minimum multicovering, the extra edges form a graph, called the
padding, having as few edges as possible.. A multidesign is a multidecomposition, a
maximum multipacking, or a minimum multicovering.

In [2], the first two authors completely determined the values of m for which K,

admits a (G, H)-multidecomposition, when (G, H) is a graph-pair of order 4 or 5.
The results they obtained may be summarized as follows:

Gy

AN

Theorem 1.1 There is a (G;, H;)-multidecomposition of K, if and only if
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(a) when G; = Cy and H; £ Ky + Ky, m=0,1 mod 4 (m # 5);

(b) when i€ {1,3,4}, m=0,1 mod 4, m > 5 (except for i =1 and m = 8);
(¢) wheni=2, m=0,1 mod 5;

(d) wheni=>5,m ¢ {6,7}.

The authors also completed the corresponding multipacking and multicovering
problems. The results are summarized in the following theorem:

Theorem 1.2 Let L(K,,) be the leave from a mazimum (G, H)-multipacking, and let
P(K,,) be the padding from a minimum (G, H)-multicovering of K,,. The following
are true:

(a) If (Gi, H;) € {(Cu, Ky +K>), (G3, Hy), (Ga, H) } andm = 2,3 mod 4 (m > 6),
then the leave and the padding consist of exactly one edge;

(b) If (Gi, H;) = (G1, Hy) and m = 2,3 mod 4 (m > 7), then the leave and the
padding consist of exactly one edge;

(c) If (Gi, H;) = (G2, Ha) and m = 2,4 mod 5 (m > 7), then the leave consists of
exactly one edge while the padding consists of 4 edges;

(d) If (Gi, H;) = (G2, Hy) and m =3 mod 5 (m > 8), then the leave is equivalent
to K3 while the padding consists of exactly one edge;

(e) If (Gi, H;) = (G5, Hs), then for Kg the leave consists of 2 non-adjacent edges
while the padding consists of exactly one edge, and for K; the leave and the
padding consist of exactly one edge.

In this paper, we solve the same problems for AK,,.

Let V(AK,,) = Z,,and V(AK, ;) = Zyyy. It S C Z,,, then MK, [S] is the subgraph
of AK,, induced by the vertices in S, and if SUT C Z,, then \K,,[S;T] is the
bipartite subgraph of AK,, on the vertices SUT. When s = |S| and ¢t = |T|, it is clear
that AK,[S] = MK, and AK,[S;T] = AK,,. Define [a,b] = {t € Z, | a < t < b}.
If S =][a,b] and T = [c,d], then we write AK,[a,b] and \K,[a, b; c,d] rather than
AK,,[S] and MK, [S; T].

For an integer j, define the permutation 7/ : Z,, — Z, by n/(t) =t +j mod n.
We write m(t) rather than 7'(¢). For integers i and j, define n} : Z, — Z, by
m (i) =4, m(t) =t+j modnfori+1<t<i+n—j—1land7i(t)=t+j+1
mod n otherwise. We use 7/(G) and 7/ (G) to denote the subgraphs obtained by
applying these permutations to shift the labels of a given subgraph G. Given a set S
of graphs, 7/(S) and ﬂ{(S) indicate the sets of subgraphs obtained by applying the
permutations defined above to the vertices of each graph in S.
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2 The graph-pair of order 4

Note: in [2], the authors used the name “2K,” for the graph consisting of two disjoint
edges, while “E,” was used in [4]. Here, we use “K, + K,.”

Note that for Kj, the best we may obtain is a maximum multipacking having a
leave with 2 edges. In the Appendix, we list a multidecomposition of 2K5. We can
improve upon part (a) of Theorem 1.1 and Theorem 1.2, as follows:

Theorem 2.1 The following are true if m > 4:

(a) If m=0,1 mod 4 (m #5), then there is a (Cs, Ky + Ks)-multidecomposition
of AKp,.

(b) If m = 2,3 mod 4 and X is even, then there is a (Cy, Ky + Ky)-multidecom-
position of NK,,.

(c) If m = 2,3 mod 4 and X is odd, then there is a mazimum (Cy, Ky + Ks)-
multipacking (minimum (Cy, Ky + K, )-multicovering) with a single edge as the
leave (padding).

Proof. Suppose m = 0,1 mod 4 (m # 5). Use a multidecomposition of K,, a total
of A times to obtain a (C4y, Ky + K»)-multidecomposition of AK,.

Suppose m = 2,3 mod 4, m > 6, and A is even. Let  be the set of subgraphs
used in a multipacking of K,,; recall that a multipacking of K,, has a leave that
consists of a single edge, say {0,1}. For 1 < i < A, 7(8) and 7""2(3) are each a
set of subgraphs used in a multipacking of K,,, and taken together the leave edges
71({0,1}) and 7**2({0,1}) form an additional copy of K, + K. So the subgraphs in

A2-1

U '(8)un*2(5) ur'({0,1}) un™({0,1}))

=0

form a (Cy, Ky + K»)-multidecomposition of AK,.

Suppose m = 2,3 mod 4, m > 6, and A is odd. In [2], the authors resolved
the case A = 1, so we will assume A > 3. Let $* be the set of subgraphs used in a
multidecomposition of (A — 1)K,,, and let 8~ (81) be the set of subgraphs used in
a maximum multipacking (minimum multicovering) of K,, with a single edge as the
leave (padding). So the subgraphs in *U S~ (8*UST) form a maximum multipack-
ing (minimum multicovering) of AK,, with a single edge as the leave (padding). O

3 The first graph-pair of order 5

We use a notation similar to that used in [3]. Given the labelling below, we denote
Gl by [(U,.Z‘, U)(y, Z)] and H, by [(U,.Z‘, U)(y, Z)]
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T T

Gy H,

*r—e

Theorem 3.1 There is a (Gy, Hy)-multidecomposition of NI, if:
(i) m =6 and X is even, or
(it) m =8 and A > 2, or

(iii) m=0,1 mod 4, m >5 (m+#8), or

(iv) m=2,3 mod 4, m>7, and X is even.

Proof. (i) A (G1, H;)-multidecomposition of 2Kg is given in the Appendix. If A > 4
is even, one can find a multidecomposition of MK using the multidecomposition for
2K

(i) A computer search has shown that there is no (G1, H;)-multidecomposition
of Kg; see [2]. In the Appendix, we list multidecompositions for 2Ks and 3Kg. For
A > 4, one can find a multidecomposition of AKg using the multidecompositions for
2Kg and 3K8

(iii) By aresult in [2], there is a (G, H; )-multidecomposition for m = 0,1 mod 4
on K, m>5 (m # 8). So there is an exact multidecomposition for any AK,, for
those same values of m.

(iv) Let 8 be the set of subgraphs from a (Gy, H;)-multidesign of K, with leave
(padding) consisting of the edge {0,1}.

If A = 4z, then use the multidecompositions 73(83), 7(3), 7*(3), and m1(7(3)) =
times with leave (padding) consisting of the edges {0,4},{1,2},{2,3},{1,3}. These
edges form z extra copies of G.

If A\ =42+ 2 = 4(z — 1) + 6, then use a multidecomposition of 4(z — 1)K,
as described above. What remains are the edges of 6K,,; use the following mul-
tidecompositions 3,75 (3), m0(8), 72(83), 72(3), and 7y '(73(3)) with leave (padding)
consisting of the edges {0,1},{1,4},{0,2},{0,3}, {3,4},{4,2}. These edges form
another copy of H;. d

Theorem 3.2 The following are true:

(i) For odd A, there is a mazimum multipacking (minimum multicovering) of NKg
with leave (padding) = K.

(1) If m = 2,3 mod 4, m > 7, and X is odd, then there is a multipacking (multi-
covering) of AKp, with a leave (padding) = K.
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Proof. (i) For A = 2z 4+ 1 = 2(z — 1) + 3, we merely find a multidecomposition
(2z — 1)K, as above, and use the multipackings/multicoverings on 3K listed in the
Appendix.

(i) For A = 4z + 1 (A = 4z + 3) use a multidecomposition on (A — 1)K, as
described in the previous theorem together with a multipacking/multicovering on
K, for a leave (padding) consisting of exactly one edge. O

4 The second graph-pair of order 5
Given the labelling below, we denote both G, and H» by [z,y, 2, u, v].

T T

G, H,

Theorem 4.1 Let \* € Zj such that A\ = X* mod 5. Ifm =2,4 mod 5 andm > 7,
then the leave of a mazimum (G, Hy)-multipacking of AK,, consists of \* edges, and
the padding of a minimum (Gy, Hs)-multicovering of NK,, consists of 5 — \* edges.
If m = 3 mod 5, then the number of edges in the leave of a mazimum (G2, Hs)-
multipacking of AK,, is congruent to 3\* mod 5 and the number of edges in the
padding of a minimum (G, Hy)-multicovering of AK,, is congruent to 2\* mod 5.

Proof. Since e(Gy) =5 and e(H,) = 5, it suffices to consider 1 < A < 5.

Suppose that m = 2,4 mod 5 (m > 7). In [2], it was shown that a maximum
(G2, Hy)-multipacking of K, has a leave consisting of exactly one edge. Let ( be
the set of subgraphs from a maximum multipacking of K,,, and we may assume that
the leave is the edge {0,1}.

Let p = n({0,1,2,3}) and p' = 7({1,4}) be permutations of the vertices of
K, (sop(i) =iford <i<m-—1and p'(i) =i fori € Z,, — {1,4}). With 8
defined above, it is clear that p(3), p*(8), p*(8), and p'(3) are also multipackings of
K, with the leaves p({0,1}) = {1,2}, p*({0,1}) = {2,3}, p*({0,1}) = {3,0}, and
?'({0,1}) = {0, 4}, respectively.

For 1 < A < 4, the subgraphs in U?;é;ﬂ(ﬁ) partition the edges in AK,, —
U}Zop’({0,1}) and the leave consists of the A edges in U)_jp’({0,1}). For A =
5, let H = [1,3,4,2,0] be a subgraph isomorphic to H,; then the subgraphs in
(U?zopj(ﬁ)) Up'(B)U{H} completely partition the edges in 5K,,. Foreach 1 < A < 4,
it is clear that a (G2, Hy)-multicovering of AK,, may be obtained from an optimal
(Go, Hy)-multipacking by including a single copy of H,. Such a multicovering will
have a padding with 5 — A edges.

Suppose m =3 mod 5 (m > 8). In [2], it was shown that a maximum (Gy, Hs)-
multipacking of K, has a leave isomorphic to K3. Let 8 be the set of subgraphs
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from a maximum multipacking of K,,, and we may assume the leave is the subgraph
A= Kp,[0,2] 2 K;. So n2(A) = K,[2,4] = K3. Let G be a copy of Gy formed from
the edges {0,1}, {0,2}, {1,2}, {2,3}, and {3,4}. The subgraphs in U r2(3) U{G}
form a maximum (G4, Hy)-multipacking of 2K, whose leave is the single edge {2,4}.
From this multipacking, we can form a minimum (Gj, Hs)-multicovering of 2K, by
adding a single copy of Gy or H,; this multicovering will have a padding with 4
edges. It is easy to use the multidesigns above to find maximum multipackings and
minimum multicoverings of MK, for 3 < A < 4, and for A = 5, a multidecomposition
can be found. d

5 The third and fourth graph-pairs of order 5

For t = 3 or 4, we use the notation G; = [z,y, z,u,v] and H; = [z,y, 2, u,v]; see the
figure below.

x x
u v u v
G H;
Y Z Y Z
x x
u v u v
Gy H,
Y Z Y Z

The following is useful for recursive constructions:
Theorem 5.1 Let a € {3,4}. For all s,t € N, H, divides Ky, (t > 2).

Proof. It is sufficient to show that H, divides both K,, and K,3. Consider the
following:

for Kup:  Hy = [0,1,4,2,5],[0,1,5,3,4] ;
Hy = [0,2,3,4,5],[1,2,3,5,4] ;

for K50 Hy = [4,5,0,6,3],[4,6,1,5,3],[5,6,2,4,3] ;
Hy = [0,2,3,4,5],[1,0,3,6,4],[2,1,3,5,6] .

In light of Theorem 1.1(b), the following is clear.

Theorem 5.2 Let m > 5 and t = 3 or 4. There is a (G, H;)-multidecomposition of
AK,, for all X > 1 and m = 0,1 mod 4.
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For m = 2,3 mod 4, we have the following:
Theorem 5.3 Let m > 6 andt =3 or 4, and let m = 2,3 mod 4.
(a) If X is even, then there is a (Gy, Hy)-multidecomposition of NKy,.

(b) If X is odd, then there is a mazimum (G, H;)-multipacking of AK,, with leave
consisting of exactly one edge, and a minimum (Gy, Hy)-multicovering of AK,
with padding consisting of exactly one edge.

Proof. First suppose A > 2 is even; it suffices to show that there is a (G, Ht)-
multidecomposition of 2K,,. In the Appendix, we list (G;, H;)-multidecompositions
for 2K¢, 2K, 2K, and 2K,;. For the remainder of the proof, assume m > 14.

By [2], we may assume that, £, the multipacking of K,, consists of a multipacking
of K,,[0,m — 9], a multidecomposition of K[m — 8,m — 1], and an H;-design on
K,[0,m—9;m—8, m—>5] and K,,[0, m—9; m—4, m—1]. Without loss of generality, we
may assume the leave from this multidesign is the edge {0,1}. Let S = [m—4, m—1],
and M = K,,]0,2; S]if m =2 mod 4 (or M = K,,,[0,3;S]if m =3 mod 4).

Let j = m — 4, m;(0) = m — 4 and 7;(1) = m — 3. Then n;(8) is a (G4, Hy)-
multipacking of K, with leave m;({0,1}) = {m — 4,m — 3}. Let E* = E(M) U
{{0,1},{m — 4,m — 3}}. It is clear that the subgraphs in (8 — E(M)) U (m;(8))
partition the edges of 2K, — E*. For even ), it remains to partition the edges in E*.

If m =2 mod 4, use the following copies of G; and H;:

t=3: Gy = [0,1,m—4,m—2,m—3],
Hy = [0,1,m—4,2,m—3],[0,1,m—1,2,m—2] ;
t=4 Gy = [m—-2,0,1,m—4m—3],
Hy 2 [m=4m-3m-120,m-1,m-3m-2,1,2].

If m =3 mod 4, use the following copies of G; and Hy:

t=3: G3 £ m—4,m—-3,m—2,2,3],
Hy =2 [m—4,m-3,0,m—2,2],[m—3m-—2,1,0,m — 1],
[2,3,m —1,1,m — 4];
t=4: Gy = [2,m—4,m—3,1,0],
Hy = [0,2,3,m—2,m—1],[1,2,3,m—1,m — 2],

[3,0,1,m —3,m —4] .

Suppose A > 3 is odd. We have just shown that there is a (G, H)-multide-
composition of (A — 1)K, so there is a maximum (G, H;)-multipacking (minimum
(Gt, Hy)-multicovering) of AK,, with a leave consisting of exactly one edge (padding
consisting of exactly one edge). ]
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6 The final graph-pair of order 5

Given the labelling below, we denote G5 by [z,y, z,u,v] and Hy by [(u,z,v)(y, 2)].

T T

" ; u/\v

Gs Hs

*r—e

In [2], the authors laid the groundwork for the following:

Theorem 6.1 There is a (Gs, Hs)-multidecomposition of AK,, for all X > 1 and
m > 5, except for \=1 and m € {6,7}.

Proof. By Theorem 1.1(d), there is a multidecomposition of K,, for all m ¢ {6, 7}.
So if m ¢ {6, 7}, then it is clear that there is a multidecomposition of AK,, for any
A

Let m € {6,7}; it is clear that a (G5, Hs)-multidecomposition cannot be ob-
tained for K,. In order to find a (G5, Hs)-multidecomposition of AK,, for A > 2,
it suffices to show that there is a (G5, Hs)-multidecomposition of 2K, and 3K,,.
Multidecompositions for 2Kg and 2K are listed in the Appendix.

Recall that the (G5, Hs)-multidesign for Kg has a leave consisting of 2 edges,
say {0,5} and {2,3}. For 3Kj, use the multidesigns for K¢, 7(Ks) and n2(Ks), to-
gether with the following copies of Hs: [(0,1,2)(3,4)] , [(0,5,4)(2,3)]. The (G5, Hs)-
multidesign for K; has a leave consisting of a single edge, say {0,1}. For 3K, use
the multidesigns for K7, m(K7) and 7®(K7), together with Hy = [(0,1,2)(3,4)]. O
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Appendix
e (C4, Ky 4+ K,)-multidecomposition of 2K5
Let 8 be a maximum multipacking of Kj, with one copy of Cy, [1,2,3,4],
and two copies of Ky + K, {0,1},{2,4} and {0,4},{1,3}. The leave A con-

sists of the edges {0,2} and {0,3}. So AU n(A) form two copies of Ky + K.
Thus the subgraphs in SUr(3)U (AUT(A)) form a multidecomposition of 2K.

e (G4, Hy) multidecomposition of 2K

G = [(0,1,5)(2,4)],[(0,2,3)(1,5)], [(1,2,4)(0, 3)]
Hy = [(0,3,5)(2,4)],[(1,4,5)(0,3)],[(2,3,4)(1,5)]

e (G1, Hy)-multipacking of 3K,

G = [(0,1,3)(2,4), [0, 1,5)(2,4)], [(0,2,3)(1,5)], [(0,2,4)(1, 5)],
[(0,3,5)(1,4)]
Hy = [(0,3,5)(2,4)],[(1,3,5)(2,4)], [(1,4,5)(0,3)], [(2,3,4)(1,5)]

The leave is the edge {1,2}.

e (G4, Hy)-multicovering of 3K

Gio = [(0,1,3)(4,5)],[(0,1,5)(2,4)1, [(0, 2, 3)(1,5)], [(0,2,4)(1, 5)];
[(0,2,5)(3,4)], [(1,2,4)(0,3)],[(2,3,5)(0,4)]

[(1,3,5)(2,4)], [(1,4,5)(0,3)],[(2,3,4)(1,5)]

The padding is the edge {2,5}.

IR

H,

e (G4, Hy) multidecomposition of 2Ky

G = [(0,1,7)(3,5)],1(0,6,7)(1,2)], [(1,2,6)(3,5)], [(1,3,4)(0, 5)],
[(1,3,4)(2,5)],[(1,5,6)(2,3)], [(1,5,7)(0,3)], [(2, 6, 7)(0, 1)]
Hy = [(0,4,7)(2,5)],[(0,6,7)(3,4)],[(2,4,6)(0,5)], [(2,6,7)(3,4)]
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(G1, Hy) multidecomposition of 3Ky

Gy

H,

IR

12

[
[
[
[
[

(G, H3)-multidecomposition of 2K

(0,6,7)(1,2)},[(0,6,7)(1,2)],[(0,6, 7)(L,
(1,3,5)(2,4)],[(1,4,5)(2,3)]
(0,6,7)(1,2)],[(0,6,7)(1,2)], (0,6, 7)(1,2)], [(2,3,6)(4,5)],
(2,4,6)(3,5)],[(2,5,6)(3,4)],[(3,4,5)(0, 7)], [(3,
(3,4,5)(0,7)],1(3,4,5)(1,6)]

G; = [0,1,3,2,5],[3,4,5,0,2],[4,5,0,1,3]

Hy; = [0,5,2,1,3],[1,5,4,2,3],[4,5,0,1,3]

(G4, Hy)-multidecomposition of 2Kg

Gy
H,

R

~

[1’ 0’ 5’ 2’ 4}’ [2’ 1’ 3’ 4’ 0}’ [4’ 2’ 5’ 3’ 0}
[1,0,3,5,4],[3,1,4,2,5],[3,2,4,0, 1]

(Gs, H3)-multidecomposition of 2K

Gs
Hj

R

~

[1’ 2’ 4’ 3’ 0}’ [3’ 5’ 0’ 1’ 4}’ [6’ 2’ 3’ 4’ 0}
[0’ 6’ 3’ 5’ 4}’ [1’ 3’ 4’ 6’ 5}’ [3’ 1’ 2’ 5’ 0}’
[3’ 5’ 6’ 1’ 0}’ [4’ 5’ 1’ 6’ 0}’ [4’ 6’ 2’ 5’ 0}

(G4, Hy)-multidecomposition of 2K

Gy
H,

o~

o~

[6,0,5,4,2]

[0,1,6,4,3],[0,5,6,4,3],[1,2,6,5,4],
[1,2,5,6,3],[1,3,6,2,0],[2,0,4,1,3],
[2,1,3,6,5],[2,3,5,4,0],[5,3,4, 1, 6]

(G, H3)-multidecomposition of 2K,

135

Use a multidecomposition of 2K7 on 2K[0, 6], and use Theorem 5.1 to find an
Hj design on 2K14[0, 3;7,9] together with the following copies of G3 and Hs:

Gs
Hj

1R

~

[7,8,9,4,5],[8,9,7,5, 6]
4,6,8,9,7],[4,6,9,7,5],[6,8,7,4,9]

(Gs, Hs)-multidecomposition of 2K;;

Use a multidecomposition of 2Ks on 2K7;[0,7], and use Theorem 5.1 to find
an Hj design on 2K1:[0, 3;8, 10] together with the following copies of G3 and

H3:

Gs
H;

o~

o~

[8,9,10,4,5,(8,10,9,6,7],(9,10,8,6,5]
[47 87 107 7’ 9}’ [6? 7? 8? 9? 10]7 [87 107 4? 9’ 6}
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o (G4, Hy)-multidecomposition of 2K

Use a multidecomposition of 2K; on 2K[0, 6], and use Theorem 5.1 to find an
H, design on 2K14[0, 3;7, 9] together with the following copies of G4 and Hy:

1R

G4 [7,5,8,6,9],[9,5,8,4,7]
H, = [8,4,6,9,7],[9,4,8,7,6],[9,6,8,7,4]

e (G4, Hy)-multidecomposition of 2K,

Use a multidecomposition of 2Kg on 2K1;[0,7], and use Theorem 5.1 to find
an Hy design on 2K14[0, 3;8, 10] together with the following copies of G4 and
H4Z

Gy, = [8,6,9,7,10],[10,5,9,4,8],[10,5,9,4, 8]
H, = [7,6,9,10,8],[8,4,9,10,6],[8,4,9,10,7]
e (G5, Hs)-multidecomposition of 2K
Gs = [1,4,5,0,2],[2,4,5,1,3],[5,0,3,1,2]
H; = [(0,3,4)(1,2)],[(0,4,5)(2,3)],[(1,0,3)(4,5)]
e (G5, Hs)-multidecomposition of 2K

Gs
H;

IR

[1,5,6,0,2],[2,0,4,1,3],[3,5,6,2,4]
[(0,1,6)(4,5)],[(0,4,1)(3,6)], [(1,2,3)(5,6)], [(1,2,3)(5,6)],
[(3,0,5)(4,6)],[(3,1,5)(0,4)], [(4,3,5)(0, 6)]

IR
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